SPSS分析调查问卷数据的方法

合集下载

如何用spss做问卷的结构效度分析

如何用spss做问卷的结构效度分析

如何用spss做问卷的结构效度分析?问:因子分析里面Descriotives里面KMO和巴特利检验就可以了吗?除此之外,还要做什么啊?请高手赐教点简单易懂又能说明效度问题的,谢谢啦!问题补充:提取因子的个数怎么确定?是选特征值大于1的吗?还有,因子载荷怎么算?是在输出结果中直接可以看到吗?本人刚接触spss,请多多指教!答:首先必须要做KMO和Bartlett球形检验,这个你应该会了吧,如果这两个检验合格的话说明数据是适合做因子分析的。

然后提取因子后,看主因子解释总变异的百分比和个因子的因子载荷,主因子解释总变异一般若大于60%的和因子载荷大于0.6的话说明结构效度很好。

pS: ,如果题目没有规定就是选特征值大于1的,如果题目事先要提取几个因子,那么在操作的时候,用SPSS那个因子分析的选项里面有一个地方可以著名,因子载荷在输出的结果直接可以看到(rotated compoment matrpx),一定要是旋转后的因子载荷用spss进行效度分析?我要对我的问卷调查数据做一个信度和效度分析。

信度分析我会了,就是看Cronbach’s Alpha 系数。

效度分表面效度、准则效度和构建效度,前面两项只要说明一下,但是构建效度要用SPSS分析,我想是在因子分析里面吧?就是不知道哪个值代表效度。

答:因子分析的效度分析主要的指标可以看,因子提取的方差累积贡献率,如果因子提取的越少且方差累积率又不低的话(一般如果2个因子达到40%以上的贡献率就算可以的了),就可以认为因子分析的效度还可以。

除此之外,你可以用因子分析里面Descriotives里面KMO和巴特利检验(battele,不知道是不是这样写的),KMO的值如果>0.5,则说明因子分析的效度还行,可以进行因子分析;另外,如果巴特利检验的P<0.001,说明因子的相关系数矩阵非单位矩阵,能够提取最少的因子同时又能解释大部分的方差,即效度可以。

SPSS测量问卷信效度分析

SPSS测量问卷信效度分析

SPSS测量问卷信效度分析在社会科学研究中,问卷调查是一种常用的数据收集方法。

为了确保测量工具的有效性和可靠性,我们需要进行信效度分析。

本文将介绍如何使用SPSS软件对问卷进行信效度分析的步骤和方法。

一、信度分析信度是指测量工具在不同时间点或者多个观察者之间的一致性和稳定性。

常用的信度检验方法有重测法、分半法和内部一致性法。

在SPSS中,我们可以使用Cronbach's Alpha系数来计算问卷的内部一致性。

1. 导入数据首先,将收集到的问卷数据导入SPSS软件中。

确保每个问题都用不同的变量来表示,并且每个被试者的数据都在一行中。

2. 创建变量在菜单栏中选择"变量视图",然后逐个输入每个问题的变量名和相关信息,比如问题的编号、内容和选项。

3. 计算Cronbach's Alpha系数在菜单栏中选择"分析" - "计算变量" - "反向",对需要反向计分的问题进行操作。

然后,在菜单栏中选择"数据" - "描述性统计" - "可信度分析",选择需要进行信度分析的变量,然后点击"统计值",选择"Cronbach's Alpha系数"并点击"确定"。

