Hopfield神经网络优化方法
TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A 为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SW AP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
利用Hopfield神经网络解决TSP问题

神经元个数 h 输入向量维数 , 出向量维数 , 输
m。 三= h m , 三= , 三 , > 7 三l z l 。
神经元 : 入 、 出、 输 输 隐藏 状 态变 化 : 同步 、 非 同步
*
收稿 日期 :0 9 l 月 3 修 回日期 :0 9 1 月 2 20 年 1 11 5, 20 年 2 8日
神 经 网络 ;Ho f l ; S pid网 T P问 题 e
T 13 P 8
说明了算法 的有效性 。
关键词
中图 分 类 号
Usng Ho fed Ne wo k t o v P o l m i p i l t r o S l e TS Pr b e
S n z e , o gYu h n Li a u Lin Qu F y n u o g’
e a p es o t e a alb l y o h s ag rt m. x m l h w h v i i t ft i l o i a i h K y W o d n u a ewo k,Ho f l e wo k,TS r b e e rs e rl t r n pidnt r e P p o lm
总第 1 0 9 期 2 1 年第 4 00 期
舰 船 电 子 工 程
S i e to i n i e rn h p Elc r n c E g n e
利 用 Ho f l 经 网 络 解 决 T P 问题 p i d神 e S
宋玉珍 刘 ’’ '
加 而发 生指数 性“ 炸” 因而对 于 优化 问题 的高速 爆 , 计算 特别 有效 。
联接 : 经元之 间都 是互 联 的 " 每个 神 经元 神 都 没有 到 自身 的联接 'i 。  ̄i J—O
第7-1Hopfield网络的训练及其应用

山东轻工业学院 数理学院 李彬
Introduction
利用神经网络解决组合优化问题是神经网络应用的一个 重要方面. 将Hopfield 网络应用于求解组合优化问题,把目标函数 转化为网络的能量函数,把问题的变量对应到网络的状态,这 样,当网络的能量函数收敛于极小值时,问题的最优解也随之 求出. 由于神经网络是并行计算的,其计算量不随维数的增加 而发生指数性“爆炸”,因而对于优化问题的高速计算特别 有效.
1 离散Hopfield 神经网络
串行(异步)工作方式运行步骤
Step1 对网络进行初始化;
Step2 从网络中随机选取一个神经元; Step3 求出该神经元i的输入; Step4 求出该神经元经激活函数处理后的输出,此时网 络中的其他神经元的输出保持不变; Step5 判断网络是否达到稳定状态,若达到稳定状态或 满足给定条件则结束;否则转到第二步继续运行.
1 离散Hopfield 神经网络
网络模型表示法
W x2 x1 o1
o2
… … xn
on
图1 最基本的Hopfield网( n = m = h)
1 离散Hopfield 神经网络
联接:神经元之间都是互联的wij,每个神经元都没有 到自身的联接wii=0. 神经元个数h,输入向量维数n,输出向量维数m. h≥n, h≥m,n≥1,m≥1. 神经元:输入、输出、隐藏. 状态变化:非同步、同步. 输入向量:X=(x1,x2,…,xn). 输出向量:O=(o1,o2,…,om).
3.Hopfield模型与组合优化求解
在组合优化问题中,让神经元的某状态表示某命题 的真假,而神经元之间的连接则表示两命题的关联程度,
正为相互支持,负为相互否定.
TSP的几种求解方法及其优缺点

TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij )是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji , ni j=1 , 2, 3, ?, n);2)非对称旅行商问题(dij dji, ? i, j=1 , 2, 3, ?, n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={V1, V2, V3, ?, V n}的一个访问顺序为T={t l, t2, t3, ?, t i, ?, t n},其JT中t& V (i=1 , 2, 3, ?, n),且记t n+1=t1,则旅行商问题的数学模型为:minL= TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略2.1模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略一一路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV );③插入操作(INS)。
傅立叶Hopfield神经网络及其在优化中的应用

