语音信号处理实验一
语音信号处理实验报告.docx

在实验中,当P值增加到一定程度,预测平方误差的改善就不很明显了,而且会增加计算量,一般取为8~14,这里P取为10。
5.基音周期估计
①自互相关函数法
②短时平均幅度差法
二.实验过程
1. 系统结构
2.仿真结果
(1)时域分析
男声及女声(蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率)
某一帧的自相关函数
3.频域分析
①一帧信号的倒谱分析和FFT及LPC分析
②男声和女声的倒谱分析
③浊音和清音的倒谱分析
④浊音和清音的FFT分析和LPC分析(红色为FFT图像,绿色为LPC图像)
从男声女声的时域信号对比图中可以看出,女音信号在高频率分布得更多,女声信号在高频段的能量分布更多,并且女声有较高的过零率,这是因为语音信号中的高频段有较高的过零率。
2.频域分析
这里对信号进行快速傅里叶变换(FFT),可以发现,当窗口函数不同,傅里叶变换的结果也不相同。根据信号的时宽带宽之积为一常数这一性质,可以知道窗口宽度与主瓣宽度成反比,N越大,主瓣越窄。汉明窗在频谱范围中的分辨率较高,而且旁瓣的衰减大,具有频谱泄露少的有点,所以在实验中采用的是具有较小上下冲的汉明窗。
三.实验结果分析
1.时域分析
实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响。这里窗长合适,En能够反应语音信号幅度变化。同时,从图像可以看出,En可以作为区分浊音和清音的特征参数。
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大。从浊音和清音的时域分析可以看出,清音过零率高,浊音过零率低。
(完整word版)语音信号处理实验报告实验一

通信工程学院12级1班罗恒2012101032实验一语音信号的低通滤波和短时分析综合实验一、实验要求1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号;2、辨别原始语音信号与滤波器输出信号有何区别,说明原因;3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因;4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响;5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。
二、实验目的1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。
2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。
三、实验设备1.PC机;2。
MATLAB软件环境;四、实验内容1。
上机前用Matlab语言完成程序编写工作.2。
程序应具有加窗(分帧)、绘制曲线等功能。
3.上机实验时先调试程序,通过后进行信号处理。
4.对录入的语音数据进行处理,并显示运行结果。
5。
改变滤波带宽,辨别与原始信号的区别。
6。
依据曲线对该语音段进行所需要的分析,并且作出结论。
7.改变窗的宽度(帧长),重复上面的分析内容。
五、实验原理及方法利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。
如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws的转换,对ap和as指标不作变化。
边界频率的转换关系为∩=2/T tan(w/2).接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。
语音信号处理实验报告

语音信号处理实验报告——语音信号分析实验一.实验目的及原理语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理,并且语音合成的音质好坏和语音识别率的高低,都取决于对语音信号分析的准确性和精确性。
贯穿语音分析全过程的是“短时分析技术”。
因为从整体来看,语音信号的特性及表征其本质特征的参数均是随时间变化的,所以它是一个非平稳态过程,但是在一个短时间范围内(一般认为在10~30ms的时间内),其特性基本保持不变,即相对稳定,可将其看做一个准稳态过程,即语音信号具有短时平稳性。
所以要将语音信号分帧来分析其特征参数,帧长一般取为10ms~30ms。
二.实验过程1.2. 仿真结果(1) 时域分析男声及女声(蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率)x 104-0.6-0.4-0.200.20.40.60.81x 105-0.4-0.200.20.40.60.811.2某一帧的自相关函数-1-0.8-0.6-0.4-0.200.20.40.60.813. 频域分析①一帧信号的倒谱分析和FFT 及LPC 分析对应的倒谱系数:119.2,-7.6895,……对应的LPC 预测系数:1,-0.1,-0.02,-0.4,-0.27,……②男声和女声的倒谱分析③浊音和清音的倒谱分析原语音波形一帧语音波形一帧语音的倒谱④浊音和清音的FFT分析和LPC分析(红色为FFT图像,绿色为LPC图像)三.实验结果分析1.时域分析实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响。
这里窗长合适,En能够反应语音信号幅度变化。
同时,从图像可以看出,En可以作为区分浊音和清音的特征参数。
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。
从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大。
语音信号处理实验讲义

