2020-2021四川成都列五中学数学七年级第二月考试题(含答案)

合集下载

2020-2021学年七年级下学期第二次月考数学试题含答案

2020-2021学年七年级下学期第二次月考数学试题含答案

一、选择题:(共30分)1.下列不等式中,是一元一次不等式的有( )个.①x>-3;②xy ≥1;③32<x ;④132≤-x x ;⑤11>+xx . A.1 B.2 C.3 D.42.不等式3(x -2)≤x+4的非负整数解有( )个..A.4B.5C.6D.无数3.下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩ C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩4.与2x<6不同解的不等式是( )A.2x+1<7B.4x<12C.-4x>-12D.-2x<-65.有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有( )A.0个B.1个C.2个D.3个6.如果不等式(m -2)x>2-m 的解集是x<-1,则有( )A.m>2B.m<2C.m=2D.m ≠27.方程组327413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩8.-53、-2、-3 、-2π四个数中,最大的数是( ).A.-53B.-2C.-3D.-2π9.若∠1与∠2互补,∠2与∠3互补,∠1=50°,则∠3等于( ).(A )50° (B )130° (C )40° (D )140°10.若3378a -=,则a 的值是( )A .78B .78-C .78±D .343512-二、填空题:(共15分)三、解答题16.解不等式(组)并把解集在数轴上表示:(每题6分,共12分)(1)2-5x ≥8-2x (2)⎩⎨⎧+≥--≥+xx x x 2236523 17.解二元一次方程组:(每题6分,共12分)(1 )⎩⎨⎧=--=53623y x x y (代入法) (2)2232328x y x y ⎧+=⎪⎨⎪+=⎩(加减法)18.(10分)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,• 求每个小长方形的长和宽分别是多少?19.(10分)某种商品的进价为800元,出售时标价为1200元.后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,请你帮忙算一算,该商品至多可以打几折?20.(11分)已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;⑵∠PAG的大小.参考答案。

人教版七年级第二学期第二次月考数学试题含答案

人教版七年级第二学期第二次月考数学试题含答案
(4)在数轴上找一点N,使点M到A、B、C三点的距离之和等于10,请直接写出所有的N对应的数.(不必说明理由)
【参考答案】***试卷处理标记,请不要删除
三、解答题
21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为 ,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为 ,又知13+23+33+43+53+63+73+83+93+103可表示为 .通过对以上材料的阅读,请解答下列问题.
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(-3)④=___;5⑥=___;(- )⑩=___.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___;
(3)算一算: ÷(− )④×(−2)⑤−(− )⑥÷
24.观察下列两个等式: , ,给出定义如下:我们称使等式 成立的一对有理数 , 为“共生有理数对”,记为( , ),如:数对( , ),( , ),都是“共生有理数对”.
__________.
14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}= ,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
15. 的平方根是_______; 的立方根是__________.
(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________.
(2)1+ + +…+ 用求和符号可表示为_________.