型用于优 化 问题. 仿真结果表 明傅 立叶 H p ed 经 网络 能够较 快收敛到最优解 , of l 神 i 在解 决优 化 问题上
表 现 出令 人 满 意 的 效 果 . 关 键 词 : 立 叶 级 数 ; of l 神 经 网络 : 化 问题 傅 H p ed i 优 中图 分 类 号 :P 8 T 1 文 献 标 识 码 : A 文 章 编 号 :6 2— 9 6 2 0 )3— 2 7— 4 17 0 4 (0 8 0 07 0
St y o o e fFo i r Ho fed ur lne wo k a ud n m d lo ur e p l ne a t r nd i a lc ton n ptm iato pp ia i si o i z i n
XU o q Ya — un, HE h o。 i g, S a p n ZHA NG i L
p s d b rg n merc f ncin a d sg i u to ,b s d o h a tt a h o re e o e y t o o t u to n i mod f ncin i i a e n t e fc h tt e F u rs — i re o n y h st u t e b l n t e o g e o — i sn to l a he f rh ra ii n l c la pr a h n ta s a aur fhih rn n t lne r,a p le h de o t e a p i ai n t p i z to r blm s Th i l t n r — i a nd a p i d t e mo lt h p lc to o o tmiain p o e . e smu a i e o s t a e s o h tt e F u e p ed n u a e wo k h s h g ra iiy o e r h n o ui h v h wn t a h o r rHo f l e r ln t r a ihe b lt fs a c i g f r s i i go al p i ls l t n nd s m misa s ts e c u ae ef c n t e a p i ain o pt i l b ly o tma o u i s a u o t a if d a c r t fe ti h p lc to fo i — i m z t n p o l ms ai rbe . o
Hopfield神经网络优化方法

(1)前馈型网络
各神经元接受前一层的输入,并输出给下一 层,没有反馈。
结点分为两类,即输入单元和计算单元,每 一计算单元可有任意个输入,但只有一个输 出(它可耦合到任意多个其他结点作为输入 )。
可分为不同的层,第i-1层输出是第i层的输 入,输入和输出结点与外界相连,而其他中 间层称为隐层。
主要起函数映射作用,常用于模式识别和函数逼近 。
人工神经网络由于其大规模并行处理、学习、联想和记 忆等功能,以及它高度的自组织和自适应能力,已成为 解决许多工程问题的有力工具,近年来得到了飞速的发 展。
Hopfield神经网络优化方法
2
资料仅供参考,不当之处,请联系改正。
生物神经系统
生物神经系统是一个有高度组织和相互作用的 数目庞大的细胞组织群体。这些细胞被称为神 经细胞,也称作神经元。
资料仅供参考,不当之处,请联系改正。
Hopfield神经网络优化方法
10.1 人工神经网络模型 10.2 Hopfield神经网络 10.3 Hopfield网络与最优化问题
Hopfield神经网络优化方法
1
资料仅供参考,不当之处,请联系改正。
人工神经网络
人工神经网络是指由大量简单人工神经元互联而成的一 种计算结构。它可以在某种程度上模拟生物神经系统的 工作过程,从而具备解决实际问题的能力。
Hopfield神经网络优化方法
7
资料仅供参考,不当之处,请联系改正。
人工神经元模型
激活函数:图中的f(),主要起非线性映射作用 ,另外还可以作为限幅器将神经元输出幅度限 制在一定范围内;
Hopfield神经网络优化方法
8
资料仅供参考,不当之处,请联系改正。
人工神经元模型
应用Hopfield神经网络优化最大熵的图像恢复算法

像恢复的优化 目标, 构造能量函数连续型 H p e 神经网络模型,由能量 函数极小化得到图像恢复的最 ofl id
优解 .
收稿 日期 : 0 0 1 —2 2 l .2 1 基金项 目: 南省教 育厅 基金项 f(0 0 5 ) 湖 11c 7 3
作者简 介 : 卫平 (94 ) 丁 16 ,男,湖南岳 阳人,硕 上, 湖南 理 I 院数 学学 院副教 授 主要研 究方 向:信息 论及应 用 学
算法 在不断 改进,运算 速度也 越来 越快.
本文提出一种基于 H p e of l i d神经 网络模型优化 的最大熵图像恢 复算法, 图像恢复问题转 化为 将
H p ed 经 网络优 化 问题 , 恢 复 图像 最 大熵 函数 及 原始 图像 与恢 复 图像 的误 差 平 方和 为最小 作 为 图 o f l神 i 取
i ma i m fi g n r p n n mi a i n o q a e ro e we n t e o i i a ma ea d r so a i e i g u o t e s x mu o ma e e to y a d mi i z t fs u r d e r r b t e h rg n l o i g n e t r tv ma e d e t h
网络 用于 图像恢复 的方法最 早由 zoYT等人提 …,他们将恢 复 问题与 Hof l hu p ed神经 网络 通过 能量 函数 i 联系起 来,将 图像恢复 问题转 化为适 合神经 网络计 算 的优 化 问题 , 来 Pi 人对 比进行 了改进L. 年 后 a k等 2近 J 来,关 于 神经 网络 图像复 原方 法 [6的研究 也 越来 越 多,其 用 于图 像复 原 的神 经 网络模 型 在不 断地 丰 富, 31 - -
TSP的几种求解方法及其优缺点

