最新华东师大版七年级数学上册《相交线与平行线》教学设计-评奖教案

合集下载

华师大版数学七年级上册第5章《相交线与平行线》说课稿

华师大版数学七年级上册第5章《相交线与平行线》说课稿

华师大版数学七年级上册第5章《相交线与平行线》说课稿一. 教材分析华师大版数学七年级上册第5章《相交线与平行线》是学生在学习几何初步知识后的进一步拓展。

本章主要介绍了相交线与平行线的概念、性质及运用。

通过本章的学习,学生能够理解并掌握相交线与平行线的基本性质,提高空间想象能力,并为后续几何学习打下基础。

二. 学情分析七年级的学生已经具备了一定的几何基础,对基本的几何概念和性质有所了解。

但学生在空间想象方面还存在一定困难,对相交线与平行线的认识尚浅。

因此,在教学过程中,教师需要注重引导学生建立空间观念,激发学生学习兴趣,提高学生几何素养。

三. 说教学目标1.知识与技能:学生会识别相交线与平行线,掌握它们的基本性质,并能运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、交流等活动,学生能够培养空间想象能力,提高几何思维能力。

3.情感态度与价值观:学生能够积极参与课堂活动,体验数学学习的乐趣,增强对几何学科的兴趣。

四. 说教学重难点1.重点:相交线与平行线的概念及其性质。

2.难点:相交线与平行线的判定与应用。

五. 说教学方法与手段1.教学方法:采用启发式教学法、小组合作学习法、案例教学法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、模型、实物等辅助教学,提高学生的空间想象力。

六. 说教学过程1.导入:通过展示生活中常见的相交线与平行线现象,引导学生关注本节课的主题。

2.新课导入:介绍相交线与平行线的概念,引导学生理解并掌握它们的基本性质。

3.实例分析:分析实际问题,让学生运用所学知识解决,巩固所学内容。

4.课堂练习:设计相关练习题,让学生在实践中进一步理解和掌握相交线与平行线的性质。

5.小组讨论:分组讨论相交线与平行线的判定方法,培养学生的合作意识。

6.总结提升:对本节课内容进行总结,强化学生对相交线与平行线的认识。

7.课后作业:布置相关作业,让学生巩固所学知识。

七. 说板书设计板书设计如下:相交线与平行线1.相交线:两条直线在同一平面内,有一个公共点。

最新华东师大版七年级数学上册《平行线》教学设计-评奖教案

最新华东师大版七年级数学上册《平行线》教学设计-评奖教案

教案设计教学内容:平行线(第一课时)课型:新授课一、学习目标确定的依据1、课程标准本节主要让学生会画平行线,理解平行线的性质,会利用平行线的三个特征和三个识别方法解决有关平行线的问题。

2、教材分析平行线与相交线构成了同一平面内两条直线的基本位置关系,在前面学习中,学生已认识了角、相交线及相交线所成的角、垂直。

认识平行线,再探索平行线的条件,3、中招考点相交线在中招中最多设置1道题,分值均为3分,题型为选择题和填空题,且题目比较简单。

4、学情分析学生对本节理解和接受的程度比较快。

二、学习目标1、 能说出平行线的概念及两条不重合的直线的位置关系。

四、教学过程 2、能画出已知直线的平行线,掌握平行线的画法并能说出平行线公理及推论。

三、评价任务1、向同桌说出平行线的概念及两条不重合的直线的位置关系。

2、能画出已知直线的平行线,说出平行线的画法及平行线公理和推论。

学习目标教学活动评价要点 两类结构学习目标1:能说出平行线的概念及两条不重合的直线的位置关系自学指导一:1、内容:课本169页第一行到第五行2、时间:2分钟。

3、方法:独立自学4、要求:自学后能独立完成下列检测题:自学检测一:1.________________________ 直线叫做平行线。

2.在同一平面内,两条不重合的直线的位置关系是____________。

3.下图中哪些边是平行的?请用符号表示出来。

4、观察如图如示的长方体后填空:(1)用符号表示下列两棱的位置关系:A1B1AB,AA1AB,A1D1C1D1,AD全班90%的学生能准确说出概念和两条不重合的直线的位置关系A BC DE FH GM NQPBC;(2)A1B1与BC所在的直线是两条不相交的直线,他们__平行线(填“是”或“不是”)由此可知在内,两条不相交的直线才能叫做平行线。

D1C1A1B1AB CD学习目标2:能画出已知直线的平行线,掌握平行线的画法;能说出平行公理及推论自学指导二:1、内容:课本169页第六行到170页练习上面2、时间:5分钟。

华师大版数学七年级上册《 第5章 相交线与平行线 》教学设计

华师大版数学七年级上册《 第5章 相交线与平行线 》教学设计

华师大版数学七年级上册《第5章相交线与平行线》教学设计一. 教材分析华师大版数学七年级上册第5章《相交线与平行线》是学生在学习了平面几何基本概念和几何图形之后,进一步研究几何图形的性质和相互关系的重要章节。

本章主要内容包括相交线与平行线的定义、性质、判定和应用。

通过本章的学习,学生能够掌握相交线与平行线的基本知识,提高空间想象能力和逻辑思维能力。

二. 学情分析七年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。

但学生在学习过程中,可能会对相交线与平行线的概念和性质产生混淆,对判定定理的理解和应用也存在一定的困难。

因此,在教学过程中,需要注重对学生的基础知识的巩固,通过实例讲解和动手操作,帮助学生理解和掌握相交线与平行线的性质和判定方法。

三. 教学目标1.知识与技能目标:学生能够准确掌握相交线与平行线的定义,了解它们的性质和判定方法,并能运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 教学重难点1.相交线与平行线的定义和性质。

2.平行线的判定方法。

3.相交线与平行线在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入相交线与平行线的概念,激发学生的学习兴趣。