最新2022-2021年七年级上第二次月考数学试卷含答案解析

最新2022-2021年七年级上第二次月考数学试卷含答案解析

七年级(上)第二次月考数学试卷一、选择题:(本大题满分(mǎn fēn)42,每小题3分)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.2.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.43.若有理数a、b在数轴上对应的位置(wèi zhi)如图所示,则下列关系正确的是()A.|a|<|b| B.a>b C.a<b D.a=b4.单项式2x2y2的次数(cìshù)是()A.1 B.2 C.3 D.45.计算(jì suàn)a×3a的结果(jiē guǒ)是()A.a2B.3a2C.3a D.4a6.与﹣3x2y是同类项的是()A.﹣2x2y B.﹣3xy2C.2x3y D.5xy7.计算(﹣1)2021+(﹣1)2021的结果是()A.﹣1 B.﹣2 C.0 D.28.若x=(﹣2)×3,则x的倒数是()A.B.C.﹣6 D.69.如果a与1互为相反数,则|a|=()A.2 B.﹣2 C.1 D.﹣110.在数轴(shùzhóu)上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣111.下列(xiàliè)各式中,运算结果为负数的是()A.(﹣2)2B.(﹣2)3C.(﹣2)﹣(﹣3)D.(﹣2)×(﹣3)12.“比a的2倍大l的数”用代数式表示(biǎoshì)是()A.2(a+1)B.2(a﹣1)C.2a+1 D.2a﹣113.省政府提出(tí chū)2021年要实现180 000农村贫困人口脱贫,数据(shùjù)180 000用科学记数法表示为()A.1.8×103B.1.8×104C.1.8×105D.1.8×10614.若x、y为有理数,且|x﹣3|+(y+2)2=0,则x+2y的值为()A.﹣4 B.﹣1 C.0 D.4二、填空题:(本大题满分16分,每小题4分)15.化简:﹣a﹣a= .16.若a=﹣1,则﹣a+1的值是.17.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.18.若a﹣b=﹣1,则代数式2a﹣2b﹣2021的值是.三、解答题19.计算:(1)|﹣1|+18×(﹣)2(2)4+(﹣12)×﹣(﹣1)2.20.计算(jì suàn):(1)a(a﹣b)+ab(2)2(a2﹣3)﹣(2a2﹣1)21.先化简,再求值.3x2﹣(y2+3x2)+2(y2﹣3xy),其中(qízhōng)x=2,y=﹣1.22.若c、d互为相反数,x的绝对值是1,且ab=﹣,求﹣2ab+x2的值.23.某校组织七年级学生到距离学校6km的科技馆去参观(cānguān),小胖同学因事没能乘上学校的包车,于是准备在校门口乘岀租车去科技馆,出租车收费标准如表:里程(单位:km)收费(单位:元)3km以下(含3km)8.03km以上(每增加1km) 1.80(1)若出租车行驶的里程(lǐchéng)为3km,则要付车费多少元?;(2)若出租车行驶(xíngshǐ)的里程为x km(x>3),请用x的代数式表示车费y元;(3)小胖同学身上仅有10元钱,够不够支付乘出租车到科技馆的车费?请说明理由.24.海口市某校七年级有5名教师带学生去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有m名学生,则用式子表示两种优惠方案各需要多少元?(2)当m=40时,采用哪种方案优惠?(3)当m=100时,采用哪种方案优惠?七年级(上)第二次月考数学试卷参考答案与试题(shìtí)解析一、选择题1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.【考点(kǎo diǎn)】相反数.【分析】只有(zhǐyǒu)符号不同的两个数互为相反数,0的相反数是0.【解答(jiědá)】解:﹣3的相反数是3.故选B.【点评】此题主要(zhǔyào)考查相反数的意义,较简单.2.当x=1时,代数式4﹣3x的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.若有理数a、b在数轴上对应的位置如图所示,则下列关系正确的是()A.|a|<|b| B.a>b C.a<b D.a=b【考点(kǎo diǎn)】绝对值;数轴.【专题(zhuāntí)】计算题;实数.【分析】根据(gēnjù)数轴上点的位置判断即可.【解答(jiědá)】解:根据题意得:|a|>|b|,a<b,故选C【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题(běntí)的关键.4.单项式2x2y2的次数是()A.1 B.2 C.3 D.4【考点】单项式.【分析】根据单项式的次数的定义:所有字母指数的和,据此即可求解.【解答】解:次数是2+2=4.故选D.【点评】本题考查了单项式的次数的定义,单项式的次数就是单项式的所有字母指数的和,理解定义是关键.5.计算a×3a的结果是()A.a2B.3a2C.3a D.4a【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式(yīnshì),计算即可.【解答(jiědá)】解:a×3a=3a2,故选:B.【点评(diǎn pínɡ)】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.与﹣3x2y是同类项的是()A.﹣2x2y B.﹣3xy2C.2x3y D.5xy【考点(kǎo diǎn)】同类项.【分析】依据(yījù)同类项的定义求解即可.【解答】解:﹣3x2y与2x2y所含字母相同,相同字母的指数也相同,故:﹣3x2y与2x2y是同类项.