统计学课件 第七章相关与回归分析PPT
合集下载
统计学相关分析和回归分析ppt课件

23
计算积距相关系数, 连续性变量才可采用
图8-1 Bivariate Correlations 对话框
。
计算Kendall秩相关
系数,适合于定序变
量或不满足正态分布
假设的等间隔数据。 计算Spearman秩相
关系数,适合于定序
见图 8-2
变量或不满足正态分
关布。不还假清是设楚负的变相等量关间之时隔间选数是择据正此相项 。
没有关系
9
8.2.2 相关系数 利用相关系数进行变量间线性关系的分析通常需
要完成以下两个步骤:
第一,计算样本相关系数r;
相关系数r的取值在-1~+1之间 r>0表示两变量存在正的线性相关关系;r<0表示两变
量存在负的线性相关关系 r=1表示两变量存在完全正相关;r=-1表示两变量存
在完全负相关;r=0表示两变量不相关 |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示
。 (4)在Test of Significance框中选择输出相关系数检验的双
边(Two-Tailed)概率p值或单边(One-Tailed)概率 p值。 (5)选中Flag significance correlation选项表示分析结果 中除显示统计检验的概率p值外,还输出星号标记,以标明 变量间的相关性是否显著;不选中则不输出星号标记。 (6)在Option按钮中的Statistics选项中,选中Crossproduct deviations and covariances表示输出两变量的 离差平方和协方差。
例如,在研究商品的需求量和价格、消费者收入之间 的线性关系时,需求量和价格之间的相关关系实际还包含 了消费者收入对价格和商品需求量的影响。在这种情况下 ,单纯利用相关系数来评价变量间的相关性显然是不准确 的,而需要在剔除其他相关因素影响的条件下计算变量间 的相关。偏相关的意义就在于此。
计算积距相关系数, 连续性变量才可采用
图8-1 Bivariate Correlations 对话框
。
计算Kendall秩相关
系数,适合于定序变
量或不满足正态分布
假设的等间隔数据。 计算Spearman秩相
关系数,适合于定序
见图 8-2
变量或不满足正态分
关布。不还假清是设楚负的变相等量关间之时隔间选数是择据正此相项 。
没有关系
9
8.2.2 相关系数 利用相关系数进行变量间线性关系的分析通常需
要完成以下两个步骤:
第一,计算样本相关系数r;
相关系数r的取值在-1~+1之间 r>0表示两变量存在正的线性相关关系;r<0表示两变
量存在负的线性相关关系 r=1表示两变量存在完全正相关;r=-1表示两变量存
在完全负相关;r=0表示两变量不相关 |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示
。 (4)在Test of Significance框中选择输出相关系数检验的双
边(Two-Tailed)概率p值或单边(One-Tailed)概率 p值。 (5)选中Flag significance correlation选项表示分析结果 中除显示统计检验的概率p值外,还输出星号标记,以标明 变量间的相关性是否显著;不选中则不输出星号标记。 (6)在Option按钮中的Statistics选项中,选中Crossproduct deviations and covariances表示输出两变量的 离差平方和协方差。
例如,在研究商品的需求量和价格、消费者收入之间 的线性关系时,需求量和价格之间的相关关系实际还包含 了消费者收入对价格和商品需求量的影响。在这种情况下 ,单纯利用相关系数来评价变量间的相关性显然是不准确 的,而需要在剔除其他相关因素影响的条件下计算变量间 的相关。偏相关的意义就在于此。
医学统计学PPT:直线相关和回归

r X X Y Y
l XY
X X 2 Y Y 2
l XX lYY
X 的离均差平方和:
2
lXX X X
Y 的离均差平方和:
2
lYY Y Y
X与Y 间的离均差积和: lXY X X Y Y
离均差平方和、离均差积和的展开:
lXX
2
XX
X2
相关系数的抽样分布( = 0)
300 200 100
0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
相关系数的抽样分布( =0.8)
300 200 100
0 0 0.2 0.4 0.6 0.8 1.0
R.A. Fisher(1921) 的 z 变换
150
100
50
0
-2
-1
0
1
2
相关系数的z 值的抽样分布( = 0.8)
200
150
100
50
0
0
1
2
3
4
相关系数的可信区间估计
➢ (1) 将 r 变换为 z ; ➢ (2) 根据 z 服从正态分布,估计 z 的可信区间;
1 z u sz z u n 3
➢ (3) 再将 z 变换回 r 。
1 1
0.7221
lup
e2z 1 e2z +1
e22.6650 e22.6650
1该可0信.99区0间4 有1 什么含义?
7.3 直线回归
直线回归是把两个变量之间的关系用适当的方 程式表达出来,可以从一个自变量推算另一个 应变量。
直线回归的定义
➢ Y 因变量,响应变量 (dependent variable, response variable)
统计学第七章 相关与回归分析