Cronbach's Alpha系数的取值范围为0到1,数值越大表示问卷的内部一致性越高。

通常,如果Cronbach's Alpha系数大于0.7,可以认为问卷具有较好的内部一致性。

二、效度分析效度是指问卷是否能够真实地反映出所要测量的概念或者特征。

常用的效度检验方法包括内容效度、构效度和准则效度。

在SPSS中,我们可以通过因子分析和相关系数来进行效度分析。

1. 因子分析因子分析可以用来确定问卷中的维度或者潜在变量。

在菜单栏中选择"分析" - "数据降维" - "因子",选择需要进行因子分析的变量,然后点击"提取",选择主成分分析或者最大似然法,并选择因子的数量。

利用SPSS分析调查问卷数据

利用SPSS分析调查问卷数据

§1 如何用图来表示数据?
定量变量的图表示:1.直方图
• 对于一个定量变量,比如某个地区 (地区1)测量了163个高三男生的身 高(S3height1.txt)。
• 用图形来表示这个数据,使人们能够 看出这个数据的大体分布或“形状” 的一个办法是画直方图(histogram)。
• 图1就是利用这个数据由SPSS软件所 画的直方图。
图 3.1 地 区 1高 三 男 生 身 高 的 直 方 图
Std. Dev (标准差)=10.91,Mean(均值)=170.9,N(人数)=163
定量变量的图表示:2.盒型图
• 简单一些的是盒形图(boxplot,又称 箱图、箱线图、盒子图)。
• 图2的左边一个是根据地区1高三男生 的身高数据所绘的盒形图;其右边的 图代表另一个地区(地区2)的高三 学生的身高 。 (height.txt,height.sav,第三章例.xls)
数据录入
Rich.sav
数据 \Rich.xls
(rich.sav):福布斯世界富豪排行榜 Rank:排名 Name:姓名 Citizenship:国籍 Region:地区 Age:年龄 NetWorth:净财富(10亿美元) Residence :居住地
问卷调查数据常用的统计分析方法
频数分析、描述统计分析和列联表分析 这是问卷调查最基本、 最常用的分析方法。频数分析是描述统计的初步,分门别类的 统计有效样本量,计算其比重。频数分析可以计算的统计量有: 分位数、中位数、众数等,并可以绘制柱状图、直方图、饼图。
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
• 把一份问卷上面的每一个问题设为一个变量,这样一份问 卷有多少个问题就要有多少个变量与之对应,每一个问题 的答案即为变量的取值.现在我们以问卷第一个问题为例 来说明变量的设置.为了便于说明,可假设此题为: 1.请问你的年龄属于下面哪一个年龄段( )? A:20—29 B:30—39 C:40—49 D:50--59

