正态分布定义 (2)

合集下载

正态分布基本知识_概率论与数理统计

正态分布基本知识_概率论与数理统计

正态分布的重要性
正态分布是概率统计中最重要的一种分布。其重要性我们可 以从以下两方面来理解:
(1) 一方面,正态分布是自然界最常见的一种分布。一般说 来.若影响某一数量指标的随机因素很多,而每个因素所起的 作用都不太大,则这个指标服从正态分布。
(2) 另一方面,正态分布具有许多良好的性质。很多分布可 以用正态分布来近似描述。另外,一些分布又可以通过正态 分布来导出。因此在理论研究中正态分布也十分重要。
02
正态分布的定义与性质
Definitions and Properties of Normal Distribution
正态分布的定义
定义
正态分布的性质
性质
正态分布的性质
性质
(6) 如果固定 ������ ,改变 ������ 的值, 则图形沿 着Ox,轴平移, 而不改变其形状,可见正 态分布的概率密度曲线 ������ = ������(������)的位置 完全由参数 ������ 所确定.������ 称为位置参数.
正态分布的重要性
例如
产品尺寸是一类典型的总体。对于成批生产的产品。如 果生产条件正常并稳定,而且不存在产生系统误差的明显因 素。那么,产品尺寸的总体分布就服从正态分布。
测量的误差,炮弹落点的分布,人的生理特征的量:身 高、体重等,农作物的收获量等等都服从或近似服从正态分 布。
正态分布的重要性
正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的 概率分布都可以近似地用正态分布来描述。
例如,在生产条件不变的情况下,抗压强度、长度等指标;同一种种 子的重量;测量同一物体的误差;以及理想气体分子的速度分量。
一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那 么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态 分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用 的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。

概率与统计中的正态分布

概率与统计中的正态分布

概率与统计中的正态分布正态分布是概率与统计学中最为重要的概率分布之一,也被称为高斯分布。

它在自然界和人类社会中广泛存在,被用于描述各种现象的分布规律,从而对数据进行分析和预测。

本文将详细介绍正态分布的定义、性质以及应用。

一、正态分布的定义和性质正态分布是一种连续型的概率分布,可以通过其概率密度函数来描述。

这个函数的图像呈现出钟形曲线,其形状对称轴对称,且在均值处达到最大值。

正态分布的概率密度函数可由以下公式表示:f(x) = 1 / (σ√(2π)) * e^(-((x-μ)^2) / (2σ^2))其中,μ表示均值,σ表示标准差,e表示自然对数的底数。

正态分布具有以下重要的性质:1. 对称性:正态分布的概率密度函数相对于均值呈现对称性,即左右两侧的曲线形状相同。

2. 峰度:正态分布的峰度为3,表示其曲线相较于正态分布的峰度更加平坦。

3. 标准正态分布:当均值μ为0,标准差σ为1时,所得的正态分布称为标准正态分布。

标准正态分布在统计学中具有重要的作用,经过适当的转换,可以将任何正态分布转化为标准正态分布。

二、正态分布的应用正态分布在自然科学、社会科学和工程技术等领域具有广泛的应用。

下面将介绍其中几个典型的应用。

1. 统计推断:由于正态分布具有丰富的性质和可靠的统计特征,在统计学中得到了广泛应用。

通过对观测数据的分析,可以利用正态分布进行参数估计和假设检验,从而得到关于总体的推断结果。

2. 质量控制:正态分布在质量控制中有着重要的应用。

例如,在生产过程中,通过对产品质量数据的测量和分析,可以使用正态分布来确定产品是否合格以及如何调整生产过程,以确保产品符合规定的质量标准。

3. 金融市场:正态分布在金融领域中的应用广泛而重要。

许多金融市场价格变动的模型都基于正态分布。

例如,根据正态分布模型,可以计算股票价格的变动概率,评估投资风险,并进行资产配置和风险管理。

4. 人口统计学:正态分布在人口统计学中的应用主要用于研究人口特征和人口变化规律。

正态分布2.