(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2
或
y- y R= 1- 2 y y
ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5
统计学 第 七 章 相关与回归分析

3. 利用所求的关系式,根据一个或几个变量 的取值来预测或控制另一个特定变量的取 值,并给出这种预测或控制的精确程度
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。
第七相关与回归分析优秀课件

析
表示为 y = p x (p 为单价)
第
一
圆的面积(S)与半径之间的关系可表示为S = R2
节
相
关 企业的原材料消耗额(y)与产量(x1) 、单位产量消耗(x2) 、
基
原材料价格(x3)之间的关系可表示为y = x1 x2 x3
本
概
念
第
七 章
变量间的关系
相 关
(相关关系)
与 回 归 分 析 第 一 节
若是根据样本数据计算的,则称为样本相关 系数,记为 r
第
七 章
相关关系的测度
相
(相关系数)
关
与 样本相关系数的计算公式:
回
归
分 析
r (x x)(y y)
第
(x x)2 (y y)2
一
节
相 或化简为: r
n xy x y
关 基
n x2 x2 n y2 y2
本
概
念
第 七
相关关系的测度
析
t 0.9987 13 2 64.9809
第
1 0.99872
一
节 2.根据显著性水平=0.05,查t分布表得t(n-2)=2.201
相
关 基 本
由于t=64.9809>t(13-2)=2.201,拒绝H0,人均消费金
额与人均国民收入之间的相关关系显著
念
完全负线性相关
负线性相关
非线性相关
不相关
第
七 章
变量间的关系
相 关
(相关关系)
与
回
归
分
析
第 一 节 相 关 基 本 概 念
第 七
变量间的关系
《统计学原理与应用》课件第07章 相关与回归分析

74.4 172.0 248.0 418.0 575.0 805.2 972.0 1,280.0
104,214
4,544.6
统计学基础
第七章 相关与回归分析
根据计算结果可知:Βιβλιοθήκη x 36.4y 880
n8
x2 207.54
y2 104,214
xy 4,544.6
Fundamentals of Statistics
n x2 ( x)2 n y2 ( y)2
公式7—3
公式7—3是实际工作中使用较多的计算公式
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(四)相关系数的运用
(1)相关系数有正负号,分别表示正相关和负相关。
(2)相关系数的取值范围在绝对值的0 之1 间。其值大小 反映两变量之间相关的密切程度。
统计学基础
第七章 相关与回归分析
二、相关关系的种类
3.相关关系按照相关的方向分为正相关和负相 关 正相关:是指一个变量的数量变动和另一个变 量的数量变动方向一致.
负相关:当一个变量的数量变动与另一个变量 的数量变动方向相反时,称为负相关.
Fundamentals of Statistics
统计学基础
统计学基础
第七章 相关与回归分析
二、相关关系的测定 (一)相关系数的含义:
相关系数是在直线相关的条件下,用来说明两个 变量之间相关关系密切程度的统计分析指标。
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(二)相关系数的作用
1.说明直线相关条件下,两变量的相关关系的密切程 度的高低. (见教材第159页说明)
MBA统计学--相关和回归分析课件(PPT45张)