2.动手操作法:让学生通过实际操作,观察和分析相交线与平行线的性质,加深对知识的理解。

3.合作学习法:学生进行小组讨论和合作探究,培养学生的团队协作能力。

4.引导发现法:教师引导学生发现问题,引导学生运用已有知识解决问题,提高学生的逻辑思维能力。

六. 教学准备1.教学课件:制作相交线与平行线的教学课件,包括图片、动画和实例等,帮助学生直观理解。

2.教学素材:准备相关的练习题和实际问题,用于巩固和拓展学生所学知识。

3.教学工具:准备直尺、三角板等工具,方便学生进行实际操作。

华东师大版七年级数学上册第5章《相交线与平行线》教案设计

华东师大版七年级数学上册第5章《相交线与平行线》教案设计

华东师大版七年级数学上册第5章《相交线与平行线》教案设计5.1 相交线第1课时教学目标【知识与能力】1.能准确理解对顶角的概念,会在图形中识别对顶角.2.理解对顶角的性质并能运用对顶角的相关知识进行简单运算.【过程与方法】经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.【情感态度价值观】在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强用数学的意识.教学重难点【教学重点】对顶角的概念与性质.【教学难点】在复杂图形中找对顶角.课前准备无教学过程一、情境引入同学们,进入七年级学习以来,大家都有这样的感受:“生活中处处有——数学.”现在老师请各位同学看一组生活中的图片,(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)在这些图形中都出现了两条相交直线,每两条相交直线形成几个角?这些角叫什么角?它们有没有特殊关系?(说明:由此引入新课)二、探究新知1.问题导读自学教材第160、161前两个自然段,回答下列问题:(1)什么是对顶角?对顶角满足什么条件?(2)在教材第160页图5.1.1中找出对顶角.(3)举出生活中对顶角的例子.(4)教材第162页练习第1题.设计意图:明确对顶角的概念.2.合作交流(1)互为对顶角的两个角的大小关系是怎样的?可让学生动手画一画,学生两人一组,任取一个角∠2,得出∠2的度数,看这两个角的大小关系有什么特点,得出结论.最后全班汇总,看得出的结论是否相同.(2)这个结论正确吗?学生分组讨论,利用同角的补角相等说明.设计意图:先通过测量感知对顶角相等,然后再从理论上说明.(3)结论:对顶角相等.3.例题如图,直线AB、CD相交于点O,OE平分∠AOC,∠AOE=25°,你能说出图中哪些角的度数?先让学生分组讨论,充分利用已知条件,如对顶角、角平分线、补角等.思考:在本题中,如果已知∠BOD的度数,你能求出哪些角的度数?三、巩固练习1.教材第162页练习第2题2.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?四、课堂小结本节课你学会了什么?请你说出来,还有哪些不明白?五、课后作业1.如图,其中共有对对顶角.【答案】4第1题图第2题图2.如图,AB、CD相交于点O,∠DOE=90°,∠AOC=70°,求∠BOE的度数.【答案】∠BOE的度数为20°.5.1 相交线第3课时教学目标【知识与能力】能够根据图形判断哪些角是同位角、内错角、同旁内角.【过程与方法】在认识三线八角中的同位角、内错角、同旁内角的过程中,培养学生的识图能力.【情感态度价值观】发展学生应用数学的意识与能力,增强学好数学的愿望和信心.教学重难点【教学重点】从不同图形中找出不同位置关系的角.【教学难点】根据图形特点正确确定位置关系的角.课前准备无教学过程一、创设情境,导入新课设计意图:通过问题情境,引发学生的学习兴趣和探究欲望,使学生参与到教学过程中来,培养学生的自主学习能力.教师提出问题:两条直线相交,只有一个交点,产生四个角,如图:直线AB与CD相交于点O,得到∠1,∠2,∠3,∠4,在这些角中,哪些是相等的?哪些是互补的?学生观察后作出回答,并且指出相等或互补的理由.二、探究新知设计意图:通过学生的观察、比较、归纳、探究,使学生体验两条直线被第三条直线所截产生的八个角的位置关系,能够识别同位角、内错角、同旁内角,去体验“三线八角”的具体特征.师:两条直线相交产生四个角,若两条直a、b被同一平面内的第三条直线l所截,则又可得到几个角呢?这几个角之间又存在哪些关系呢?教师画出图形,引导学生去观察、思考.(1)同位角教师提出问题,图中的∠1和∠5的位置有什么关系?从直线l来看,∠1与∠5处于哪个位置,从直线a、b来看,∠1与∠5又处于哪个位置?学生先观察、思考,然后讨论交流.师生共同概括:∠1与∠5位于直线l的同一侧,直线a、b的同一方,这样位置的角叫做同位角. 在上图中,你还能发现哪些同位角?学生观察后,教师提问回答.(2)内错角师:除以上几对同位角外,如∠3与∠5不是同位角,∠3与∠5处于直线l的哪个位置?直线a、b 的哪个位置?学生观察后作出回答.由此总结出内错角的特征,认识了内错角的定义,并找出图中的其他内错角.(3)同旁内角师提出问题:除了以上两种位置关系的角之外,你还能发现其他不一样的角吗?学生观察、讨论、交流后进一步指出∠4与∠5,∠3与∠6这种位置关系的角.从而进一步得出同旁内角的特征:位于截线的同侧,且位于被截直线之间.三、巩固练习设计意图:通过学生自主练习,让学生进一步认识同位角、内错角、同旁内角;并且交流各自的学习成果,培养学生的自主学习能力.练习:如图,∠1是直线a、b相交所成的一个角,用量角器量出∠1的度数,画一条直线c,使直线c与直线b相交所成的角中有一个与∠1为一对同位角,并且自行找出一对内错角和同旁内角.学生完成后,组内交流,展示不同的画法,不同的结果,互相评价.四、课堂小结设计意图:通过小结,让学生回顾一下本节所学的内容,对本节的知识形成一个完整的知识网络,有利于学生对知识的消化与吸收.小结:谈谈你对“三线八角”的认识,本节的收获是什么?五、课后作业(1)如图所示,∠1和∠2是直线和直线被第三条直线所截而成的角;(2)∠2和∠BCE是直线和直线被第三条直线所截而成的角;(3)∠4和∠A是直线和直线被第三条直线所截而成的角.【答案】(1)AB CE BD 同位 (2)AB EC BD 同旁内 (3)AB CE AC 内错.5.2 平行线第2课时教学目标【知识与能力】使学生认识平行线的识别法,能灵活地利用平行线的三个识别法解决一些简单的问题. 【过程与方法】经历平行线三种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.【情感态度价值观】通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物主义观点.教学重难点【教学重点】平行线的三种识别方法.【教学难点】运用三种识别方法进行简单的推理.课前准备无教学过程一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了α、β的度数,请几个小组同学说说测量的结果,老师告诉你:根据α=β,可得出校道中两段笔直的部分是平行的,想知道为什么吗?带着这个问题,我们来学习“平行线的识别”.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.师生共同操作,经过直线外一点画已知直线的平行线.三角尺沿着直尺的方向由原来的位置移到另一个位置,角在平移前的位置与平移后的位置构成一对同位角,其大小不变,因此,只要保持同位角相等,画出的直线就平行于已知直线.(合作、交流讨论后得出)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果∠1=∠3,那么a∥b.(交流后得出)因为∠1=∠3(已知),∠2=∠3(对顶角相等),所以∠1=∠2,∴a∥b.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示例1.如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,那么a∥b吗?为什么?学生思考后根据所学知识做出解答.变式训练:若在以上问题中,∠1=115°,∠3=65°,那么a∥b吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.例2.如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构. 师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?【答案】因为∠1=∠2(已知),又因为∠CGE=∠2(对顶角相等),所以∠1=∠CGE(等量代换),又因为∠3=∠4(已知),所以∠3+∠1=∠4+∠CGE,即∠MEF=∠EGH,所以EF∥GH(同位角相等,两直线平行).2.如图,已知∠1=35°,∠B=55°,AB⊥AC,则(1)∠DAB+∠B= ;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?【答案】(1)180°(2)AD∥BC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使AB∥CD,则须满足AC⊥DC,或∠B+∠BCD=180°.。