使用SPSS进行问卷调查数据分析

使用SPSS进行问卷调查数据分析

使用SPSS进行问卷调查数据分析一、数据收集和预处理1.1 问卷设计与发放在进行问卷调查之前,首先需要设计好问卷内容和结构。

问卷设计应该具有明确的目的和清晰的问题表达,以便获取有效的数据。

设计好的问卷可以通过线上平台或者线下发放的方式进行分发。

1.2 数据收集在问卷发放完成后,需要对收集到的数据进行整理和归档。

将收集到的问卷数据进行编码和录入,确保数据的准确性和一致性。

1.3 数据清洗在进行数据分析之前,需要对收集到的数据进行清洗。

这一步包括检查和处理异常值、缺失值和重复值。

通过SPSS软件可以方便地进行数据清洗和处理。

二、描述性统计分析2.1 频数分析频数分析可以帮助我们了解样本中各变量的分布情况。

通过SPSS的频数分析功能,可以计算出每个选项的选择人数和所占比例,并生成频数表和频数图。

2.2 中心趋势测量中心趋势测量主要包括均值、中位数和众数的计算。

通过SPSS的描述性统计功能,可以得到各个变量的均值、标准差、最小值和最大值等统计指标。

同时,还可以绘制盒须图以描述数据的分布情况。

2.3 分类变量分析对于分类变量,可以通过计算各类别的百分比和绘制饼图或条形图来展示数据。

SPSS的交叉表功能可以帮助我们对分类变量进行交叉分析,比较不同类别之间的差异。

三、相关性分析相关性分析可以帮助我们了解变量之间的相关关系。

通过SPSS的相关分析功能,可以计算出两个变量之间的相关系数,并进行显著性检验。

相关系数的取值范围为-1到1,接近1表示正向相关,接近-1表示负向相关,接近0表示无相关。

四、多变量分析4.1 回归分析回归分析可以用来探究自变量与因变量之间的关系,并预测因变量的取值。

SPSS的回归分析功能可以通过计算回归方程和检验回归系数的显著性来评估自变量对因变量的解释程度。

4.2 方差分析方差分析用于比较多个样本的均值是否存在差异。

SPSS的方差分析功能可以通过计算组间平方和、组内平方和和总平方和来判断差异的显著性。

毕业论文SPSS效度分析怎么做?案例解析详解

毕业论文SPSS效度分析怎么做?案例解析详解

效度分析1、作用效度分析通常是指问卷量表的有效性和正确性,即分析问卷题目的设计是否合理。

问卷的效度分析是基于主成分因子分析实现的,通过比较题项的因子载荷系数是否在同一主成分表现最优而实现。

2、输入输出描述输入:至少两项或以上的定量变量或有序的定类变量,一般要求数据为量表量数据。

输出:设计的问卷题目是否合理有效。

3、案例示例案例:测量收集到的现有的一个由 13 个量表题客户满意度量表,测量其题目设计是否合理4、案例数据5、案例操作Step1:新建项目;Step2:上传数据;Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;Step4:选择【效度分析】;Step5:查看对应的数据数据格式,【效度分析】要求输入数据为放入 [定量] 或有序的 [定类] 自变量 X (变量数≥2);Step6: 修改因子维度数量;Step7:点击【开始分析】,完成全部操作。

6、输出结果分析输出结果 1: KMO 检验和 Bartlett 的检验注:***、**、*分别代表 1%、5%、10%的显著性水平图表说明:上表展示了 KMO 检验和 Bartlett 球形检验的结果,用来分析是否可以进行因子分析。

结果分析:结果显示,KMO 的值为 0.911,模型适合做因子分析,同时,Bartlett 球形检验的结果显示,显著性 P 值为 0.000**,水平上呈现显著性,拒绝原假设,各变量间具有相关性,因子分析有效。

输出结果 2:解释总方差图表说明:上表为方差解释表格主要是看因子对于变量解释的贡献率(可以理解为究竟需要多少因子才能把变量表达为 100%),一般认为因子对于变量解释的贡献率在取到变量解释的特征根低于 1 时对应的主成分个数,要表达到 80%以上才可以,否则就要调整因子数据,而但也具体情况具体分析。

➢一般情况下,方差解释率越高,说明该主成分越重要,权重占比也应该越高;➢权重计算:方差解释率/累积方差解释率。

SPSS分析调查问卷数据的方法

SPSS分析调查问卷数据的方法

SPSS分析调查问卷数据的方法当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理.在此。

我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.第一步:定义变量大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和exce l相似的界面,在界面的左下方可以看到Data View. Variable View两个标签.只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。

在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位)、label(变量标签)、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Al ign(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类)。

们知道在spss中。

我们可以把一份问卷上面的每一个问题设为一个变量。

这样一份问卷有多少个问题就要有多少个变量与之对应。

每一个问题的答案即为变量的取值。

现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明。

可假设此题为:1.请问你的年龄属于下面哪一个年龄段()?A:20—29 B:30—39 C:40-49 D:50-59那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置。

答案我们可以用1、2、3、4来代替A、B、C、D.所以我们选择数字型的,即选择Numeric。

width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。

Values用于定义具体变量值的标签。

单击Value框右半部的省略号,会弹出变量值标签对话框。

如何使用spss进行问卷效度和信度分析

如何使用spss进行问卷效度和信度分析

如何使用spss软件进行效度和信度分析如果一个问卷设计出来无法有效地考察问卷中所涉及的各个因素,那么我们为调查问卷所作的抽样、调查、分析、结论等一系列的工作也就白做了。