正态分布2.
X在(0,2)内 取 值 的 概 率 为__0_._8__
例题讲解
例3:在某次数学考试中,考生的成绩 服从 一个正态分布,即 ~ N(90,100).
(1)试求考试成绩 位于区间(70,110)上的概 率是多少?
(2)若这次考试共有2000名考生,试估计考试 成绩在(80,100)间的考生大约有多少人?
B.正态分布N(, 2 ) 的图象位于x轴上方;
C.若 X ~ N (3,22 ) ,则X的分布密度函数
, ( x)
1
( x3)2
e 8;
2
D.函数 f (x)
1
e

x2 2
(
x

R)
的图象是一条两头
2
低、中间高、关于y轴对称的曲线.
正态曲线下的面积规律
X轴与正态曲线所夹面积恒等于1 。 对称区域面积相等。
-a +a
正态曲线下的面积规律
对称区域面积相等。
-x2 –x1 x1 x2
特殊区间的概率:
若X~N (, 2 ),则对于任何实数a>0,概率
a
P( a X a) a , ( x)dx
为如图中的阴影部分的面积,对于固定的 和 a 而言,该面积
(2)曲线是单峰的,它关于直线x=μ对称.
(3)曲线在x=μ处达到峰值(最高点)
σ
1 2π
(4)曲线与x轴之间的面积为1
方差相等、均数不等的正态分布图示
σ=0.5
μ=0 μ= -1
μ= 1
若 固定,
随值
的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
均数相等、方差不等的正态分布图示

正态分布知识点总结

正态分布知识点总结

4.正态分布 (1)正态分布的定义态变量概率密度曲线的函数表达式为22()2()x f x μσ--=,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ.(2)正态曲线的性质①曲线位于x 轴上方,与x 轴不相交,与x 轴之间的面积为1; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. (3)正态总体在三个特殊区间内取值的概率值①P (μ-σ<X ≤μ+σ)=0.682__6;②P (μ-2σ<X ≤μ+2σ)=0.954__4;③P (μ-3σ<X ≤μ+3σ)=0.997__4.④正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.5.(2017·西安调研)已知随机变量X 服从正态分布N (3,1),且P (X >2c -1)=P (X <c +3),则c =________.①P (X <a )=1-P (X ≥a );②P (X <μ-σ)=P (X ≥μ+σ).【训练4】 (2017·常德一模)已知随机变量X ~N (1,σ2),若P (0<X <2)=0.4,则P (X ≤0)=( ) A.0.6B.0.4C.0.3D.0.28.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.7.假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数800<X ≤900的概率为p 0,则p 0=________.【例1】 某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中: ⑴至少有1株成活的概率;⑴两种大树各成活1株的概率1.(2019·广东省汕头市联考)在某市高中某学科竞赛中,某一个区4 000名考生的参赛成绩统计如图所示.(1)求这4 000名考生的竞赛平均成绩x -(同一组中的数据用该组区间的中点值作代表);(2)由直方图可认为考生竞赛成绩Z 服从正态分布N (μ,σ2),其中μ,σ2分别取考生的平均成绩x -和考生成绩的方差s 2,那么该区4 000名考生成绩超过84.81分(含84.81分)的人数估计有多少?(3)如果用该区参赛考生成绩的情况来估计全市参赛考生的成绩情况,现从全市参赛考生中随机抽取4名考生,记成绩低于84.81分的考生人数为ξ,求P (ξ≤3)(精确到0.001).附:①s 2=204.75,204.75=14.31;②Z ~N (μ,σ2),则P (μ-σ<Z ≤μ+σ)=0.682 7,P (μ-2σ<Z ≤μ+2σ)=0.954 5; ③0.841 354=0.501.3.(2019·合肥一模)已知某公司生产的一种产品的质量X (单位:克)服从正态分布N (100,4),现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( )(附:若X 服从N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 7,P (μ-2σ<X <μ+2σ)=0.954 5) A.4 093件 B.4 772件 C.6 827件D.8 186件(2017·常德一模)已知随机变量X ~N (1,σ2),若P (0<X <2)=0.4,则P (X ≤0)=( ) A.0.6B.0.4C.0.3D.0.24.设每天从甲地去乙地的旅客人数为随机变量X ,且X ~N (800,502),则一天中从甲地去乙地的旅客人数少于900的概率为( )(参考数据:若X ~N (μ,σ2),有P (μ-σ<X <μ+σ)=68.3%,P (μ-2σ<X <μ+2σ)=95.4%,P (μ-3σ<X <μ+3σ)=99.7%) A.97.7% B.68.3% C.99.7%D.95.4%5.某班有50名学生,一次考试的数学成绩ξ服从正态分布N (100,102),已知P (90<ξ<100)=0.3,估计该班学生数学成绩不小于110分的人数为________.10.若随机变量X ~N (μ,σ2),且P (X >5)=P (X <-1)=0.2,则P (2<X <5)=________.14.设X ~N (1,1),其正态分布密度曲线如图所示,那么向正方形ABCD 中随机投掷10 000个点,试估计落入阴影部分的点的个数.(注:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=68.3%,P (μ-2σ<X <μ+2σ)=95.4%)15.已知随机变量X ~B (2,p ),Y ~N (2,σ2),若P (X ≥1)=0.64,P (0<Y <2)=p ,求P (Y >4)的值. 1 某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X ,求X 的分布列及均值.20.(本小题满分10分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布(70,100)N 。

什么是正态分布?