华师版七年级数学上册第五章_相交线与平行线_教案

华师版七年级数学上册第五章_相交线与平行线_教案

相交线教学目标1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。

重点难点对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点。

教学过程一、情景导入下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。

“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。

相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。

我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。

二、邻补角和对顶角下面是一把剪刀,你能联想到什么几何图形?两条直线相交,如图。

上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4。

量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:∠1和∠2、∠1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是1800;∠1和∠3、∠2和∠4为二类,它们相等。

第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线。

1 2 3 4 O B A C D具有这种关系的两个角,互为邻补角。

讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关。

第二类角有什么共同的特征?有公共的顶点,两边互为反向延长线。

具有这种位置关系的角,互为对顶角。

思考:〔投影3〕下列图形中,∠1和∠2是对顶角的是〔 〕A B C D注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个。

三、对顶角的性质在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。

在这过程中,两个把手之间的角与剪刀刃之间的角有什1 2 1 2 1 2 12么关系?为了回答这个问题,我们先来研究下面的问题。

初中数学华东师大七年级上册第章相交线与平行线华东师大版七年级上册数学教案平行线的性质

初中数学华东师大七年级上册第章相交线与平行线华东师大版七年级上册数学教案平行线的性质

教学设计4、提高语言表达能力。

法可以得到平行线的性质?)3、区分平行线的性质和判定。

二自学反馈5’40”-13’40”1、会应用平行线的性质解决简单问题。

2、提高语言表达能力。

点拨释疑。

1、组内互批自改,交流课前练习中的疑难问题。

2、代表展示组内解决不了的问题。

借助pad中的《作业盒子》查找课前练习中的错题,并运用白板课件释疑。

三合作探究13’40”- 18’27”1、会用几何语言应用平行线的性质解决问题。

2、提高语言表达能力。

指导探究运用性质解决实际问题,引出辅助线。

并引导学生运用“三线八角”及同旁内角“U”字型解题技巧,化难为易,从而渗透化归思想,突破难点1。

突出辅助线的由来和应用。

合作探究:如图,是一块梯形铁片1、在性质简单运用的基础上,组内探究、交流,成员之间互相启迪,完善说理。

2、组内成员互相帮助,完成解题过程的书写。

3、同时选出一名学生代表板演解题过程。

运用白板课件展示例题的残余部分,量得∠A=100º,∠B=115º,梯形的另外两个角分别是多少度?4、为板演的同学点评。

四拓展延伸18’27”-38’40”1、经历平行线性质应用的延伸探究,体会变形的数学思想。

2、通过小组合作探究,增强参与、合作意识,养成乐于探索的良好品质。

1、请同学们合作探索延伸一:如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.设疑:你还可以得到哪些结论?你能交换已知和求,编出新问题并解答吗?(点拨性质和判定的区分运用,突破难点2。

并引导发现平行于同一条直线的两条直线的位置关系。

)2、出示延伸二,,两名学生代表在白板上进行探究并总结。

③其他同学补充探究成果。

运用白板实现互动,进一步交流解题方法。

并借助pad中的几何画板软件,探索拐点问题。

提问、板书梳理、回答《洋葱数学》微课中白板课件查找《作业盒子》中的错题,组白板课件探究新知、代表展示白板课件、Pad 借助《几何画板》探究展示课堂小结、布置任务。