故选:A.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.7.计算(﹣1)2021+(﹣1)2021的结果是()A.﹣1 B.﹣2 C.0 D.2【考点】有理数的混合运算.【分析】先计算乘方,再计算加法即可求解.【解答】解:(﹣1)2021+(﹣1)2021=1﹣1=0.故选:C.【点评】此题考查了有理数的混合运算,有理数混合运算顺序(shùnxù):先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.8.若x=(﹣2)×3,则x的倒数(dǎo shù)是()A.B.C.﹣6 D.6【考点(kǎo diǎn)】倒数.【分析(fēnxī)】先求出x的值,然后根据定义求出x的倒数.【解答(jiědá)】解:若x=(﹣2)×3,则x=﹣6,∴﹣6的倒数是﹣.故选A.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.9.如果a与1互为相反数,则|a|=()A.2 B.﹣2 C.1 D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评(diǎn pínɡ)】此题主要是考查了相反数的概念和绝对值的性质.10.在数轴上距离原点2个单位长度(chángdù)的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣1【考点(kǎo diǎn)】数轴.【分析(fēnxī)】分点在原点左边与右边两种情况讨论求解.【解答(jiědá)】解:①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选C.【点评】本题考查了数轴,难点在于要分点在原点的左边与右边两种情况讨论求解.11.下列各式中,运算结果为负数的是()A.(﹣2)2B.(﹣2)3C.(﹣2)﹣(﹣3)D.(﹣2)×(﹣3)【考点】有理数的混合运算.【分析】根据有理数的减法、有理数的乘法、有理数的乘方运算法则化简各式,再根据小于0的数是负数进行选择.【解答】解:A、(﹣2)2=4>0,A选项错误;B、(﹣2)3=﹣8<0,B选项正确(zhèngquè);C、(﹣2)﹣(﹣3)=10,C选项错误(cuòwù);D、(﹣2)×(﹣3)=6>0,D选项错误(cuòwù).故选:B.【点评】此题考查了有理数的混合运算,注意:两数相乘,同号得正,异号得负,并把绝对值相乘;乘方是乘法(chéngfǎ)的特例,因此乘方运算可转化成乘法法则,由乘法法则又得到了乘方符号法则,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶数次幂是正数.0的任何次幂都是0.12.“比a的2倍大l的数”用代数式表示(biǎoshì)是()A.2(a+1)B.2(a﹣1)C.2a+1 D.2a﹣1【考点】列代数式.【分析】由题意按照描述列式子为2a+1,从选项中对比求解.【解答】解:由题意按照描述列下式子:2a+1故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.13.省政府提出2021年要实现180 000农村贫困人口脱贫,数据180 000用科学记数法表示为()A.1.8×103B.1.8×104C.1.8×105D.1.8×106【考点】科学记数法—表示较大的数.【分析】科学(kēxué)记数法的表示形式为a×10n的形式(xíngshì),其中1≤|a|<10,n为整数(zhěngshù).确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:180000用科学(kēxué)记数法表示为1.8×105,故选:C.【点评】此题考查了科学(kēxué)记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.若x、y为有理数,且|x﹣3|+(y+2)2=0,则x+2y的值为()A.﹣4 B.﹣1 C.0 D.4【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,x﹣3=0,y+2=0,解得,x=3,y=﹣2,则x+2y=﹣1,故选:B.【点评】本题考查的是非负数的性质,掌握当几个非负数或式的绝对相加和为0时,则其中的每一项都必须等于0是解题的关键.二、填空题:(本大题满分16分,每小题4分)15.化简:﹣a﹣a= ﹣2a .【考点】合并同类项.【分析】根据(gēnjù)合并同类项系数相加字母及指数不变,可得答案.【解答(jiědá)】解:﹣a﹣a=﹣2a,故答案(dá àn)为:﹣2a.【点评】本题考查(kǎochá)了合并同类项,合并同类项系数相加字母及指数不变是解题关键.16.若a=﹣1,则﹣a+1的值是 2 .【考点(kǎo diǎn)】代数式求值.【专题】计算题;实数.【分析】把a的值代入原式计算即可得到结果.【解答】解:当a=﹣1时,原式=1+1=2,故答案为:2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.17.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是(1+10%)a 万元.【考点】列代数式.【专题】增长率问题.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.18.若a﹣b=﹣1,则代数式2a﹣2b﹣2021的值是﹣2021 .【考点(kǎo diǎn)】代数式求值.【分析(fēnxī)】依据等式的性质先求得2a﹣2b的值,然后代入求解即可.【解答(jiědá)】解:∵a﹣b=﹣1,∴2a﹣2b=﹣2.∴原式=﹣2﹣2021=﹣2021.