那么,我们如何来检验设计好的调查问卷是否有效呢?信度分析是评价调查问卷是否具有稳定性和可靠性的有效的分析方法。

二、信度分析的提出及分析方法信度,又叫可靠性,是指问卷的可信程度。

它主要表现检验结果的一贯性、一致性、再现性和稳定性。

一个好的测量工具,对同一事物反复多次测量,其结果应该始终保持不变才可信[1]。

例如,我们用一把尺子测量一张桌子的高度,今天测量得高度与明天测量的高度不同,那么我们就会对这把尺子产生怀疑。

因此,一张设计合理的调查问卷应该具有它的可靠性和稳定性。

调查问卷的评价体系是以量表形式来体现的,编制的合理性决定着评价结果的可用性和可信性。

问卷的信度分析包括内在信度分析和外在信度分析。

内在信度重在考察一组评价项目是否测量同一个概念,这些项目之间是否具有较高的内在一致性。

一致性程度越高,评价项目就越有意义,其评价结果的可信度就越强。

外在信度是指在不同时间对同批被调查者实施重复调查时,评价结果是否具有一致性。

如果两次评价结果相关性较强,说明项目的概念和内容是清晰的,因而评价的结果是可信的。

信度分析的方法有多种,有Alpha信度和分半信度等,都是通过不同的方法来计算信度系数,再对信度系数进行分析[2]。

目前最常用的是Alpha信度系数法,一般情况下我们主要考虑量表的内在信度——项目之间是否具有较高的内在一致性。

通常认为,信度系数应该在0~1之间,如果量表的信度系数在0.9以上,表示量表的信度很好;如果量表的信度系数在0.8~0.9之间,表示量表的信度可以接受;如果量表的信度系数在0.7~0.8之间,表示量表有些项目需要修订;如果量表的信度系数在0.7以下,表示量表有些项目需要抛弃。

我们可以通过目前比较流行的SPSS软件对调查问卷进行信度分析,这样我们就可以判断一个调查问卷是否具有稳定性和可靠性。

如何快速掌握SPSS进行问卷分析

如何快速掌握SPSS进行问卷分析

如何快速掌握SPSS进行问卷分析1. SPSS对调查问卷原始数据的处理第一步,需要对问卷进行变量定义和编码。

给每个题目起个变量名,例如“性别”、“年龄”、“q1”(第一题);定义好变量名之后,给每个变量的各种答案或可能取值编码,即用数字来表示,例如1=男性,2=女性。

只有定义好变量和取值之后才能录入SPSS中,变量的编码可以在SPSS中的Values设定。

这里,我们建议大家把原始数据录入和整理分开,录入采用Excel或其他数据库文件。

第二步,整理筛选原始数据。

显然,并非所有的问卷都是有效或可靠的数据,因此,我们需要对原始数据进行筛选和处理。

首先,漏填错填比较多的问卷(占15%以上的题目者)要整体删除;其次,不认真填写的问卷也要删除,例如:录入连续很多个题目都选择同一个答案选项,或者回答的某些题目是互相矛盾的。

2. SPSS对调查问卷数据的描述性统计分析这步主要目的是了解数据样本和各个变量得分的基本情况。

了解样本的结构,例如男女比例,不同收入群体的人数和比例等,采用频数分析方法;了解各个变量,如幸福感、态度等的得分情况,采用描述性统计分析方法。

3. SPSS分析调查问卷数据变量的差异性这步目的是了解不同分类或分组变量水平上特定变量的均值差异,例如男生和女生的成绩差异、不同收入水平消费者的广告偏好程度等。

两组之间采用t检验,三组及以上者采用方差分析。

4. SPSS分析调查问卷数据变量的相关性这步目的是分析不同变量至今是否存在显著相关,相关系数是多少。

如果是两个连续型变量,则采用Pearson相关分析;若涉及至少一个等级变量,则采用Spearman等级相关分析;如果需要固定某个变量不变,例如控制年龄之后再分析身高和体重的关系,则需要采用偏相关分析。