华师版七年级数学上册(HS)教案 第5章 相交线与平行线 平行线的性质

华师版七年级数学上册(HS)教案 第5章 相交线与平行线 平行线的性质

5.2 平行线3. 平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质【类型一】两直线平行,同位角相等如图,AB∥CD,AE交CD于C,∠ECF=136°,则∠A的度数为()A.54° B.46° C.45° D.44°解析:根据∠ECD与∠ECF互补,再根据两直线平行,同位角相等求解.∵∠ECD+∠ECF=180°,∠ECF=136°∴∠ECD=180°-∠ECF=44°.∵AB∥CD,∴∠A=∠ECD=44°.故选D.方法总结:此题主要考查了平行线的性质1,根据两直线平行,同位角相等即可求解.【类型二】两直线平行,内错角相等如图,AB∥CD,点E在CA的延长线上.若∠BAE=50°,则∠ACD 的大小为()A.120° B.130° C.140° D.150°.解析:先根据补角的定义求出∠BAC的度数,再由平行线的性质即可得出结论.∵∠BAE=50°,∴∠CAB=180°-50°=130°.∵AB∥CD,∴∠BAC=∠ACD=130°.故选B.方法总结:此题主要考查了平行线的性质2,根据两直线平行,内错角相等即可求解.【类型三】两直线平行,同旁内角互补如图,AB⊥AE于点A,AB∥CD,∠CAE=42°,则∠ACD=()A.112° B.122° C.132° D.142°解析:直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数.∵AB⊥AE,∠CAE=42°,∴∠BAC=90°-42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故选C.方法总结:此题主要考查了平行线的性质3和垂直定义,根据两直线平行,同旁内角互补即可求解.探究点二:平行线性质的运用【类型一】平行线性质的实际运用一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=________度.解析:过B作BF∥AE,根据平行线的性质即可求解.过B作BF∥AE,则CD∥BF∥AE.∴∠BCD+∠1=180°.又∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∴∠ABC+∠BCD=90°+180°=270°.故答案为270.方法总结:利用垂直于平行解决实际问题,学会构造平行线,从而将问题化为常见模型是解题的关键.【类型二】平行线性质的探究应用如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD.若CD∥BE,∠1=30°,则∠2的度数是()A.50° B.60° C.65°D.70°解析:由折叠的性质可得∠3=∠1=30°,从而求得∠4=120°,再根据平行线的性质定理求出∠ACD=∠4=120°,最后再根据平行线性质定理求出∠2=60°.解:如图,延长FA,由折叠的性质,可得∠3=∠1=30°,∵∠4+∠1+∠3=180°∴∠4=180°-30°-30°=120°.∵CD∥BE,BE∥AF,∴CD∥AF∴∠ACD=∠4=120°.又∵AC∥BD,∴∠2=180°-∠ACD=180°-120°=60°.故选B.方法总结:由平行线折叠后对应的线依然平行,再根据平行线的性质找出图中角度之间的关系.探究点三:平行线的性质与判定【类型一】平行线的性质与判定综合求角度如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.解析:(1)根据平行线的判定解答即可;(2)根据平行线的判定和性质解答即可.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5.∵∠3=∠B,∴∠5=∠B,∴DE∥BC.(2)∵DE平分∠ADC,∴∠5=∠6.∵DE∥BC,∴∠5=∠B.∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°.∵∠1+∠2=180°,∴∠1=72°.方法总结:综合运用了平行线的性质和判定,关键是找准两条直线被第三条直线所截而形成的同位角、内错角.【类型二】平行线的性质与判定综合的探究型问题已知:如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF =2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE 与∠AED 之间的数量关系;(2)判定∠AFD 与∠AED 之间的数量关系.解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)过点E 作EG∥AB.∵AB∥CD,∴AB ∥EG ∥CD ,∴∠AEG =∠BAE,∠DEG =∠CDE.∵∠AED =∠AEG+∠DEG,∴∠AED =∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF =2∠EAF,∠CDF =2∠E DF ,∴∠BAE +∠CDE=32∠BAF +32∠CDF ,∴∠AED =32∠AFD. 方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质性质1:两条平行线被第三条直线所截,同位角相等;性质2: 两条平行线被第三条直线所截,内错角相等;性质3: 两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学.。