故答案(dá àn)为:﹣2021.【点评】本题(běntí)主要考查的是求代数式的值,求得2a﹣2b的值是解题的关键.三、解答题19.(2021秋•昌江县校级月考)计算:(1)|﹣1|+18×(﹣)2(2)4+(﹣12)×﹣(﹣1)2.【考点】有理数的混合运算.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)|﹣1|+18×(﹣)2=1+18×=1+2=3;(2)4+(﹣12)×﹣(﹣1)2=4﹣6﹣1=﹣3.【点评】此题考查了有理数的混合运算,有理数混合运算的四种运算技巧 1.转化(zhuǎnhuà)法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. 2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. 3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. 4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.20.(2021秋•昌江县校级月考)计算(jì suàn):(1)a(a﹣b)+ab(2)2(a2﹣3)﹣(2a2﹣1)【考点(kǎo diǎn)】单项式乘多项式;整式的加减.【分析】(1)直接去括号(kuòhào),再合并同类项;(2)去括号(kuòhào),再合并同类项.【解答】解:(1)a(a﹣b)+ab,=a2﹣ab+ab,=a2;(2)2(a2﹣3)﹣(2a2﹣1),=2a2﹣6﹣2a2+1,=﹣5.【点评(diǎn pínɡ)】本题考查了单项式乘以多项式,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.21.先化简,再求值.3x2﹣(y2+3x2)+2(y2﹣3xy),其中(qízhōng)x=2,y=﹣1.【考点(kǎo diǎn)】整式的加减—化简求值.【分析】先去括号(kuòhào),合并同类项,再代入求值.【解答(jiědá)】解:3x2﹣(y2+3x2)+2(y2﹣3xy),=3x2﹣y2﹣3x2+2y2﹣6xy,=y2﹣6xy;当x=2,y=﹣1时,原式=(﹣1)2﹣6×2×(﹣1)=13.【点评】本题考查了整式的加减及化简求值问题,注意去括号时,括号前是负数时,括号内的每一项都要变号;用单项式去乘多项式中的每一项时,不能漏乘,还要注意确定积的符号.22.若c、d互为相反数,x的绝对值是1,且ab=﹣,求﹣2ab+x2的值.【考点】代数式求值.【分析】由题意可知:c+d=0,ab=﹣,x=±1,然后代入求值即可.【解答】解:∵c、d互为相反数,且ab=﹣,x的绝对值是1,∴ab=,c+d=0,x=±1.当x=1时,原式=0﹣2×+1=2;当x=﹣1时,原式=0﹣2×+1=2.综上所述:﹣2ab+x2的值为2.【点评】本题主要考查的是求代数式的值,掌握(zhǎngwò)相反数,绝对值的性质是解题的关键.23.(12分)(2021秋•昌江县校级月考)某校组织七年级学生到距离学校6km的科技馆去参观,小胖同学因事没能乘上学校的包车,于是准备在校门口乘岀租车(zū chē)去科技馆,出租车收费标准如表:里程(单位:km)收费(单位:元)3km以下(含3km)8.03km以上(每增加1km) 1.80(1)若出租车行驶(xíngshǐ)的里程为3km,则要付车费多少元?;(2)若出租车行驶(xíngshǐ)的里程为x km(x>3),请用x的代数式表示(biǎoshì)车费y元;(3)小胖同学身上仅有10元钱,够不够支付乘出租车到科技馆的车费?请说明理由.【考点】列代数式.【分析】(1)根据表格中的数据可以解答本题;(2)根据题意和表格中的数据可以用含x的代数式表示出车费;(3)将x=6代入(2)中的代数式,即可求得所需要的车费,从而可以解答本题.【解答】解:(1)由题意可得,出租车行驶的里程为3km,则要付车费8元;(2)由题意可得,若出租车行驶的里程为x km(x>3),车费为:8+(x﹣3)×1.8=1.8x+2.6,即若出租车行驶的里程为x km(x>3),车费为:(1.8x+2.6)元;(3)故小胖同学身上仅有10元钱,不够不够支付乘出租车到科技馆的车费,理由(lǐyóu);1.8×6+2.6=10.8+2.6=13.4>10,故小胖同学身上(shēn shɑng)仅有10元钱,不够不够支付乘出租车到科技馆的车费.【点评】本题考查列代数式,解题的关键是明确题意(tí yì),列出相应的代数式.24.(14分)(2021秋•昌江县校级月考)海口市某校七年级有5名教师带学生(xué sheng)去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有m名学生,则用式子(shì zi)表示两种优惠方案各需要多少元?(2)当m=40时,采用哪种方案优惠?(3)当m=100时,采用哪种方案优惠?【考点】代数式求值;列代数式.【分析】(1)甲方案:学生总价×80%,乙方案:师生总价×75%;(2)把m=40代入两个代数式求得值进行比较;(3)把m=100代入两个代数式求得值进行比较.【解答】解:(1)甲方案:m×30×80%=24m,乙方案:(m+5)×30×75%=22.5(m+5);(2)当m=40时,甲方案付费为24×40=960元,乙方案付费22.5×45=1012.5元,所以采用甲方案优惠;(3)当m=100时,甲方案付费为24×100=2400元,乙方案付费22.5×105=2362.5元,所以采用乙方案优惠.【点评】此题主要考查了列代数式,以及(yǐjí)代数式求值,解决问题的关键是读懂题意,找到所求的量的等量关系.根据关系式列出式子后再代值计算是基本的计算能力,要掌握.内容总结(1)B、(﹣2)3=﹣8<0,B选项正确。