5.SPSS分析调查问卷数据变量之间的因果关系或影响关系这步的目的是分析变量之间的相互影响关系,例如性态度对性行为的影响。

这部分采用回归分析方法,包括单变量回归或多变量回归分析,比较复杂的涉及调整变量、中间变量等方法,借助结构方程模型可以方便处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该图的横坐标是身高区间,这里每一格代表5cm的身高范围(格子 宽度因不同的数据性质或要求而定,这里的格子宽度为5cm),而 纵坐标为各种身高区间的身高的频数。
30
40
直方图
20
10
0 150.0 155.0 160.0 165.0 170.0 175.0 180.0 185.0 190.0 195.0 200.0
开放式题型的设置:诸如你所在的省份是_____这样的填空题即 为开放题,设置这些变量的时候只需要将Value 、Missing两项不 设置即可.
数据录入:Spss数据录入方式
1.读取SPSS格式的数据 2.读取Excel等格式的数据 3.读取文本数据(Fixed和Delimiter) 4.读取数据库格式数据(分如下两步) (1)配置ODBC (2)在SPSS中通过ODBC和数据库进行
§1 如何用图来表示数据?
定量变量的图表示:1.直方图
• 对于一个定量变量,比如某个地区 (地区1)测量了163个高三男生的身 高(S3height1.txt)。
• 用图形来表示这个数据,使人们能够 看出这个数据的大体分布或“形状” 的一个办法是画直方图(histogram)。 • 图1就是利用这个数据由SPSS软件所 画的直方图。
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
调查问卷中的数据编码和录入
• 把一份问卷上面的每一个问题设为一个变量,这样一份问 卷有多少个问题就要有多少个变量与之对应,每一个问题 的答案即为变量的取值.现在我们以问卷第一个问题为例 来说明变量的设置.为了便于说明,可假设此题为: 1.请问你的年龄属于下面哪一个年龄段( )? A:20—29 B:30—39 C:40—49 D:50--59
数据录入
Rich.sav
数据 \Rich.xls
(rich.sav):福布斯世界富豪排行榜 Rank:排名 Name:姓名 Citizenship:国籍 Region:地区 Age:年龄 NetWorth问卷调查数据常用的统计分析方法
频数分析、描述统计分析和列联表分析 这是问卷调查最基本、 最常用的分析方法。频数分析是描述统计的初步,分门别类的 统计有效样本量,计算其比重。频数分析可以计算的统计量有: 分位数、中位数、众数等,并可以绘制柱状图、直方图、饼图。
• 下面将从这四个方面来对问卷的处理做详 细的介绍.
定义变量
• 大多数情况下我们需要从头定义变量,在打开SPSS后, 我们可以看到和excel相似的界面,在界面的左下方可 以看到Data View, Variable View两个标签,只需单击左下 方的Variable View标签就可以切换到变量定义界面开始 定义新变量。 • 在表格上方可以看到一个变量要设置如下几 项:name(变量名)、type(变量类型)、width(变量值的宽 度)、decimals(小数位) 、label(变量标签) 、Values(定义 具体变量值的标签)、Missing(定义变量缺失值)、 Colomns(定义显示列宽)、Align(定义显示对齐方式)、 Measure(定义变量类型是连续、有序分类还是无序分 类).
• 在spss的数据录入窗口中直接输入就可以了, 几点注意事项: • a. 在数据录入窗口,可看到有一个表格,这个表格中的每一行代表一份 问卷,也称为一个个案. • b. 在数据录入窗口中,可看到表格上方出现了1、2、3、4、5…….的标签 名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变 量名,即1代表第一题,2代表第二题.以次类推.只需要在变量名下面输入 对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题, 如果问卷上勾选了A答案,在1下面输入1就行了(不要忘记我们通常是用1、 2、3、4来代替A、B、C、D的). • c.一行代表一份问卷,所以有几分问卷,就要有几行的数据. 在数据录入完成后, 要做的关键部分就是 问卷的统计分析了.
变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我 们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量 标签为“年龄段查询”。Values用于定义具体变量值的标签,单击Value框右半部的省 略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然 后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、 4=50--59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出 缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二 项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一 个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示 列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中 三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。
描述统计分析主要是计算一些 基本的统计量,其中比较 重要的统计量有均值、方差和标准差、峰度、偏度。
数据的描述
• 在对数据进行深入加工之前, 总应该对数据有所印象。
• 可以借助于图形和简单的运算, 来了解数据的一些特征。 • 由于数据是从总体中产生的, 其特征也反映了总体的特征。 对数据的描述也是对其总体的 一个近似的描述。
利用SPSS分析调查问卷数据
马青华
问卷数据的预处理
SPSS分析调查问卷数据的方法
• 当我们的调查问卷在把调查数据拿回来后, 我们该做的工作就是用相关的统计软件进 行处理,在此,我们以spss为处理软件,来简要 说明一下问卷的处理过程,它的过程大致可 分为四个过程:
• 定义变量﹑数据录入﹑统计分析和结果保存.
相关文档
最新文档