华东师大版七年级数学上册第五章《相交线与平行线》教案

华东师大版七年级数学上册第五章《相交线与平行线》教案

华东师大版七年级数学上册第五章《相交线与平行线》教案5.1 相交线第1课时教学目标【知识与能力】1.能准确理解对顶角的概念,会在图形中识别对顶角.2.理解对顶角的性质并能运用对顶角的相关知识进行简单运算.【过程与方法】经历观察、猜想、说理、交流等过程,进一步发展空间观念和有条理的表达能力.【情感态度价值观】在动手实践、自主探索、合作交流中获得成功的体验,建立自信心;感受数学与生活的密切联系,增强用数学的意识.教学重难点【教学重点】对顶角的概念与性质.【教学难点】在复杂图形中找对顶角.课前准备无教学过程一、情境引入同学们,进入七年级学习以来,大家都有这样的感受:“生活中处处有——数学.”现在老师请各位同学看一组生活中的图片,(多媒体展示X型晾衣架、栅栏、剪刀、小孔成像原理等图片)在这些图形中都出现了两条相交直线,每两条相交直线形成几个角?这些角叫什么角?它们有没有特殊关系?(说明:由此引入新课)二、探究新知1.问题导读自学教材第160、161前两个自然段,回答下列问题:(1)什么是对顶角?对顶角满足什么条件?(2)在教材第160页图5.1.1中找出对顶角.(3)举出生活中对顶角的例子.(4)教材第162页练习第1题.设计意图:明确对顶角的概念.2.合作交流(1)互为对顶角的两个角的大小关系是怎样的?可让学生动手画一画,学生两人一组,任取一个角∠2,得出∠2的度数,看这两个角的大小关系有什么特点,得出结论.最后全班汇总,看得出的结论是否相同.(2)这个结论正确吗?学生分组讨论,利用同角的补角相等说明.设计意图:先通过测量感知对顶角相等,然后再从理论上说明.(3)结论:对顶角相等.3.例题如图,直线AB、CD相交于点O,OE平分∠AOC,∠AOE=25°,你能说出图中哪些角的度数?先让学生分组讨论,充分利用已知条件,如对顶角、角平分线、补角等.思考:在本题中,如果已知∠BOD的度数,你能求出哪些角的度数?三、巩固练习1.教材第162页练习第2题2.如图,直线AB、CD、EF相交于点O,OE是∠AOC的平分线,那么OF是∠BOD的平分线吗?为什么?四、课堂小结本节课你学会了什么?请你说出来,还有哪些不明白?五、课后作业1.如图,其中共有对对顶角.【答案】4第1题图第2题图2.如图,AB、CD相交于点O,∠DOE=90°,∠AOC=70°,求∠BOE的度数.【答案】∠BOE的度数为20°.5.1 相交线第2课时教学目标【知识与能力】认识生活中的垂直现象,理解垂直定义,并能用符号表示.掌握垂线的性质,会过一点作已知直线的垂线.【过程与方法】经历垂线画法,垂线的性质以及点到直线的距离的探索过程,尝试从不同角度寻求垂线的画法,用不同方法得到垂线的性质.【情感态度价值观】通过与生活相联系,让学生对数学产生兴趣,认识到数学的实用价值.教学重难点【教学重点】垂线、垂线段、点到直线的距离的概念.【教学难点】垂线的性质和点到直线的距离.课前准备无教学过程一、引入设计意图:通过设置问题,引发学生的思考,激发学生的学习兴趣,在回忆旧知识的同时,自然切入本节课所要学习的内容.教师提问学生:能在生活中找到互相垂直的直线吗?学生观察实例,这时教师可以问学生“是通过什么特征来确定它们是垂线的?”帮助学生回忆垂直的形象(小学已接触过垂直).二、做一做设计意图:通过让学生动手操作,加深对垂线的理解,明确垂线的不同画法,锻炼了学生的实际操作能力,开拓了他们的思维,积累了他们的数学活动经验.1.请学生作出两条互相垂直的直线教师鼓励学生用不同的方法画垂线,学生发现用三角尺、量角器都可以来画互相垂直的直线,然后让两位学生各自采用一种作图工具在黑板上演示作图过程.2.引入垂直符号表示通过以上画图过程,使学生明确两条直线相交只有一个交点,当相交所成的角中有一个角是直角时,则此时两条直线互相垂直,若直线AB与CD垂直,则用符号“⊥”表示,即“AB⊥CD”,从而引出垂直的符号表示及垂足的定义.3.在方格纸上画出互相垂直的两条直线,用量角器验证你画出的两条直线是否垂直,如果是,能试着说明一下原因吗?三、想一想设计意图:让学生自主探究,从而经历垂线的性质得出过程,体会到经过一点,有且只有一条直线与已知直线垂直,通过动手测量,从而让学生了解到“垂线段最短”,这样学生得到的知识印象更深,更符合学生对新知识学习的接受过程.1.过点A作l的垂线,你能作出多少条?教师不仅要引导学生运用三角尺,过直线外一点和直线上一点作已知直线的垂线,还要鼓励学生运用自己的语言描述所得的结论,培养学生有条理的表达能力.2.点到直线的距离让学生量取直线外一点到直线的若干个线段的长,比较这一点到直线的垂线段的长度的大小,从而引出点到直线的距离的概念,其性质“垂线段最短”.四、做一做设计意图:让学生做出三角形的高,从而进一步巩固点到直线的距离是这一点到直线的垂线段的长度.让学生分别画出三个三角形AB边上的高(三个三角形分别是锐角三角形,直角三角形,钝角三角形),教师在学生的画图过程中注意发现问题,进行针对性的指导.五、巩固练习设计意图:通过练习,让学生进一步理解垂直的定义,怎样过一点画已知直线的垂线,加深对本节知识的理解和应用,从而学以致用,从学到的知识解决问题.1.作一条直线l,在直线l上取一点A,在直线l外取一点B,分别经过点A、B,用三角尺或量角器作l的垂线.2.如图所示,在某村庄中有一条街道,在街道的一侧有一公共汽车站,为了方便村民坐车,村委会决定修一条马路直达车站,你能设计一种方案,使得公共汽车站到街道的路程最近吗?六、课堂小结小结:以下几个方面由学生自己总结:①垂线的定义及垂直的符号表示;②垂线的有关性质;③过一点作已知直线的垂线的方法.七、课后作业1.如图,O是直线AB上一点,∠AOD=53°,∠BOE=37°,则OD与OE的位置关系是什么?【答案】∠DOE=180°-∠AOD-∠BOE=90°,所以OD⊥OE.2.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为( )A.4cmB.2cmC.小于2cmD.不大于2cm【答案】D5.1 相交线第3课时教学目标【知识与能力】能够根据图形判断哪些角是同位角、内错角、同旁内角.【过程与方法】在认识三线八角中的同位角、内错角、同旁内角的过程中,培养学生的识图能力.【情感态度价值观】发展学生应用数学的意识与能力,增强学好数学的愿望和信心.教学重难点【教学重点】从不同图形中找出不同位置关系的角.【教学难点】根据图形特点正确确定位置关系的角.课前准备无教学过程一、创设情境,导入新课设计意图:通过问题情境,引发学生的学习兴趣和探究欲望,使学生参与到教学过程中来,培养学生的自主学习能力.教师提出问题:两条直线相交,只有一个交点,产生四个角,如图:直线AB与CD相交于点O,得到∠1,∠2,∠3,∠4,在这些角中,哪些是相等的?哪些是互补的?