四川初一初中数学月考试卷带答案解析

四川初一初中数学月考试卷带答案解析

四川初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题计算的结果是()A.B.C.D.二、单选题1.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.2.如图,直线直线被直线所截,且,若,则的度数是()A.B.C.D.3.小明现有两根长度为4cm和的小木棒,他想钉一个三角形木框,还差一根木棒,如果有下列长度的四根木棒供他选择,则他应该选的是()A.B.C.D.4.下列各式中不能用平方差公式计算的是( )A.B.C.D.5.如图,能保证的条件是()A.B.C.D.6.如图:要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是 ( )A. SSSB. SASC. S AAD. ASA7.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶.下面的四幅图中,可以近似地刻画出汽车在这段时间内的速度变化情况的是()A.B.C.D.8.如图,直线,C是MN上一点,CE交PQ于A,CF交PQ于B,且∠ECF=90°,如果∠FBQ=50°,则∠ECM的度数为()A.60°B.50°C.30°D.40°9.已知,则代数式的值是()A.-3B.0C.3D.610.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图1中有5个棋子,图2中有10个棋子,图3中有16个棋子,……,则图7中有()个棋子.A.35B.50C.45D.4011.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连结OC、FG,则下列结论:①AE=BD;②AG=BF;③;④图中共有4对全等三角形,其中正确结论的个数()A. 3个B. 2个C. 1个D. 4个三、填空题1.某种细胞的直径只有1.56微米,即0.000 001 56米,把数据0.000 001 56用科学记数法表示为______.2.计算:=_____________.3.一辆汽车以60千米/时的平均速度在路程为100千米的公路上行驶,则它离终点的路程S(千米)与所用的时间(时)的关系式为__________.4.如图,,,∠1 = 25°,则∠2 = ___________.5.若,则=_________.6.如图,过边长为8的等边的边AB上一点P,作于,为延长线上一点,当时,连接交边于,则的长为________.四、解答题1.如图,AC = AE,,AB = AD.求证:.2.计算:(1);(2)3.如图,已知. 求证:(填空并在后面的括号中填理由)证明:∵∠AGD=∠ACB∴DG∥___________ (__________)∴∠3="__________" ( _________ )∵∠1="∠2" ( _______________ )∴∠3="__________" ( _______________ )∴__________∥___________ ( ______________ )4.先化简,再求值: ,其中.5.重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图像解答下列问题:(1)该地出租车起步价是______元;(2)当x>2时,求y与x之间的关系式;(3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?6.如图,在△ABC中,AD⊥BC,BE⊥AC,AD、BE相交于点,且BF=AC.(1)求证:△ADC≌△BDF(2)若CD=3,BD=5,求AF的长.7.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果,那么称这个四位数为“和平数”.例如:,因为x=y,所以是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是________;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是的倍数的所有“和平数”;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”。