v1.0 可编辑可修改TSP的几种求解方法及其优缺点一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.神经网络优化方法
17
Hopfield网络基本结构:
其中,I1, I2,..., In是外部对网络的输入;v1, v2,..., vn是网络系统 的输出;u1, u2, ..., un是对相应神经元输入,wij是从第j个神经 元对第i个神经元的输入的权值,wji=wij,wii=0。f(•)是特性函 数,决定了网络是离散的还是连续的。
稳定状态是给定的,通过网络的学习求合适的 权矩阵W(对称阵) 。一旦学习完成后,以 计算的方式进行联想。
Hopfield网络,可以采用Hebb学习规则和误差 型学习算法等学习方法 。
.神经网络优化方法
30
Hebb学习规则
给定M个待存储模式,按Hebb学习规则,Hopfield网络有如下学 习过程:
.神经网络优化方法
28
能量函数与稳定性
例10-1 试计算一个有8个神经元的离散Hopfield网络,
其网络权值W和阈值向量如下:
2.计算结果
(1)
初始解按v0=[-1 1 -1 1 -1 1 1 1]T
最终状态:v=[1 1 1 1 1 1 1 1 ]T
最小能量:E=-15.165。
(2)
初始解按v0=[1 -1 1 -1 1 -1 1 -1]T
行过程中是不断降低并最后趋于稳定平衡状态的——网络
中任意一个神经元节点状态发生变化时,能量E都将减小
。
.神经网络优化方法
22
能量函数与稳定性
假设第i个神经元节点状态 v i 的变化量记为 v i ,相应的能量变化量记为 E i 。能量 E i 随状态变化而减小意味着 E i 总是负值。考察两种情况:
矩阵和向量,且有界,因此E有下界:
Emin12i n1
n
wij
j1
n
i1
i
因为式(10-9)的E是有界函数,从而可知式( 10-9)是正定的,即网络将最终达到稳定状态。
.神经网络优化方法
25
能量函数与稳定性
离散Hopfield模型的稳定状态与能量函数E在 状态空间的局部极小点是一一对应的。
需要指出:一般在Hopfield神经网络中, 能量函数可能存在局部最小值,如图10-9所示。
第10章 Hopfield神经网络优化 方法
1
Hopfield神经网络优化方法
10.1 人工神经网络模型 10.2 Hopfield神经网络 10.3 Hopfield网络与最优化问题
.神经网络优化方法
2
人工神经网络
人工神经网络是指由大量简单人工神经元互联而成的一 种计算结构。它可以在某种程度上模拟生物神经系统的 工作过程,从而具备解决实际问题的能力。
个模式中的某个模式mk,则称模式mk是由模式m0联想起来的 。
.神经网络优化方法
31
联想记忆
例10-2 对于一个4神经元的网络,取阈值为0。
给定两个模式存储于网络中。试确定网络的权
值矩阵W。
1
m0=
1
1 1
1
m1=
1
1 1
.神经网络优化方法
32
联想记忆
解: 可据式(10-11)构造出权值矩阵W如下:
最终状态:v=[-1 -1 -1 -1 -1 -1 -1 -1 ]T
最小能量:E=-7.564998。
经尝试不同的初始状态,该网络系统最终收敛到(1)和(2
)两个状态之一。其中,状态1为最优解,而状态2为局部Байду номын сангаас优
解。
解毕。
.神经网络优化方法
29
10.2.2 离散Hopfield网络用于联想记忆
反馈网络能够收敛于其稳定状态,因此它可用 作联想记忆。
x 1 1 x 1
x 1
类似于系数为1的非线性放大器, 当工作于线性区时它是一个线性组合器,
放大系数趋于无穷大时变成一个阈值单元
.神经网络优化方法
13
激活函数的若干形式
(3)sigmoid函数
f (x) 1 1exp(cx)
式中,c为大于0的参数 ,可控制曲线斜率
.神经网络优化方法
14
10.1.3 人工神经网络的互连模式
wij
M k1
v v (k) (k) ij
0
i j i j
(10-11)
按上述规则求出权矩阵后,可以认为网络已经将这M个模
式存入网络的连接权中。
在联想过程中,与求解优化问题一样,先给出一个原始模
式m0,使网络处于某种初始状态下,用网络方程动态运行,最 后达到一个稳定状态。如果此稳定状态对应于网络已存贮的M
E1n
2i1
n ji
wijvivj
