高中物理动量守恒定律概念及实验
实验:验证动量守恒定律-2022-2023学年高二物理(人教版2019选择性必修第一册)

尺测量遮光片的宽度,示数如图乙所示,测得本实验中遮光片
的宽度d=___________mm。(2)某次测量中,数字计时器记
录的遮光片通过光电门的遮光时间为40.0ms,则滑块的速度
大小为___________m/s(结果保留3位有效数字)。(3)若某
t 2
4.(2022·全国·高二专题练习)(1)利用气垫导轨通过闪光照相进行“探究碰撞中的不变量”这一实验。实
验要求研究两滑块碰撞时动能损失很小和很大等各种情况,若要求碰撞时机械能损失最大,应选图________(填
“甲”或“乙”),若要求碰撞时机械能损失最小,则应选图________(填“甲”或“乙”)。(甲图两滑块分
度分别为v1'、v2',如果速度的方向与设定的坐标轴的正方向一致,取正值,
反之则取负值。测出m1、m2,v1、v2,v1'、v2',若m1v1+m2v2=m1v1'+m2v2',那么
碰撞中动量守恒。
参考案例1:研究气垫导轨上滑块碰撞时的动量守恒
1.实验装置:
L
2.实验中物理量的测量:
(1)质量的测量:用天平测量两滑块的质量m1和m2。
(2)速度的测量:利用公式v= ,式中L为滑块(挡光片)的宽度,t为计时器显示的滑块(挡
光片)经过光电门所对应的时间。
(3)利用在滑块上增加重物的方法改变碰撞物体的质量。
3.实验方法:
(1)在两滑块相碰的端面上装上弹性碰撞架(图甲),
可以得到能量损失很小的碰撞。
(2)在两个滑块的碰撞端分别装上撞针和橡皮泥,
规定好正方向
高中物理动量守恒在碰撞中的动量变化

高中物理动量守恒在碰撞中的动量变化在高中物理的学习中,动量守恒定律是一个极其重要的概念,尤其是在研究碰撞问题时,它能够帮助我们清晰地理解和分析物体在相互作用过程中的动量变化情况。
首先,让我们来明确一下什么是动量。
动量(momentum)用字母“p”表示,它等于物体的质量“m”乘以速度“v”,即 p = mv。
动量是一个矢量,其方向与速度的方向相同。
而动量守恒定律指的是:如果一个系统不受外力或者所受合外力为零,那么这个系统的总动量保持不变。
在碰撞现象中,动量守恒定律有着广泛的应用。
碰撞可以分为弹性碰撞和非弹性碰撞。
弹性碰撞是一种理想的情况,在弹性碰撞中,不仅动量守恒,而且动能也守恒。
比如说两个质量分别为 m1 和 m2 的小球,它们的速度分别为 v1 和 v2,发生弹性碰撞后,速度分别变为 v1' 和 v2' 。
根据动量守恒定律,有 m1v1 + m2v2 = m1v1' + m2v2' ;同时,由于动能守恒,还满足 1/2m1v1²+ 1/2m2v2²= 1/2m1v1'²+ 1/2m2v2'²。
通过联立这两个方程,我们就可以求解出碰撞后的速度 v1' 和 v2' 。
非弹性碰撞则相对复杂一些。
在非弹性碰撞中,动量守恒,但动能不守恒,有一部分动能会转化为其他形式的能量,比如内能。
比如一辆车撞到一堵墙后停下来,这就是一个非弹性碰撞,车的动能减少了,但动量是守恒的。
为了更深入地理解碰撞中的动量变化,我们来看一个具体的例子。
假设在一个光滑的水平面上,有一个质量为 2kg 的小球 A 以 5m/s 的速度向右运动,与一个质量为 3kg 静止的小球 B 发生正碰。
碰撞后,小球 A 以 1m/s 的速度向左运动。
根据动量守恒定律,我们可以列出方程:mAvA + mBvB = mAvA' + mBvB'其中,m A = 2kg,v A = 5m/s,m B = 3kg,v B = 0,v A' =-1m/s。
高中物理动量守恒定律的实验验证