七年级数学第二学期 第二次月考检测测试卷含答案

七年级数学第二学期 第二次月考检测测试卷含答案

七年级数学第二学期 第二次月考检测测试卷含答案一、选择题1.若()2320m n -++=,则m n +的值为( ) A .5-B .1-C .1D .52.计算:122019(1)(1)(1)-+-++-的值是( )A .1-B .1C .2019D .2019-3.计算50﹣1的结果应该在下列哪两个自然数之间( ) A .3,4B .4,5C .5,6D .6,74.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会5.下列数中π、227,﹣3,3343,3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 6.下列各数中,比-2小的数是( )A .-1B .-5C .0D .17.下列各组数中,互为相反数的是( ) A .2-与12-B .|2|-与2C .2(2)-与38-D .38-与38-8.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①②B .①③C .②③D .①②③9.估算381-的值( ) A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间10.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B二、填空题11.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤372-的最大整数,则M +N 的平方根为________. 12.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 13.m 的平方根是n +1和n ﹣5;那么m +n =_____.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________. 15.2(2)-的平方根是 _______ ;38a 的立方根是 __________. 16.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号). 17.如果一个数的平方根和它的立方根相等,则这个数是______.18.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.19.设a ,b 都是有理数,规定 3*=a b a b ()()48964***-⎡⎤⎣⎦=__________.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.观察下列三行数:(1)第①行的第n 个数是_______(直接写出答案,n 为正整数) (2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a ,化简计算求值:(5a 2-13a-1)-4(4-3a+54a 2) 23.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; . 请选择其中一个立方根写出猜想、验证过程。

七年级第二学期第二次月考数学试题含解析

七年级第二学期第二次月考数学试题含解析

七年级第二学期第二次月考数学试题含解析一、选择题1.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行;②垂线段最短;③坐标平面内的点与有序实数对是一一对应的;④算术平方根和立方根都等于它本身的数是0和1; ⑤5的小数部分是51-. A .1 B .2 C .3 D .42.如图将1、2、3、6按下列方式排列.若规定(,)m n 表示第m 排从左向右第n 个数,则(5,4)与(15,8)表示的两数之积是( ).A .1B .2C .3D .63.下列说法错误的是( )A .a 2与(﹣a )2相等B .33()a -与33a 互为相反数C .3a 与3a -互为相反数D .|a|与|﹣a|互为相反数 4.下列结论正确的是( )A .无限小数都是无理数B .无理数都是无限小数C .带根号的数都是无理数D .实数包括正实数、负实数5.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④ 6.定义(),2f a b ab =,()22(1)g m m m =-+,例如:()1,22124f =⨯⨯=,()()2112111g -=---+=,则()1,2g f ⎡⎤-⎣⎦的值是( ) A .-4 B .14 C .-14 D .17.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±98.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 2=±D .()515-=- 9.下列说法正确的个数是( ).(1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等(3)经过一点有且只有一条直线与已知直线平行(4)两点之间线段最短A .0个B .1个C .2个D .3个10.若a 、b 为实数,且满足|a -2|0,则b -a 的值为( )A .2B .0C .-2D .以上都不对 二、填空题 11.若()2320m n ++-=,则m n 的值为 ____.12.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.13的平方根是 _______ ;38a 的立方根是 __________.14.如果某数的一个平方根是﹣5,那么这个数是_____.15.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____.16.若x <0____________.17.44.9444≈⋯14.21267≈⋯(精确到0.01)≈__________.18.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b .例如8914*=,那么*(*16)m m =__________.19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.若x ,y 为实数,且|2|0x +=,则(x+y) 2012的值为____________.三、解答题21.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫ ⎪⎝⎭的值. 22.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f =根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 .②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值.23.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯ , 将以上三个等式两边分别相加得:11111111112233422334++=-+-+-⨯⨯⨯=13144-= (1)猜想并写出:1n(n 1)+ = . (2)直接写出下列各式的计算结果: ①1111 (12233420152016)++++⨯⨯⨯⨯= ; ②1111...122334(1)n n ++++⨯⨯⨯⨯+= ; (3)探究并计算:1111 (24466820142016)++++⨯⨯⨯⨯.24.是无理数,而无理是无限不循环小数,因1的小数部分,事的整数部分是1,将这个数减去其整数部的小数部分,又例如:∵23223<<,即23<<的整数部分为2,小数部分为)2。

七年级数学上学期第二次月考试题试题 3(共7页)

七年级数学上学期第二次月考试题试题 3(共7页)