学生观察后作出回答,并且指出相等或互补的理由.二、探究新知设计意图:通过学生的观察、比较、归纳、探究,使学生体验两条直线被第三条直线所截产生的八个角的位置关系,能够识别同位角、内错角、同旁内角,去体验“三线八角”的具体特征. 师:两条直线相交产生四个角,若两条直a、b被同一平面内的第三条直线l所截,则又可得到几个角呢?这几个角之间又存在哪些关系呢?教师画出图形,引导学生去观察、思考.(1)同位角教师提出问题,图中的∠1和∠5的位置有什么关系?从直线l来看,∠1与∠5处于哪个位置,从直线a、b来看,∠1与∠5又处于哪个位置?学生先观察、思考,然后讨论交流.师生共同概括:∠1与∠5位于直线l的同一侧,直线a、b的同一方,这样位置的角叫做同位角. 在上图中,你还能发现哪些同位角?学生观察后,教师提问回答.(2)内错角师:除以上几对同位角外,如∠3与∠5不是同位角,∠3与∠5处于直线l的哪个位置?直线a、b 的哪个位置?学生观察后作出回答.由此总结出内错角的特征,认识了内错角的定义,并找出图中的其他内错角.(3)同旁内角师提出问题:除了以上两种位置关系的角之外,你还能发现其他不一样的角吗?学生观察、讨论、交流后进一步指出∠4与∠5,∠3与∠6这种位置关系的角.从而进一步得出同旁内角的特征:位于截线的同侧,且位于被截直线之间.三、巩固练习设计意图:通过学生自主练习,让学生进一步认识同位角、内错角、同旁内角;并且交流各自的学习成果,培养学生的自主学习能力.练习:如图,∠1是直线a、b相交所成的一个角,用量角器量出∠1的度数,画一条直线c,使直线c与直线b相交所成的角中有一个与∠1为一对同位角,并且自行找出一对内错角和同旁内角. 学生完成后,组内交流,展示不同的画法,不同的结果,互相评价.四、课堂小结设计意图:通过小结,让学生回顾一下本节所学的内容,对本节的知识形成一个完整的知识网络,有利于学生对知识的消化与吸收.小结:谈谈你对“三线八角”的认识,本节的收获是什么?五、课后作业(1)如图所示,∠1和∠2是直线和直线被第三条直线所截而成的角;(2)∠2和∠BCE是直线和直线被第三条直线所截而成的角;(3)∠4和∠A是直线和直线被第三条直线所截而成的角.【答案】(1)AB CE BD 同位 (2)AB EC BD 同旁内 (3)AB CE AC 内错.5.2 平行线第1课时教学目标【知识与能力】感受平行线的概念,理解平行公理,能作出已知直线的平行线.【过程与方法】通过观察、交流、探索等活动获取知识,在具体操作活动中了解平行线的有关性质.【情感态度价值观】丰富和发展自己的数学活动经历和体验,感受数学图形世界的丰富多彩.教学重难点【教学重点】平行线的概念和平行公理.【教学难点】用几何语言描述作图过程.课前准备无教学过程一、创设情境,引入新课设计意图:创设多种有关平行的现实情境,激发学生的学习兴趣,让他们体会数学知识与现实生活的联系,掀起他们探究的欲望.教师课件展示学生熟悉的有关平行线的现实情境,让学生观察:线、线与线的关系.如人行道、高压电线、百米跑道……问题:这些线之间呈现怎样的位置关系?学生积极思考,观察后踊跃发言.二、新知探索设计意图:在让学生动手操作画平行线的过程中加深对平行线的理解,培养学生主动参与合作交流的意识,提高观察、分析、概括和抽象能力,培养学生的动手能力,引导学生探索平行线的性质.1.教师板书课题,并说明本节课继续探讨现实生活中的平行现象,让学生给出平行的定义.一部分学生能回答出“不相交的两直线”而遗漏“在同一平面内”,教师此处应适当放开,让学生结合现实生活中的情景讨论“在同一平面内”的重要性.教师出示问题:在教学中找平行线?学生讨论,组内交流,最后派代表发表见解.师:生活中这么多平行,如何表示它们?如何画平行线?从而引出平行线的表示符号“∥”.2.画平行线教师让学生拿出方格纸,画出平行线,并进行组内交流.总结画平行线的方法:一靠、二落、三推、四画.为了让学生印象深刻,让学生板演,其余学生集中演示,体会.3.平行线的性质师:让学生拿出预制教具.(一块泡沫塑料上一根固定的木条和两根一端固定的木条)问题:何种情形下,活动的木条与固定的木条平行?学生一边活动木条,一边思考,用自己的语言叙述:只有一种情形.教师总结:经过直线外一点,有且只有一条直线与这条直线平行.进一步提问:若两根活动木条都与固定的木条平行,这两根活动木条有什么关系?学生经过讨论思考后,体会平行线的性质并积极发言.得出:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三、巩固练习设计意图:通过练习,巩固对平行线的认识,熟悉做已知直线的平行线的方法,达到学以致用的目的.1.如图,四边形ABCD和四边形AFCE都是平行四边形,点E、F分别在CD、AB上,则图中平行线的组数是( )A.2组B.3组C.4组D.5组2.如图,你能用学过的方法判断a、b这两条直线的位置关系吗?(1)过直线外一点A画直线l的平行线;(2)找出图中所有的平行线,并用“∥”表示.四、课堂小结设计意图:由练习过渡到小结中,让学生再次体会,知识来自于实践中,反过来又指导实践,初步体验知识的系统性和完整性.小结:本课你从现实情境中了解了什么知识?对你获取的信息说说你的反思.五、课后作业1.如图所示,图中哪些线段是互相平行的?把它们表示出来.【答案】线段a∥e,线段b∥d,线段c∥f.2.已知:D是∠AOB内部一点,如图,过D作DE∥AO,作DF∥BO分别交OA、OB于F、E,画出图形,并说明四边形DEOF是什么图形?【答案】画图如图所示:四边形DEOF是平行四边形.3.如图所示,直线AB、CD是一条河的两岸,并且AB∥CD,点E为直线AB、CD外一点,现想过点E作CD的平行线,则只需过点E作河岸AB的平行线即可,其理由是什么?【答案】理由是(1)过直线外一点有且只有一条直线与已知直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2 平行线第2课时教学目标【知识与能力】使学生认识平行线的识别法,能灵活地利用平行线的三个识别法解决一些简单的问题. 【过程与方法】经历平行线三种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.【情感态度价值观】通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物主义观点.教学重难点【教学重点】平行线的三种识别方法.【教学难点】运用三种识别方法进行简单的推理.课前准备无教学过程一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了α、β的度数,请几个小组同学说说测量的结果,老师告诉你:根据α=β,可得出校道中两段笔直的部分是平行的,想知道为什么吗?带着这个问题,我们来学习“平行线的识别”.