我们得到的截距和斜率(26.444和 0.651)是对0和1的估计。
§7.3 定量变量的线性回归分析 由于不同的样本产生不同的估计,所
以估计量是个随机变量,它们也有分 布,也可以用由他们构造检验统计量 来检验 0 和 1 是不是显著。拿回归主 要关心的来说,假设检验问题是
H : 0 H : 0 0 1 1 1
§7.1 问题的提出
例7.1 有50个从初中升到高中的学 生。为了比较初三的成绩是否和 高中的成绩相关,得到了他们在 初三和高一的各科平均成绩(数据在 highschool.txt) 。这两个成绩的散点 图展示在图7.1中。
50 名同学初三和高一成绩的散点图
100 有个上升趋势;即初三时成绩相对较高 的学生,在高一时的成绩也较高。 90
计算机输出也给出了这个检验:t检验 统计量为9.089,而p-值为0.000。
§7.3 定量变量的线性回归分析 除了对的检验之外,还有一个说明自
变量解释因变量变化百分比的度量, 叫 做 决 定 系 数 ( coefficient of determination ,也叫测定系数或可决 系数),用R2表示。 对于例1,R2=0.632;这说明这里的自 变量可以大约解释63%的因变量的变 化。 R2 越接近 1 ,回归就越成功。由 于R2有当变量数目增加而增大的缺点, 人们对其进行修改;有一修正的 R2 (adjusted R square)。
Sig. .000a
a. Predictors: (Constant), j3 b. Dependent Variable: s1
§7.3 定量变量的线性回归分析 和刚才简单的回归模型类似,一般的
有k个(定量)自变量x1, x2…, xk的对 因变量 y 的线性回归模型为(称为多 元回归)
§7.3 定量变量的线性回归分析 由于不同的样本产生不同的估计,所
以估计量是个随机变量,它们也有分 布,也可以用由他们构造检验统计量 来检验 0 和 1 是不是显著。拿回归主 要关心的来说,假设检验问题是
H : 0 H : 0 0 1 1 1
§7.1 问题的提出
例7.1 有50个从初中升到高中的学 生。为了比较初三的成绩是否和 高中的成绩相关,得到了他们在 初三和高一的各科平均成绩(数据在 highschool.txt) 。这两个成绩的散点 图展示在图7.1中。
50 名同学初三和高一成绩的散点图
100 有个上升趋势;即初三时成绩相对较高 的学生,在高一时的成绩也较高。 90
计算机输出也给出了这个检验:t检验 统计量为9.089,而p-值为0.000。
§7.3 定量变量的线性回归分析 除了对的检验之外,还有一个说明自
变量解释因变量变化百分比的度量, 叫 做 决 定 系 数 ( coefficient of determination ,也叫测定系数或可决 系数),用R2表示。 对于例1,R2=0.632;这说明这里的自 变量可以大约解释63%的因变量的变 化。 R2 越接近 1 ,回归就越成功。由 于R2有当变量数目增加而增大的缺点, 人们对其进行修改;有一修正的 R2 (adjusted R square)。
Sig. .000a
a. Predictors: (Constant), j3 b. Dependent Variable: s1
§7.3 定量变量的线性回归分析 和刚才简单的回归模型类似,一般的
有k个(定量)自变量x1, x2…, xk的对 因变量 y 的线性回归模型为(称为多 元回归)
生物统计学课件 7、回归与相关分析