2021-2021学年(xuénián)七年级数学上学期第二次月考试题一、选择题〔每一小题2分,一共22分〕1.下面平面图形经过折叠不能围成正方体的是 ( )A. B. C. D.2.国家体育场“鸟巢〞的建筑面积达258000m2,用科学记数法表示为〔〕A. B.C.D.3. 在中,负有理数一共有〔〕A.4个个个个4.以下各式中,去括号正确的选项是〔〕A.B.C.D.5.如图,点A位于点O的___方向上( )0 B.北偏西650 C.南偏东650 D.南偏西6506.以下运算正确的选项是〔〕A. B.C. D.7.以下说法(shuōfǎ)正确的选项是〔〕A.的系数是-2ab3的次数是6次 C.是多项式 D.x2+x-1的常数项为1 8.有理数a、b在数轴上的位置如下图,那么以下各式错误的选项是( )A.b<0<a B.│b│>│a│ C.a+b<0 D.b—a>09.如图2,以下表示角的方法,错误的选项是( )A.∠1与∠AOB表示同一个角;B.∠AOC也可用∠O来表示C.图中一共有三个角:∠AOB、∠AOC、∠BOC;D.∠β表示的是∠BOCa、b互为相反数,cd互为倒数,m的绝对值等于2,那么的值是:( )A.2 B.3 C.4 D.511.假如代数式4y2-2y+5的值是7,那么代数式2y2-y+1的值等于( ) A. 2 B. 3 C.﹣2 D.4二、填空题〔每一小题2分,一共28分〕的相反数是___________,倒数是____________.13. 如图3,能用图中字母表示的射线有________条;能用图中字母表示的线段有________条。

与的和仍是一个(yīɡè)单项式,那么m+n=_________。

图315.假设代数式的值与字母的取值无关,那么=.16.时,代数式的值是.与互为相反数,那么 =_________。

18.M、N是数轴上的两个点,且两点之间的间隔为3,假设点M表示的数为-2,那么点N表示的数为。

四川初一初中数学月考试卷带答案解析

四川初一初中数学月考试卷带答案解析

四川初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.点P(3,-4)在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.3.49的平方根为()A.7B.-7C.±7D.±4.如图直线a∥b,∠1=52°,则∠2的度数是()A.38°B.52°C.128°D.48°5.下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()A.3个B.4个C.5个D.6个6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40°B.35°C.30°D.20°7.下列命题是真命题的是()A.同旁内角互补B.垂直于同一条直线的两直线平行C.邻补角相等D.两直线平行,内错角相等8.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCE C.∠1=∠2D.∠D+∠ACD=180°9.已知点P在第四象限,且P到x轴的距离为3,到y轴的距离为4,则P点的坐标为()A .(3,-4)B .(-3,4)C .(4,-3)D .(-4,3)10.观察下列计算过程:因为=121,所以=11,因为=12321,所以=111,由此猜想=( )A .111111111B .11111111C .1111111D .111111二、填空题1.比较大小:4 (填“>”、“<”或“=”)2.如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是 .3.1-的相反数与的平方根的和是_____4.如图,∠1+∠2=180°,∠3=108°,则∠4= 度.5.已知三角形ABC 的三个顶点坐标为A (﹣2,3),B (﹣4,﹣1),C (2,0).在三角形ABC 中有一点P (x ,y )经过平移后对应点P 1为(x+3,y+5),将三角形ABC 作同样的平移得到三角形A 1B 1C 1,则A 1的坐标为 .6.如图,AB ,CD 相交于点O ,OE ⊥AB ,垂足为O ,∠COE=44°,则∠AOD= .7.把命题“对顶角相等”写成“如果……,那么…….”的形式为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021四川成都列五中学数学七第二月考试题(含答案)
第Ⅰ卷选择题(共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.-2的的的的的的的
A.-2 B.2 C.1/2 D.-1/2
2、有下列各数:8,-6.7,0,-80,-1/7,-(-4),-|-3|,-(+62),其中属于非负整数的共有( )
A、1个
B、2个
C、3个
D、4个
3.已知,,则与的大小关系是
A.B.C.D.无法确定
4.如果一个角的余角是50°,则这个角的补角的度数是
A.130°
B.140°
C.40°
D.150°
5.16的平方根是()
A.4 B.±4 C.8 D.±8
6.把弯曲的道路改直,能够缩短行程,其道理用数学知识解释应是……………( ) A.垂线段最短B.两点确定一条直线
C.线段可以大小比较D.两点之间,线段最短
7.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为--------------------------------------------()
A.2a+5B.2a+8 C.2a+3 D.2a+2
8.一个长方形的周长为20,其中它的长为a ,那么该长方形的面积是…………( )
A .20a
B .a (20-a )
C .10a
D .a (10-a )
9.已知x =1是关于x 的方程2-ax =x +a 的解,则a 的值是( ) A .
B .
C .
D .1
10.观察下列关于x 的单项式,探究其规律: x ,3x 2,5x 3,7x 4,9x 5,11x 6,…
按照上述规律,第2015个单项式是( )
A .2015x 2015
B .4029x 2014
C .4029x 2015
D .4031x 2015
第Ⅱ卷 非选择题(共90分)
二、填空题(本大题共5个小题,每小题3分,共15分)
11. -8的绝对值是 ,-8的倒数是 .
12、有理数1.7,-17,0,-1/7,-0.001,-9,2011和-1中,负数有 个,其中负整
数有 个,负分数有 个.、
13.国家体育场“鸟巢”的建筑面积达258000m 2,用科学记数法表示为____________ m 2.
14.若单项式3a 5b m +1与-2a n b 2是同类项,那么m +n = .
15.将连续的正整数按以下规律排列,则位于第6行、第六列的数是______.
第一列 第二列 第三列 第四列 第五列 第六列 … 第1行 -1 +2 -4 +7 -11 +16
第2行 +3 -5 +8 -12 +17
第3行 -6 +9 -13 +18 … 第4行 +10 -14 +19 … 第5行 -15 +20 … 第6行 +21