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.师生共同操作,经过直线外一点画已知直线的平行线.三角尺沿着直尺的方向由原来的位置移到另一个位置,角在平移前的位置与平移后的位置构成一对同位角,其大小不变,因此,只要保持同位角相等,画出的直线就平行于已知直线.(合作、交流讨论后得出)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果∠1=∠3,那么a∥b.(交流后得出)因为∠1=∠3(已知),∠2=∠3(对顶角相等),所以∠1=∠2,∴a∥b.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示例1.如图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,那么a∥b吗?为什么?学生思考后根据所学知识做出解答.变式训练:若在以上问题中,∠1=115°,∠3=65°,那么a∥b吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.例2.如图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构.师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,∠1=∠2,∠3=∠4,试问EF是否与GH平行?【答案】因为∠1=∠2(已知),又因为∠CGE=∠2(对顶角相等),所以∠1=∠CGE(等量代换),又因为∠3=∠4(已知),所以∠3+∠1=∠4+∠CGE,即∠MEF=∠EGH,所以EF∥GH(同位角相等,两直线平行).2.如图,已知∠1=35°,∠B=55°,AB⊥AC,则(1)∠DAB+∠B= ;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?【答案】(1)180°(2)AD∥BC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使AB∥CD,则须满足AC⊥DC,或∠B+∠BCD=180°.5.2 平行线第3课时教学目标【知识与能力】掌握平行线的三个特征,体会平行线特征与平行线识别的区别,能运用平行线的识别与特征解决问题.【过程与方法】经历观察、操作、推理、交流等活动,进一步发展空间观念,加强推理能力和有条理的表达能力,经历探索平行线的特征的过程,掌握平行线的特征并解决一些问题.【情感态度价值观】通过操作、观察、合作、交流,进一步感受学习数学的意义,培养学生主动探索、合作以及解决问题的能力.教学重难点【教学重点】平行线的特征.【教学难点】平行线的特征与识别法的综合运用.课前准备无教学过程一、复习回顾设计意图:本节课所学知识与前一节课的内容有着密切的联系,两者既有相同之处又有本质的区别.在课的开始以习题化方式复习已学知识,一方面为本节课的学习奠定好基础,另一方面为“对比发现,加深理解”环节作好铺垫.教师出示问题:如图,直线a、b被直线l所截,在横线上填空:(1)因为∠1=∠2(已知),所以a∥b .(2)因为∠3=∠2(已知),所以a∥b .(3)因为∠2+∠4=180°(已知),所以a∥b .学生完成后,组内交流结果.二、情境引入设计意图:通过提出一个极具趣味性的问题,学生可能通过猜测得到答案,但并不理解其中真正的原因所在,从而激发学生强烈的求知欲和好奇心,引入新课的学习.教师出示问题:如图,是举世闻名的三星堆考古中发掘出的一个残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°,已知四边形ABCD的AD∥BC,请你求出另外两个角的度数. 学生经过思考,然后小组进行讨论,在教师的引导下得出结论.三、探究发现设计意图:教师要通过设计问题是,让学生经历观察、操作、推理、想象等探索过程,获得数学活动的经验,要发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力.问题:已知直线a、b被l所截,a∥b.让学生自己画出符合要求的图形后,提出问题.(1)合作交流一:请找出图中的同位角,并猜测它们有何关系?你能想办法验证你的猜测吗?(2)合作交流二:请找出图中的内错角,并猜测它们有何关系?你能想办法验证你的猜测吗?(3)合作交流三:图中还有其他位置关系的角吗?它们有何关系呢?说一说你是怎样得到结论的.以上问题在经过学生独立思考后,再进行小组讨论,互相补充,并派代表回答.(4)师生共同总结平行线的特征.四、巩固练习设计意图:通过练习,落实基础,特别是学生刚刚接触到新的知识时,往往应用起来会感到生疏,或者说对它的感觉仍旧停留在“雾里看花”的状态,这就需要一个过程,也就是对新知识从熟悉到熟练的过程.教师出示练习:1.完成下列填空:(1)因为AD∥BC(已知),所以∠B=∠1( );(2)因为AB∥CD(已知),所以∠D=∠1( );(3)因为AD∥BC(已知),所以∠C+∠D=180°( ).2.如图所示,AB∥CD,AD∥BC,分别找出与∠ADC相等或互补的角.学生完成后集中评议.五、课堂小结设计意图:课堂小结并不只是课堂知识点的回顾,教师要对教学目标的达成情况进行反馈,对相关知识点进行整合,要能够提出明确的具有反思性的问题,让学生有所思,有所得,达到巩固所学知识的目的.1.平行线的三个特征?2.直线平行的特征与直线平行条件的区别.(1)平行线识别与特征的条件与结论有什么关系?(2)使用平行线识别时是已知,说明;使用平行线特征时是已知,说明.师生共同交流总结以上所学的知识.六、课后作业1.如图,若AB∥CD,则正确的结论是( )A.∠1=∠2+∠3B.∠1=∠2=∠3C.∠1+∠2+∠3=180°D.∠1=∠2+∠3=180°【答案】A2.如图,AB∥CD,AC∥BD,试说明∠1=∠3.【答案】∵AB∥CD(已知),∴∠1=∠2(两直线平等,内错角相等), 又∵AC∥BD(已知),∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠3(等量代换).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东师大版数学教材七年级上册
第5章相交线与平行线
( 复习课第2课时)
一、复习目标设定的依据
(一)、课程标准相关要求:
1.理解平行线的概念,理解平行公理,能作出已知直线的平行线.
2.掌握平行线的三个特征,探索并证明平行线识别方法.
3. 体会平行线的特征与识别的区别,并能运用平行线的识别与特征解决问题.
(二)、教材分析
1. 教材按照先认识平行线,再探索平行线的条件,最后探索平行线
的特征的顺序呈现知识在探索的过程中,训练学生进行简单的说理,并借助平行解决一些简单的问题,进一步发展学生的空间观念。