语⾳信号处理实验讲义语⾳信号处理实验讲义编写⼈:蔡萍时间:2011-12实验⼀语⾳信号⽣成模型分析⼀、实验⽬的1、了解语⾳信号的⽣成机理,了解由声门产⽣的激励函数、由声道产⽣的调制函数和由嘴唇产⽣的辐射函数。
2、编程实现声门激励波函数波形及频谱,与理论值进⾏⽐较。
3、编程实现已知语⾳信号的语谱图,区分浊⾳信号和清⾳信号在语谱图上的差别。
⼆、实验原理语⾳⽣成系统包含三部分:由声门产⽣的激励函数()G z 、由声道产⽣的调制函数()V z 和由嘴唇产⽣的辐射函数()R z 。
语⾳⽣成系统的传递函数由这三个函数级联⽽成,即()()()()H z G z V z R z =1、激励模型发浊⾳时,由于声门不断开启和关闭,产⽣间隙的脉冲。
经仪器测试它类似于斜三⾓波的脉冲。
也就是说,这时的激励波是⼀个以基⾳周期为周期的斜三⾓脉冲串。
单个斜三⾓波的频谱表现出⼀个低通滤波器的特性。
可以把它表⽰成z 变换的全极点形式121()(1)cTG z ez --=-?这⾥c 是⼀个常数,T 是脉冲持续时间。
周期的三⾓波脉冲还得跟单位脉冲串的z 变换相乘:1121()()()1(1)v cT A U z E z G z z e z ---=?=--这就是整个激励模型,v A 是⼀个幅值因⼦。
2、声道模型当声波通过声道时,受到声腔共振的影响,在某些频率附近形成谐振。
反映在信号频谱图上,在谐振频率处其谱线包络产⽣峰值,把它称为共振峰。
⼀个⼆阶谐振器的传输函数可以写成12()1ii i i A V z B z C z--=-- 实践表明,⽤前3个共振峰代表⼀个元⾳⾜够了。
对于较复杂的辅⾳或⿐⾳共振峰要到5个以上。
多个()i V z 叠加可以得到声道的共振峰模型12111()()11Rrr MMir i N ki i i ik k b zA V z V zB zC z a z -=---======---∑∑∑∑3、辐射模型从声道模型输出的是速度波,⽽语⾳信号是声压波。
语音信号处理实验一陈乾贵

哈尔滨理工大学实验报告课程名称:数字语音信号处理学院:自动化学院专业班级:电技12-3班学生姓名:陈乾贵学号:1212020302 指导教师:马静实验一一、实验目的:语音信号是一种非平稳的时变信号,它携带着各种信息。
在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。
语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。
语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法,直接对语音信号的时域波形进行分析,提取的特征参数主要有语音的短时能量,短时平均过零率,短时自相关函数等。
本实验要求掌握时域特征分析原理,并利用已学知识,编写程序求解语音信号的短时过零率、短时能量、短时自相关特征,分析实验结果,并能掌握借助时域分析方法所求得的参数分析语音信号的基音周期及共振峰。
二、实验原理:1.窗口的选择通过对发声机理的认识,语音信号可以认为是短时平稳的。
在5~50ms的范围内,语音频谱特性和一些物理特性参数基本保持不变。
我们将每个短时的语音称为一个分析帧。
一般帧长取10~30ms。
我们采用一个长度有限的窗函数来截取语音信号形成分析帧。
通常会采用矩形窗和汉明窗。
矩形窗的定义:一个N点的矩形窗函数定义为如下:公式1:1 0()n N w n≤≤⎧=⎨⎩其它,,hamming窗的定义:一个N点的hamming窗函数定义为如下:公式2:()0.540.46 cos2π/1 0()n N n N w n⎧--≤≤⎡⎤⎪⎣⎦=⎨⎪⎩其它,2.短时能量由于语音信号的能量随时间变化,清音和浊音之间的能量差别相当显著。
因此对语音的短时能量进行分析,可以描述语音的这种特征变化情况。
定义短时能量为:公式3: )]()([ )]()([)1(22∑∑--=+∞-∞=-=-=nN n m m n m n w m x m n w m x E特殊地,当采用矩形窗时,可简化为: 公式4: )()1(2∑--==nN n m n m x E3.短时平均过零率过零率可以反映信号的频谱特性。
语音信号处理试验教程