三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)

… … … …
16.计算:① 8+(-10)―(―5)+(-2); ② 31+(-34)-(-16)+5
4
③ (12-59+712)×(-36) ④ (-1)2013+(-5)×[(-2)3+2]-(-4)2÷(-1
2)
17.解方程(每小题4分,共8分)
(1) 3(x -4)=12; (2) x -x -12 =2-x +2
3.
18.如图,所有小正方形的边长都为1,A 、B 、C 都在格点上. (1)过点C 画直线AB 的平行线(不写画法,下同); (2)过点A 画直线BC 的垂线,并注明垂足..为G ;过点A 画直线AB 的垂线,交BC 于点H . (3)线段 的长度是点A 到直线BC 的距离;
(4)线段AG 、AH 的大小..关系为 AG AH .(填写下列符号>,<,
之一 )
19.小明用172元钱买了语文和数学的辅导书,共10本,语文辅导书的单价为18元,数学辅导书的单价为10元.求小明所买的语文辅导书有多少本?
20.如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正
方形(图2).
(1)图2中拼成的正方形的的面积是▲;边长是▲;(填实数)
(2)请你在图3中画一个面积为5的正方形,要求所画正方形的顶点都在格点上
........
请用虚线画出.
(3)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的
形式把它重新拼成一个正方形.并求出它的边长.
21.已知数轴上有A,B,C三点,分别表示数-24,-10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.
(1)问甲、乙在数轴上的哪个点相遇?
(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?若此时甲调头往回走,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同
时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出
....多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.
A
0 10
-24-10
B C
22、(12分)水是生命之源泉,是人体需要的第一营养素,具有极为重要的生
理功能。


此,学校为保障学生身心健康,在每个教室里安放有一台饮水机(如
图),饮水机上
有两个放水管,课间时同学们依次到饮水机前用茶杯接水,假设接水过程中水不发生
泼洒,每个同学所接的水量都是相等的,两个放水管同时打开时,它们的流量相同,
如果放水时先打开一个水管,2分钟后,再打开第二个水管,放水过程中阀门一直开
着,饮水机的存水量(升)与放水时间(分钟)的关系如下表所示:放水时间(分)0 2 12 …
饮水机中存水量
18 17 8 …
(升)
(1)当两个放水管都打开时,求每分钟的总出水量;
(2)如果从开始到2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几
分钟?
(3)按(2)的放水方法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?
23.(11分)已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.
(1)如图1,若∠COF=34°,则∠BOE=;若∠COF=n°,则∠BOE=;∠BOE与∠COF 的数量关系为.
(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?如成立请写出关系式;如不成立请说明理由.
(3)在图3中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与
∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.。

相关文档
最新文档