什么是正态分布?

什么是正态分布?正态分布(Normal Distribution),又称高斯分布(Gaussian Distribution),是概率论和统计学中最重要的连续型概率分布之一。

它的形状呈钟形曲线,两侧尾部逐渐趋于无穷远,中间部分较为集中。

正态分布在自然界和社会科学中广泛应用,被认为是一种非常常见的分布模式。

正态分布的概率密度函数可以用以下公式表示:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2 / (2σ^2)))其中,f(x)表示在某个特定取值x处的概率密度,μ表示均值,σ表示标准差,π表示圆周率,e表示自然对数的底数。

正态分布的特点有以下几个方面:1. 对称性:正态分布的概率密度函数呈现对称的钟形曲线,均值处为曲线的中心点,两侧的概率密度相等。

2. 唯一性:正态分布由均值和标准差唯一确定,不同的均值和标准差会导致不同的正态分布。

3. 中心极限定理:当样本容量足够大时,许多随机变量的和或平均值近似服从正态分布。

这是由于中心极限定理的影响,使得正态分布在统计推断中具有重要的地位。

4. 68-95-99.7法则:在正态分布中,约有68%的数据落在均值的一个标准差范围内,约有95%的数据落在均值的两个标准差范围内,约有99.7%的数据落在均值的三个标准差范围内。

这个法则可以帮助我们对数据进行初步的分析和判断。

正态分布在实际应用中具有广泛的意义和应用价值。

例如,在自然科学中,许多测量数据都服从正态分布,如身高、体重、温度等。

在社会科学中,许多人群的特征也符合正态分布,如智力、成绩、收入等。

正态分布的特性使得我们能够对数据进行更准确的描述、分析和预测。

除了在统计学和概率论中的应用,正态分布还在其他领域有着广泛的应用。

在金融领域,股票价格的变动、利率的波动等也常常服从正态分布。

在工程领域,正态分布被用于描述产品的质量特性,以及各种测量误差的分布。

在医学领域,正态分布被用于描述人群的生理指标,如血压、血糖等。

高考正态分布知识点

高考正态分布知识点

高考正态分布知识点在统计学中,正态分布是一种重要的概率分布,也被称为钟形曲线或高斯分布。

在高考数学中,正态分布是一个常见的考察点,学生需要了解和掌握与正态分布相关的概念、性质和应用。

下面将详细介绍高考正态分布的知识点。

一、正态分布的定义和性质1. 正态分布的定义:正态分布是指在数理统计中,如果随机变量X服从一个数学期望为μ、方差为σ²的正态分布,则记为X~N(μ, σ²),其中N表示正态分布。

2. 正态分布的性质:(1)正态分布是对称的,其均值、中位数和众数都相等,即μ=中位数=众数。

(2)正态分布的图像呈现出典型的钟形曲线。

(3)正态分布的曲线在均值两侧呈现出逐渐减小的趋势,但是永远不会到达横轴。

(4)正态分布的曲线关于均值μ对称。

(5)正态分布的标准差σ越大,曲线越矮胖;标准差σ越小,曲线越瘦高。

(6)约68%的数据落在均值±1个标准差范围内;约95%的数据落在均值±2个标准差范围内;约99.7%的数据落在均值±3个标准差范围内。

二、正态分布的概率计算1. 标准正态分布:标准正态分布是指均值为0,标准差为1的正态分布。

记为Z~N(0, 1)。

对于标准正态分布,我们可以通过计算标准正态分布表来得到对应的概率值。

2. 普通正态分布:当随机变量X服从正态分布N(μ, σ²)时,可以进行标准化处理,将X转化为一个服从标准正态分布的随机变量Z。

即Z=(X-μ)/σ,这样就得到了一个标准正态分布。

对于普通正态分布,可以通过标准正态分布表和标准化公式来计算相应的概率值。

3. 概率计算:对于正态分布,我们常常需要计算在某个区间范围内的概率值。

对于标准正态分布,可以利用标准正态分布表查找对应的概率值。

对于普通正态分布,可以将其转化为标准正态分布进行计算。

三、正态分布的参数估计1. 样本均值的抽样分布:在统计学中,我们经常需要对总体的均值进行估计。

对于正态分布,样本均值的抽样分布也是一个正态分布,并且其均值等于总体均值,方差等于总体方差除以样本容量的平方根。

正态分布知识点总结

正态分布知识点总结

正态分布知识点总结正态分布(Normal distribution)是统计学中最为重要和常见的概率分布之一、其分布特点为钟形曲线,对称分布,均值为中心点,标准差决定了曲线的分散程度。