语音信号处理试验实验一:语音信号时域分析实验目的:(1)录制两段语音信号,内容是“语音信号处理”,分男女声。
(2)对语音信号进行采样,观察采样后语音信号的时域波形。
实验步骤:1、使用window自带录音工具录制声音片段使用windows自带录音机录制语音文件,进行数字信号的采集。
启动录音机。
录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。
将录制好文件保存,记录保存路径。
男生女生各录一段保存为test1.wav和test2.wav。
图1基于PC机语音信号采集过程。
2、读取语音信号在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。
通过使用wavread函数,理解采样、采样频率、采样位数等概念!Wavread函数调用格式:y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。
[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。
y=wavread(file,N),读取前N点的采样值放在向量y中。
y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。
3、编程获取语音信号的抽样频率和采样位数。
语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。
在M文件中分别输入以下程序,可以分两次输入便于观察。
[y1,fs1,nbits1]=wavread('test1.wav')[y2,fs2,nbits2]=wavread('test2.wav')结果如下图所示根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。
4、语音信号的时域分析语音信号的时域分析就是分析和提取语音信号的时域参数。
进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。
语音信号处理实验指导书

语音信号处理实验指导书实验一 语音信号采集与简单处理一、 实验目的、要求 (1)掌握语音信号采集的方法(2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率:短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。
对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。
其中sgn[.]为符号函数⎪⎩⎪⎨⎧<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n))短时平均过零的作用 1.区分清/浊音:浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。
2.从背景噪声中找出是否有语音,以及语音的起点。
(b )基音周期基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。
基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。
因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。
∑--=-=1)]1(sgn[)](sgn[21N m n n n m x m x Z由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。
基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。
语音信号处理_实验一_报告2