第一节 直线回归
㈡数据整理
由原始数据算出一级数据6个: ΣX=1182 ΣY=32650 ΣXY=3252610 320
ΣX 2=118112 ΣY 2=896696700 n=12
Байду номын сангаас
再由一级数据算出二级数据5个:
SSX= ΣX 2 - (ΣX) 2 /n=1685.00 SSY= ΣY 2 - (ΣY ) 2 /n =831491.67 SP= ΣXY - ΣX ΣY /n =36585.00
280
80
X=ΣX/n =98.5 Ӯ =ΣY/n =2720.8333
㈢计算三级数据
b = SP/ SSX =21.7122 =36585÷1685
a= Ӯ -bX=582.1816 =2720.8333- 21.7122×98.5 得所求直线回归方程为:
y = 582.1816 + 21.7122 x
第一节 直线回归
二、建立直线回归方程
340
例7.1 在四川白鹅的生产性能研究中, 得到如下一组n = 12(只)关于雏鹅重(g) 与70日龄重(10g)的关系的数据,其结 300 果如下表,试予分析。
解 ㈠描散点图
本例已知雏鹅70日龄重随雏鹅重的变 260 化而变化,且不可逆;又据散点图反映的 趋势来看,在80—120g的重量范围, 70日 龄重随雏鹅重呈上升的线性变化关系。
程 y = 582.1816 + 21.7122 x可用于预测。
而是多元回归。
第二节 直线相关
一、相关的含义
二、相关系数
如果两个变量X和Y,总是X和Y 相互 前已述及,具有线性回归关系的
制约、平行变化,则称X和Y为相关关系。 双变量中,Y变量的总变异量分解为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/4
19
相关表与相关图 (概念要点)
统计学
STATISTICS
1、相关表和相关图是研究相关关系的直观工具。一般在进 行详细的定量分析之前,可以利用它们对现象之间存在 的相关关系的方向、形式和密切程度做大致的判断。
2、相关表是一种反映变量之间相关关系的统计表。它是将 某一变量按其取值的大小排列,然后再将与其相关的另 一变量的对应值平行排列,便可得到简单的相关表。
2. 通过建立回归方程来完成分析。
3. 回归方程除可用于研究相关变量之间的一般数 量变动关系外,还常用于进行预测,即根据一 个或几个变量的取值来预测或控制另一个相关 变量的取值,并给出这种预测或控制的精确程 度
7 - 15
2020/4/4
15
回归模型的类型
回归模型
统计学
STATISTICS
一元回归
7 -7
2020/4/4
7
(二)相关关系
(correlation)
统计学
STATISTICS
1. 变量间关系不能用函数关
系精确表达
y
2. 一个变量的取值不能由另 一个变量唯一确定
3. 当变量 x 取某个值时, 变量 y 的取值可能有几
个
4. 各观测点分布在直线周围
x
7 -8
2020/4/4
8
相关关系
1. 理解相关关系的概念 2. 掌握线性回归的基本原理和参数的最小
二乘估计 3. 掌握回归直线的拟合优度 4. 掌握回归方程的显著性检验 5. 利用回归方程进行估计和预测 6. 用 Excel 进行回归分析
7 -3
2020/4/4
3
统计学
STATISTICS
第一节相关关系概述
7 -4
2020/4/4
3、相关图又称散点图。它是以直角坐标系的横轴代表变量X ,纵轴代表Y,将两个变量间相应的变量值用坐标点的 形式描绘出来,用来反应量变量之间相关关系的图形。
7 - 20
2020/4/4
20
相关表
(举例分析)
统计学
STATISTICS
居民收入和消费的原始资料
计量单位:百元
家庭编号 1 2 3 4 5 6 7 8 9 10
3. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量
7 - 17
2020/4/4
17
统计学
STATISTICS
第二节相关分析
7 - 18
2020/4/4
18
统计学
STATISTICS
一、相关表和相关图
7 - 19
可支配收入 25 18 60 45 62 88 92 99 75 98 消费支出 20 15 40 30 42 60 65 70 53 78
居民消费和收入相关表
计量单位:百
元
可支配收入 18 25 45 60 62 75 88 92 98 99
消费支出 15 20 30 40 42 53 60 65 78 70
(几个例子)
统计学
STATISTICS
相关关系的例子
▪ 父亲身高y与子女身高x之间的关系
▪ 收入水平y与受教育程度x之间的关系
▪ 粮食亩产量y与施肥量x1 、降雨量x2 、温 度x3之间的关系
▪ 商品的消费量y与居民收入x之间的关系
▪ 商品销售额y与广告费支出x之间的关系
7 -9
2020/4/4
9
统计学
STATISTICS
1、相关分析主要用于测定具有相关关系的 变量之间相互关系的密切程度。
2、是回归分析的基础。
3、分析方法主要有:绘制散点图、编制相 关表、计算项关系数等。
7 - 14
2020/4/4
14
(二)回归分析
(Regression)
统计学
STATISTICS
1. 研究具有相关关系的变量值之间一般的数量变 动关系,即自变量发生变化时,因变量平均会 发生多大的变化。
,y 称为因变量
x
3.7 -各6 观测点落在一条线上
2020/4/4
6
函数关系
(几个例子)
统计学
STATISTICS
函数关系的例子
▪ 某种商品的销售额y与销售量x之间的关系可表 示为 y = px (p 为单价)
▪ 圆的面积S与半径之间的关系可表示为S=R2
▪ 企业的原材料消耗额y与产量x1 、单位产量消 耗x2 、原材料价格x3之间的关系可表示为 y = x1 x2 x3
4
统计学
STATISTICS
一、变量间的关系
7 -5
2020/4/4
5
(一)函数关系
统计学
STATISTICS
1. 是一一对应的确定关系
2. 随变量 x 一起变化, y
并完全依赖于 x ,当变量 x 取某个数值时, y 依确
定的关系取相应的值,则称
y 是 x 的函数,记为 y = f (x),其中 x 称为自变量
第七章
相关与回归分析
统计学
STATISTICS
7 -1
2020/4/4
制作时间:2004—2005
1
内容提要
1、相关关系的概念与种类 2、 相关分析 3、 一元线性回归分析 4、 多元线性回归分析 5、 曲线回归分析
统计学
STATISTICS
7 -2
2020/4/4
2
学习目标
统计学
STATISTICS
2020/4/4
11
散点图
(scatter diagram)
完全正线性相关
正线性相关
7 - 12
2020/4/4
完全负线性相关
负线性相关
统计学
STATISTICS
非线性相关
不相关
12
统计学
STATISTICS
三、相关关系分析的方法
7 - 13
2020/4/4
13
(一)相关分析
多元回归
线性回归 非线性回归 线性回归 非线性回归
7 - 16
2020/4/4
16
(三)回归分析与相关分析的区别
统计学
STATISTICS
1. 相关分析主要是描述两个变量之间线性关系的密 切程度;回归分析不仅可以揭示变量 之间的一 般数量变动关系,还可以由回归方程进行预测和 控制 。
2. 相关分析中,变量 x 变量 y 处于平等的地位; 回归分析中,变量 y 称为因变量,处在被解释 的地位,x 称为自变量,用于预测因变量的变化
统计学
STATISTICS
二、相关关系的种类
7 - 10
2020/4/4
10
相关关系的种类 统计学 STATISTICS
1、按相关的形式分为:
线性相关 非线性相关
2、按所研究的变量多少分为:
单项关 复相关 偏相关
3、按相关的方向分为:
正相关
负相关
4、按相关的程度分为:
完全相关 不完全相关
不相关
7 - 11