高中物理动量守恒定律的实验验证在高中物理的学习中,动量守恒定律是一个极其重要的概念。
它不仅在理论上有着深刻的意义,在实际的科学研究和工程应用中也发挥着关键作用。
为了更深入地理解和掌握这一定律,通过实验进行验证是必不可少的环节。
动量守恒定律指出,如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
简单来说,就是在一个封闭的系统中,相互作用的物体在碰撞前后,它们的总动量是相等的。
要验证动量守恒定律,我们可以设计多种实验。
其中,较为常见且易于操作的是“气垫导轨上的滑块碰撞实验”。
在这个实验中,气垫导轨是关键的实验设备。
它通过喷出的气体在导轨和滑块之间形成一层薄薄的气膜,大大减小了滑块与导轨之间的摩擦力,从而可以近似地认为滑块在水平方向上不受外力作用。
实验中,我们使用两个质量不同的滑块,分别在滑块上安装遮光片。
通过光电门和计时器,可以精确测量滑块通过光电门的时间,进而计算出滑块通过光电门时的速度。
当两个滑块在气垫导轨上发生碰撞时,我们分别记录碰撞前、后两个滑块通过光电门的速度。
根据动量的定义,动量等于质量乘以速度。
分别计算碰撞前两个滑块的总动量和碰撞后两个滑块的总动量,如果两者相等,就验证了动量守恒定律。
在进行实验操作时,需要注意一些细节。
比如,要确保气垫导轨水平放置,否则滑块会受到重力的分力影响,导致实验结果不准确。
还要保证遮光片能够准确地通过光电门,并且光电门的位置要固定好,以减小测量误差。
除了气垫导轨上的滑块碰撞实验,还有“平抛运动验证动量守恒定律”的实验。
这个实验的原理是利用平抛运动的水平方向匀速直线运动和竖直方向自由落体运动的特点。
实验中,让一个小球从斜槽的顶端滚下,与放在斜槽末端的另一个静止小球发生碰撞。
碰撞后,两小球分别做平抛运动。
通过测量两小球平抛运动的水平位移,结合平抛运动的时间,可以计算出碰撞前后两小球的水平速度。
再根据动量的定义,计算碰撞前后两小球的总动量。
在这个实验中,要注意斜槽末端的切线要水平,保证小球离开斜槽后做平抛运动。
高中物理实验分析动量守恒定律

高中物理实验分析动量守恒定律在高中物理学中,实验是培养学生实践能力和科学思维的重要环节之一。
其中,对于动量守恒定律的实验分析具有重要的意义。
本文将围绕高中物理实验分析动量守恒定律展开讨论,从实验设计、实验步骤和实验结果三个方面进行详细分析。
一、实验设计动量守恒定律是物理学中的基本定律之一,它指出在一个孤立系统中,如果没有外力作用,系统的总动量将保持不变。
为了验证该定律,我们可以设计一组实验来观察和分析物体碰撞过程中动量的变化情况。
在实验设计过程中,我们需要准备一台弹簧测力计、一组小球(质量不同)、一个水平放置的测量轨道、一个带有刻度的测量尺和一台计时设备。
实验的主要步骤如下:二、实验步骤1. 首先,我们需要确定实验中使用的小球的质量,并将其标注为m1和m2。
2. 将测力计固定在测量轨道的一个端点,使其竖直向下悬挂。
3. 在轨道的另一个端点放置一球m1,将其与测力计连接起来。
4. 将另一球m2放置在m1前方的一定距离处。
5. 在m2球的背面放置一个刻度尺,用于测量球碰撞后的位移变化。
6. 准备好计时设备。
7. 用手将m1球拉向m2球,使其发生碰撞,并开始计时。
8. 观察碰撞过程中的测力计读数和刻度尺上的位移变化,并记录下来。
9. 根据记录的数据,计算碰撞前后小球的速度和动量,并进行分析。
三、实验结果根据实验步骤中记录的数据,我们可以计算出小球碰撞前后的速度和动量。
通过对实验数据的分析,我们可以得出以下结论:1. 在碰撞过程中,小球的动量守恒。
2. 碰撞前后小球的速度有所变化,但总动量保持不变。
3. 碰撞后小球的位移和碰撞前速度的大小有关系。
4. 较大质量的小球在碰撞中受到的力更大,位移较小。
5. 较小质量的小球在碰撞中受到的力较小,位移较大。
通过以上实验结果,我们验证了动量守恒定律在物理实验中的适用性。
实验数据的分析和结果的讨论也进一步加深了我们对动量守恒定律的理解。
总结:通过对高中物理实验的分析,我们可以看到实验是学习物理知识的重要途径之一。
动量守恒定律高中物理课件

粘性碰撞
粘性碰撞是指两个物体在碰撞过程中会发生形变,并且动能会有损失的碰撞。 • 粘性碰撞的定义 • 粘性碰撞的特点 • 粘性碰撞的实例
动量守恒定律高中物理课件
本课件介绍了动量守恒定律的定义、推导和应用,以及弹性碰撞、粘性碰撞 和完全非弹性碰撞的特点和实例。
什么是动量?
动量是物体的运动状态的量度,它由物体的质量和速度共同决定。 • 动量的定义 • 动量的单位和量纲 • 动量与质量的关系
动量守恒定律
动量守恒定律指出,在一个系统内,当没有外力作用时,系统的总动量保持 不变。
完全非弹性碰撞
完全非弹性碰撞是指两个物体在碰撞过程中会发生形变,且碰后两物体会粘合在一起并且动能完全损失的碰撞。
• 完全非弹性碰撞的定义 • 完全非弹性碰撞的特点 • 完全非弹性碰撞的实例
总结
动量守恒定律是一个重要的物理定律,它在很多领域都有应用,但也存在局限性,需要不断改进和完善。 • 动量守恒定律的重要性 • 动量守恒定律的应用领域 • 动量守恒定律的局限性及其改进方法
高中物理必备知识点:动量守恒定律及其应用总结