i
ivi
(2)随机选取神经元i,按下式判断该神经元输出状态vi(即采用了阈值为0的双 极硬限函数),按串行工作方式,直至状态不变,计算终止:
若神经元i的状态 若神经元i的状态
n
xi wijv j i>0,则取vi=1 ji n
xi wijv j i <0,则取vi=-1 ji
.神经网络优化方法
11
激活函数的若干形式
(1)阈值函数,即阶跃函数
f(x)sgn(x) 1 0
x0 x0
于是神经元i的相应输出为:
1 vi 0
xi 0 xi 0
式中,
n
xi wijs j i
j1
.神经网络优化方法
12
激活函数的若干形式
(2)分段线性函数
1
f
(x)
1 2
(1
x)
0
特点:
.神经网络优化方法
18
离散型Hopfield网络
定义:对图10-8中的特性函数f(•)取阈值函数(见图 10-3)等硬限函数,使神经元的输出取离散值,就得 到离散型Hopfield神经网络。
工作原理:设有n个神经元,v为神经网络的状态矢量 v i ,为第i个神经元的输出,输出取值为0或者为l的二 值状态。对任一神经元{ iv,j i } j 为第i个神经元的内部 未加权输入,它们对该神经元的影响程度用连接权wij
4
人工神经元模型
人工神经元是构成人工神经网络的基本单元, 是对生物神经元特性及功能的一种数学抽象, 通常为一个多输入单输出器件。
.神经网络优化方法
5
人工神经元模型
输入与输出信号:s1、s2、….sn为输入,vi为输 出。输出也称为单元的状态。
.神经网络优化方法
6
人工神经元模型
权值:给不同的输入的信号一定的权值,用wij 表示。一般权值为‘+’表示激活,为‘-’表示 抑制;
对于离散型网络方程,Hopfield将网络整体能量函数定义为:
1n n
E(t) 2i1
wijvivj
ji
i
ivi
.神经网络优化方法
23
能量函数与稳定性
③即前面已讨论过的 “E随状态变化而严格
单调递减”
容易证明它满足Lyapunov函数的三个条件:①函数 连续可导;②函数正定以及;③函数的导数半 负定。
•第二类只利用全局极小点 ,主要用于优化问题求解 。Hopfield模型、波尔兹 曼机(BM)模型等可以完 成此类计算。
.神经网络优化方法
16
10.2 Hopfield神经网络 - HNN
特点:
网络中引入了反馈,所以它是一个非线性动力 学系统 .
非线性动力学系统着重关心的是系统的稳定性 问题。
一旦给出Hopfield网络的权值和神经元的阈值, 则网络的状态转移序列就确定了。
.神经网络优化方法
20
离散型Hopfield网络
定义10.1 若神经元i在更新过程中,输出变量v 不再变化,则称神经元i已稳定。若Hopfield网 络从t=0的任意一个初始输出状态开始,存在 一个有限的时间,此时间点后系统中所有神经 元都是稳定的,即网络状态不再发生变化,则 称该系统是稳定的,即:v(tt)v(t),对所有 。 t 0
人工神经网络由于其大规模并行处理、学习、联想和记 忆等功能,以及它高度的自组织和自适应能力,已成为 解决许多工程问题的有力工具,近年来得到了飞速的发 展。
.神经网络优化方法
3
生物神经系统
生物神经系统是一个有高度组织和相互作用的 数目庞大的细胞组织群体。这些细胞被称为神 经细胞,也称作神经元。
.神经网络优化方法
主要起函数映射作用,常用于模式识别和函数逼近 。
.神经网络优化方法
15
(2)反馈型网络
所有结点都是计算单元,同时也可接受输入,并向外界输出。 若总的单元数为n,则每一个结点有n-1个输入、—个输出,如图10-7 的
形式。 反馈网络按对能量函数极 小点的利用分为两类:
•一类是能量函数的所有极 小点都起作用,主要用作 各种联想存储器;
W
0.33 0.63
0.47 0.58
0.10 0.19
0 0.66
0.66 0
0.32 0.14
0.05
0.15 0.70 0.065
0.78 0.61 0.26 0.32 0.15 0 0.81 0.15
0.24 0.30 0.77 0.14 0.70 0.81 0
0.23
0.17 0.22 0.53 0.05 0.065 0.15 0.23 0
。
.神经网络优化方法
10
人工神经元模型
上述作用可用数学方式表示如下:
n
u i w i j s j j1
xi ui i vi f (xi)
i=1, 2,…, n