正态分布在实际应用中非常广泛,特别适用于描述大量独立随机变量之和的分布情况。

一、正态分布的定义和性质1.定义:若随机变量X服从一个均值为μ,标准差为σ的正态分布(记作X∼N(μ,σ)),则其概率密度函数为f(x)=1/(σ√(2π))*e^(-(x-μ)²/(2σ²))2.性质:a.对称性:正态分布是关于均值对称的,即平均值左右两侧的曲线是对称的。

b.中心极限定理:大量独立随机变量的和趋向于正态分布,即使原始数据并不服从正态分布,样本量足够大时,样本均值的分布也会接近正态分布。

c.峰度与偏度:正态分布的峰度为3,即其曲线边际趋于水平而不陡。

偏度为0,即左右两侧的概率密度完全对称。

d.累积分布函数:正态分布的累积分布函数可以用标准正态分布表查找,标准正态分布表给出了标准正态分布的累积概率,从而可以计算出任意正态分布的累积概率。

二、正态分布的参数1.均值(μ):正态分布的均值决定了分布曲线的中心位置。

在标准正态分布中,均值为0。

2.标准差(σ):正态分布的标准差决定了分布曲线的宽度和分散程度。

标准差越小,曲线越尖锐;标准差越大,曲线越平缓。

三、标准正态分布1. 定义:均值为0,标准差为1的正态分布称为标准正态分布(Standard Normal Distribution),记作Z∼N(0,1)。

2.标准化:通过标准化转换,将任意正态分布转化为标准正态分布。

转换公式为Z=(X-μ)/σ,其中X为原正态分布的随机变量,μ为原正态分布的均值,σ为原正态分布的标准差。

3.标准正态分布表:存储了标准正态分布的累积概率值,可用于求解任意正态分布的累积概率。

4.逆标准化:通过标准正态分布表,可以将给定累积概率对应的Z值逆向计算,得到对应的原始分布值。

概率论与数理统计实践----正态分布

概率论与数理统计实践----正态分布

正态分布的性质及实际应用举例正态分布定义:定义1:设连续型随机变量的密度函数(也叫概率密度函数)为:式中,μ 为正态总体的平均值;σ 为正态总体的标准差; x 为正态总体中随机抽样的样本值。

其中μ 、σ 是常数且σ > 0,则称随机变量ξ 服从参数为μ 、σ 的正态分布,记作ξ ~ N(μ,σ).定义2:在(1)式中,如果μ = 0,且σ =1,这个分布被称为标准正态分布,这时分布简化为:(2)正态分布的分布函数定义3:分布函数是指随机变量X 小于或等于x 的概率,用密度函数表示为:标准正态分布的分布函数习惯上记为φ ,它仅仅是指μ = 0,σ =1时的值,表示为:正态分布的性质:正态分布的变量的频数分布由μ、σ完全决定。

集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。

σ越小,曲线越陡峭;σ越大,曲线越扁平。

u变换:为了便于描述和应用,常将正态变量作数据转换。

μ是正态分布的位置参数,描述正态分布的集中趋势位置。

正态分布以X=μ为对称轴,左右完全对称。

正态分布的均数、中位数、众数相同,均等于μ。

σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。

也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

应用综述 :1. 估计频数分布 一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。

2. 制定参考值范围(1)正态分布法 适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。

(2)百分位数法 常用于偏态分布的指标。

表3-1中两种方法的单双侧界值都应熟练掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正态分布科技名词定义中文名称:正态分布英文名称:normal distribution定义1:概率论中最重要的一种分布,也是自然界最常见的一种分布。

该分布由两个参数——平均值和方差决定。

概率密度函数曲线以均值为对称中线,方差越小,分布越集中在均值附近。

所属学科:生态学(一级学科);数学生态学(二级学科)定义2:一种最常见的连续性随机变量的概率分布。

所属学科:遗传学(一级学科);群体、数量遗传学(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片发展应用研究过程人格展开编辑本段正态分布正态分布的由来normal distribution正态分布一种概率分布。

正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。

服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。

正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。

它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。

当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。

C.F.高斯在研究测量误差时从另一个角度导出了它。

P.S.拉普拉斯和高斯研究了它的性质。

生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。

例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。

一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。

从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。

附:这种分布的概率密度函数为:(如右图)正态分布公式正态分布1.正态分布:若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号~。