本节难点是利用平行线的识别方法计算或说明.本节知识是以后学习几何图形的基础,它起到承上启下的作用,在初中数学的地位是举足轻重的.
2.本章主要是确认图形的性质和判定,并能解决推理和计算问题,学会合情推理和严谨的数学说理,并学会运用数学中类比思想.
(三)、中招考点分析:
本章内容是中考考点之一,中考常以选择题、填空题、解答题等形式呈现。

纵观河南省近几年的中考试题,平行线的性质与判定一般不单独出现,通常与三角形,四边形与圆综合出现,是以后学习几何图形的基础.
(四)、学情分析:
学生大多对平行线的性质和判定定理都能说出来,但是在做题过程中具体选用哪个性质和判定不能灵活应用,存在学生审题不严密、说理不严谨和步骤不规范等问题.
二、复习目标
1. 能准确说出平行线的概念及平行公理,能作出已知直线的平行线.
2. 能灵活选用平行线的判定解决问题,学会简单的说理.
3. 能灵活选用平行线的性质解决问题,学会简单的说理.
三、评价任务
1. 向同桌说出平行线的概念及平行公理,同桌之间互相作已知直线的平行线.
2. 说出平行线的判定方法,做题时说出每一步的依据.
3. 说出平行线的性质,做题时说出每一步的依据.
四、教学过程
复习
目标教学活动
评价
要点
两类结构
复习目标一:说出平行线的概念及平行公理,知道两条直线的位置关系,会画一条直线的平行复习指导一
1、内容:快速浏览课本第169页至第170
页.
2、时间:5分钟
3、方法:独立看书,独立思考.
4、要求:找出平行线的概念及两个基本
事实,知道两条直线的位置关系,会画已
知直线的平行线.
复习检测一:
1.在同一平面内,直线a、b、c,a⊥b,b
∥c,则a与c的位置关系是()
A.平行
B.相交但不垂直
C.垂直
D.以上都不对
2.如图,AB∥CD,过点E
作EF∥AB,则EF与CD
的位置关系是▁▁▁▁▁,
理由是▁▁▁▁▁▁▁▁.
3.如图,过三角形ABC的三个顶点A、B、
C,分别画对边的平行线,两两相交与D、
E、F三点.
全班
至少
90﹪
的学
生能
根据
熟记
平行
线定
义,复
一知识梳
理:
1.平行线的
定义:
在同一个平
面内不相交
的两条直线
叫平行线.
2.在同一平
面内,两条
不重合的直
线的位置关
系只有两
种:相交或
平行.
3.基本事
实:
过直线
外一点有且
只有一条直
E
A
F
B
D
C
C
A
B
线.
复习目标二:灵活选用平行线的判定解决问题,学会简单的说理. 复习指导二
1、内容:快速浏览课本第171页至第174
页.
2、时间:3分钟
3、方法:独立看书,独立思考.
4、要求:找出平行线的判定方法.
复习检测二:
1.如图:填空,并注明理由.
A B
1 6
F 3 4
C
5 2
E D
(1)∵∠1= ∠2 (已知)
∴——∥——
()
(2) ∵∠3= ∠4 (已知)
∴——∥——
()
习检
测题
一能
快速
解决.
线与已知直
线平行.
4.如果两条
直线都和第
三条直线平
行,那么这
两条直线也
互相平行.
5.平行线的
判定:
同位角相
等,两直线
平行;内错
角相等,两
直线平行;
同旁内角互
补,两直线
复习目标三:(3) ∵∠5= ∠6 (已知)
∴——∥——
()
(4) ∵∠5+ ∠AFE=180 (已知)
∴——∥——
()
(5) ∵AB ∥FC, ED ∥FC (已
知)
∴——∥——
()
2. 已知:∠1+∠2=180°,求证:AB∥
CD.
A 1 E B
3
C 4 D
2 F
3.如图,已知:AD∥BC, ∠AEF=∠B,求
证:AD∥EF.
A D
E F
全班
至少
90﹪
的学
生能
根据
熟记
平行
线的
判定
方法,
会进
行简
平行.
能灵
活选用平行线的性质解决问题,学会简单的说理.
B C
复习指导三
1、内容:快速浏览课本第175页至第178
页.
2、时间:3分钟
3、方法:独立看书,独立思考.
4、要求:找出平行线的性质.
复习检测三
如图,已知直线a∥b,∠1 = 50°.
(1) 求∠2的度数.
(2)已知条件不变,求∠3,∠4的度数.
C 3
a 2 4
1
B
当堂训练:
1. 已知∠3 =∠4,∠1=47°,求∠2的
度数?
单的
说理.
全班
至少
90﹪
的学
生能
根据
熟记
6.平行线的
性质:
两直线平
行,同位角
相等;两直
线平行,内
错角相等;
两直线平
2
c
b
1
a
A 3 2
B 4 1
d c A
2. 填空:如图:
E F
4 2 5
1 3
B D C
(1)∵∠A=____, (已知)
∴AC∥ED ,( ) (2)∵AB ∥______, (已知)
∴∠2= ∠4,
( )
(3) ∵___ ∥___, (已知)
∴∠B= ∠ 3. ( )
3. 如图,已知:AC∥DE,∠1=∠2,
试证明: AB∥CD.
A D 平行
线的
性质,
检测
题三
让学
习先
独立
完成
然后
同桌
互相
订正.
行,同旁内
角互补.
二平行线
的性质与平
行线的判定
的区别和联
系:
平行线的
性质:
由“线”
定“角”
1 2
B E
C
4. 已知:EF⊥AB,CD⊥AB,∠EFB=∠GDC,求证:∠AGD=∠ACB.
A
D G
E
B F
C 全班
70%
的学
生能
结合
图形
找出
相关
条件,
60%
的学
生能
灵活
利用
相关
定理
顺利
找出
解题
平行线的
判定:
由“角”
定“线”
思路。

小结:本节课你有什么收获?。

相关文档
最新文档