实验一语音信号的频域特性1. 观察语音信号的时域波形特点,总结其规律。
答:1)清音段:能量低,过零率高,波形特点有点像随机的噪声。
这部分信号常与语音的辅音段对应。
2)浊音段:能量高,过零率地,波形具有周期特点。
所谓的短时平稳性质就是处于这个语音浊音段中。
3)过渡段:一般是指从辅音段向元音段信号变化之间的部分。
信号变化快,是语音信号处理中最复杂、困难的部分。
2.总结清音b/p/m/f/d/t/n/l/g/k/h/j/q/x//z/c/s/zh/ch/sh/r/共21个的短时幅值、短时过零率和自相关函数的规律,估算这21个清音的平均短时幅值和平均短时过零率;答:加矩形窗的21个清音的平均短时幅值和平均短时过零率为下表:清音音节平均短时幅值平均短时过零率b 2.126 1.000p 0.706 9.100m 2.427 5.000f 0.685 1.500d 0.817 9.667t 1.168 1.000n 1.150 4.176l 2.084 6.200g 0.150 24.333k 0.959 7.333h 0.629 21.857j 0.129 13.000q 0.184 36.909x 0.168 21.400z 0.173 6.200c 0.785 7.294s 0.158 17.000zh 0.203 31.500ch 0.237 27.535sh 0.182 28.692r 1.814 5.5333. 总结浊音a/o/e/i/u/v/ao/ai/ei/ou/an/en/in/ang/eng/ong/ing/共17个的短时幅值、短时过零率和自相关函数的规律,估算这17个浊音的平均短时幅值和平均短时过零率,从自相关函数上估算这17个浊音的基音周期;答:浊音能量高,短时幅值也比较高,短时过零率比较低,由于浊音有一定的准周期性,所以自相关函数有比较明显的峰值和周期性。
浊音音节平均短时幅值平均短时过零率基音周期a 3.662 0.643 57o 2.948 0.184 71e 2.531 0.148 59i 1.693 0.061 60u 1.300 0.032 61v 1.081 0.024 66ao 2.000 0.123 71ai 2.307 0.121 57ei 1.828 0.074 67ou 0.294 0.000 67an 1.500 0.061 58en 1.827 0.073 54in 2.257 0.118 56ang 0.591 0.009 65eng 1.473 0.053 56ong 1.712 0.059 64ing 0.494 0.014 714. /r/、/m/、/n/ 从这几个音素的自相关函数图形判断为“清音”还是“浊音”,若为浊音估算其基音周期;答:(1)/r/: 自相关函数具有周期性,基音周期为67(样本点数)(2)/m/: 自相关函数具有周期性,基音周期为67(样本点数)(3)/n/ : 自相关函数具有周期性,基音周期为59(样本点数)可以看出/r/、/m/、/n/这几个因素的自相关函数图形有准周期性,并且有比较明显的峰值,所以为浊音。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一语音信号的采集及预处理
一、实验目的
在理论学习的基础上,进一步地理解和掌握语音信号预处理及短时加窗的意义及基于matlab的实现方法。
二、撰写实验报告要求
要求随本次上机撰写完成实验报告,报告中要有实验目的、实验步骤、实验程序、实验中得出的图形结果及结论等。
另外,总结本次上机实验的收获。
三、实验内容及步骤
1.语音信号的录音、读入、放音等:练习matlab中几个音频处理函数,利用函数wavread
对语音信号进行采样,记住采样频率和采样点数,给出以下语音的波形图(2.wav),wavread的用法参见mablab帮助文件。
利用wavplay或soundview放音。
也可以利用wavrecord自己录制一段语音,并进行以上操作(需要话筒)。
[Y,FS,NBITS,OPTS]=wavread('9.wav')
FS =
10000
NBITS =
16
OPTS =
fmt: [1x1 struct]
2.语音信号的分帧:选择20ms左右为一帧,帧移取1/2帧长,对语音信号进行分帧,可
以利用voicebox工具箱中的函数enframe。
voicebox工具箱是基于GNU协议的自由软件,其中包含了很多语音信号相关的函数。
voicebox工具箱安装方法:
把工具箱拷贝入.\MatLab\toolbox目录下;
菜单file-set path-"Add folder" 导入voicebox;
菜单file-Preference-General-"Updata Toolbox Path Cache
分帧函数的调用:
y=enframe(x,len,inc)
x为输入语音信号,len指定了帧长,inc指定帧移,函数返回为n×len的一个矩阵,每一行都是一帧数据。
帧长=10000X0.02=200s
x=wavread('9.wav')
y=enframe(x,200,100)
subplot(2,1,1),plot(x)
subplot(2,1,2),plot(y)
3 窗函数及其时频特性:本步要求利用window函数设计窗口长度为200(N=200)的矩形窗(rectwin)、汉明窗(hamming)及汉宁窗(hann)),利用wvtool函数观察其时域波形图及频谱特性,比较得出结论。
w = window(fhandle,n)
w = window(fhandle,n,winopt)
w = window(fhandle,n) returns the n-point window, specified by its function handle, fhandle, in column vector w. Function handles are window function names preceded by an @.
@barthannwin
@bartlett
@blackman
@blackmanharris
@bohmanwin
@chebwin
@flattopwin
@gausswin
@hamming
@hann
@kaiser
@nuttallwin
@parzenwin
@rectwin
@triang
@tukeywin
w = window(fhandle,n,winopt) returns the window specified by its function handle, fhandle, and its winopt value or sampling flag string. For chebwin, kaiser, and tukeywin, you must enter a winopt value. For the other windows listed below, winopt values are optional.
Examples:Create Blackman Harris, Hamming, and Gaussian windows and plot them in the same WVTool.
N = 65;
w = window(@blackmanharris,N);
w1 = window(@hamming,N);
w2 = window(@gausswin,N,2.5);
wvtool(w,w1,w2)
N = 200;
w = window(@rectwin,N);
w1 = window(@hamming,N);
w2 = window(@hann,N);
wvtool(w,w1,w2)
3. 语音信号加窗:观察信号加矩形窗及汉明窗后的波形,取出其中一帧,利用subplot与reshape函数将一帧语音的波形、加矩形窗波形及加汉明窗波形画在一张图上比较将得出结
论。
例:语音信号分帧,每一帧加哈宁窗
y=enframe(x,hanning(len),inc);
[x,fs,nbits]=wavread('2.wav');
x1=enframe(x,200,100);
x2=enframe(x,hamming(200),100);
subplot(2,1,1),plot(x1(50,:))
subplot(2,1,2),plot(x2(50,:))
4. 预加重:即语音信号通过一个一阶高通滤波器1
-z。
1-
.0
9375
例如:y=filter([1 -0.9375],1,x)
利用subplot画出预加重前后的波形图。
x=wavread('1.wav')
y=filter([1 -0.9375],1,x)
subplot(2,1,1),plot(x)
subplot(2,1,2),plot(y)
5.(选做)改变帧长、帧移重复上述步骤。
6.(选做)换一段语音重复上述步骤。
7.重点编写短时加窗部分的程序,得出结论,撰写实验报告。
四、思考题
1. 语音信号包括哪些预处理,作用分别是什么?
2. 不同窗口的优缺点,窗口长度如何选取?。