其中μ、σ2 是两个不确定常数,是正态分布的参数,不同的μ、不同的σ2对应不同的正态分布。

正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。

2.正态分布的特征:服从正态分布的变量的频数分布由μ、σ完全决定。

(1)μ是正态分布的位置参数,描述正态分布的集中趋势位置。

正态分布以X=μ为对称轴,左右完全对称。

正态分布的均数、中位数、众数相同,均等于μ。

(2)σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。

也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

正态曲线下面积分布1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。

不同范围内正态曲线下的面积可用公式计算。

2.几个重要的面积比例轴与正态曲线之间的面积恒等于1。

正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.268949%,横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%,横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。

标准正态曲线1.标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ2为0和1,通常用ξ(或Z)表示服从标准正态分布的变量,记为 Z~N(0,1)。

2.标准化变换:此变换有特性:若原分布服从正态分布,则Z=(x-μ)/σ ~ N(0,1) 就服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。

故该变换被称为标准化变换。

3. 标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。

一般正态分布与标准正态分布的转化由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。

只要会用它求正态总体在某个特定区间的概率即可。

“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。

这种认识便是进行推断的出发点。

关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。

一般正态分布与标准正态分布的区别与联系正态分布也叫常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中大量现象均按正态形式分布,例如能力的高低,学生成绩的好坏等都属于正态分布。

标准正态分布是正态分布的一种,具有正态分布的所有特征。

所有正态分布都可以通过Z分数公式转换成标准正态分布。

两者特点比较:(1)正态分布的形式是对称的,对称轴是经过平均数点的垂线。

(2)中央点最高,然后逐渐向两侧下降,曲线的形式是先向内弯,再向外弯。

(3)正态曲线下的面积为1。

正态分布是一族分布,它随随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。

标准正态分布是正态分布的一种,其平均数和标准差都是固定的,平均数为0,标准差为1。

(4)正态分布曲线下标准差与概率面积有固定数量关系。

所有正态分布都可以通过Z分数公式转换成标准正态分布。

1、集中性:正态曲线的高峰位于正中央,即均数所在的位置。

2、对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

3、均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

4、正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。

σ越小,曲线越陡峭;σ越大,曲线越扁平。

5、u变换:为了便于描述和应用,常将正态变量作数据转换。

正态分布是最重要的一种概率分布。

正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。

高斯是一个伟大的数学家,重要的贡献不胜枚举。

但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。

这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。

在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。

这要到20世纪正态小样本理论充分发展起来以后。

拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。

这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。

后来到1837年,海根(G.Hagen)在一篇论文中正式提出了这个学说。

其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。

拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。

因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。

但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。

拉普拉斯的理论把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义。

制定医学参考值范围某些医学现象,如同质群体的身高、红细胞数、血红蛋白量,以及实验中的随机误差,呈现为正态或近似正态分布;有些指标(变量)虽服从偏态分布,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理。

其中经对数转换后服从正态分布的指标,被称为服从对数正态分布。

医学参考值范围亦称医学正常值范围。

它是指所谓“正常人”的解剖、生理、生化等指标的波动范围。

制定正常值范围时,首先要确定一批样本含量足够大的“正常人”,所谓“正常人”不是指“健康人”,而是指排除了影响所研究指标的疾病和有关因素的同质人群;其次需根据研究目的和使用要求选定适当的百分界值,如80%,90%,95%和99%,常用95%;根据指标的实际用途确定单侧或双侧界值,如白细胞计数过高过低皆属不正常须确定双侧界值,又如肝功中转氨酶过高属不正常须确定单侧上界,肺活量过低属不正常须确定单侧下界。

另外,还要根据资料的分布特点,选用恰当的计算方法。

常用方法有:(1)正态分布法:适用于正态或近似正态分布的资料。

双侧界值:X+-u(u)^S单侧上界:X+u(u)^S,或单侧下界:X-u(u)^S (2)对数正态分布法:适用于对数正态分布资料。

双侧界值:lg-1[X(lgx)+-u(u)S(lgx)];单侧上界:lg-1[X(lgx)+u(u)S(lgx)],或单侧下界:lg-1[X(lgx)-u(u)S(lgx)]。

常用u值可根据要求由表4查出。

(3)百分位数法:常用于偏态分布资料以及资料中一端或两端无确切数值的资料。

双侧界值:P2.5和P97.5;单侧上界:P95,或单侧下界:P5。

表4常用u值表统计方法的理论基础如t分布、F分布、分布都是在正态分布的基础上推导出来的,u检验也是以正态分布为基础的。

此外,t分布、二项分布、Poisson分布的极限为正态分布,在一定条件下,可以按正态分布原理来处理。

概率论中最重要的分布正态分布有极其广泛的实际背景,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。

例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。

相关文档
最新文档