高中物理必备知识点:动量守恒定律及其应用总结第二课时动量守恒定律及其应用第一关:基本关与高考前景基础知识一、动量守恒定律知识解释(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)数学表达式①p=p′.也就是说,系统相互作用前的总动量P等于相互作用后的总动量P',如果有两个相互作用的物体,通常写为:m1v1+m2v2=m1v1'+m2v2'② δp=p′-p=0。
即系统总动量的增量为零.③δp1=-δp2.也就是说,相互作用系统中的物体被分成两部分,其中一部分动量的增量等于另一部分动量的增量,且方向相反(3)动量守恒定律成立的条件内力不会改变系统的总动量,而外力可以改变系统的总动量。
在以下三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.② 系统上的外力远小于系统的内力。
例如,在碰撞或爆炸的瞬间,外力可以忽略③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).灵活的学习和应用1.如图所示,a、b两物体的质量ma>mb,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车c上后,a、b、c均处于静止状态.若地面光滑,则在细绳被剪断后,a、b从c上未滑离之前,a、b在c上向相反方向滑动过程中()a、如果a、B和C之间的摩擦力相同,由a和B组成的系统的动量守恒,由a、B和C组成的系统的动量也守恒b.若a、b与c之间的摩擦力大小不相同,则a、b组成的系统动量不守恒,a、b、c组成的系统动量也不守恒c、如果a、B和c之间的摩擦力不同,由a和B组成的系统的动量不守恒,但由a、B和c组成的系统的动量守恒d.以上说法均不对分析:当两个物体a和B形成一个系统时,弹簧力是内力,a、B和C之间的摩擦力是外力。
当a、B和C之间的摩擦力相反时,由a和B组成的系统的合力为零,动量守恒;当a、B和C之间的摩擦力不相等时,由a和B组成的系统上的组合外力不为零,对于由a、B和C组成的系统,动量不守恒,因为弹簧的弹性力以及a和B和C之间的摩擦力都是内力,无论a和B之间的摩擦力,B和C是否相等,由a、B和C组成的系统的合力为零,动量守恒,因此选项a和C是正确的,选项B和D是错误的答案:ac注:(1)动量守恒的条件是系统不受外力或组合外力为零。
高中物理-动量守恒定律

动量守恒定律与系统的能量守恒类似,系统的动量也存在守恒的情况。
动量什么情况下才守恒呢?动量守恒定律又是通过什么实验来验证的呢?我们下面就来研究动量守恒定律的内容。
动量守恒定律的内容如果一个系统不受外界力或所受外界的力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。
还可以表述为,当没有外界的力作用时,系统内部不同物体间动量相互交换,但总动量之和为固定值。
动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体。
提醒同学们,动量也是矢量。
如静止的铀核发生α衰变,反冲核和α粒子的动量的动量变化大小相同,方向相反,动量变化的矢量和是零,但两个动量在数量上都增大了。
动量守恒定律的公式基本公式:m1v1+m2v2=m1v1′+m2v2′;此公式为两个物体动量守恒的表达式,多个物体碰撞可以写成:m1v1+m2v2+……=m1v1′+m2v2′+……公式还可以写成p1+p2=p1′+p2′,或者Δp1+Δp2=0,Δp1=-Δp2(动量变化量守恒)下面,我们来探究动量守恒定律的条件是什么?动量守恒定律的条件用一句话来说动量守恒的前提条件:在规定的方向上,系统不受“外界的力”。
这句话共有三个要素:1方向;2系统;3外力。
(1)关于方向的说明:在探究动量是否守恒的时候,要首先明确方向,一般规定碰撞或运动所在的直线对应的方向(正负两个方向均可)。
(2)对“外力”的理解:这个“外力”指的是“外界的力”,与研究系统内部的力无关,什么是内部的力呢?举个例子,比如两个人在理想冰面互推的“推力”,等等。
而外力呢?对于这两个人来说,墙给某个人的力就是(这个系统)外界的力。
(3)系统的说明:使用动量守恒定律,必须是两个或两个以上的物体构成的系统,或者爆破为两个物体的整体。
总之一句话,我们研究动量的对象是多个物体组成的系统。
(4)需要记忆的动量守恒定律模型:总结:“光滑面两球相撞”、“冰面互推”、“两个弹簧链接的物体”、“斜面上滑动小物块”、“子弹射入木块”、“火箭发射”、“人在船面上走动”、“二起脚空中爆破”、“粒子裂变”等。
高中物理动量守恒实验报告

高中物理动量守恒实验报告高中物理动量守恒实验报告引言:动量守恒是物理学中的一个重要定律,它指出在一个封闭系统中,总动量保持不变。
为了验证这一定律,我们进行了一系列的实验。
本报告将详细介绍实验的目的、实验装置、实验步骤、实验数据及分析结果,并对实验结果进行讨论和总结。
实验目的:本实验的目的是验证动量守恒定律。
通过观察和测量不同物体的碰撞过程,我们可以确定碰撞前后物体的动量变化情况,并验证动量守恒定律。
实验装置:实验所需的装置包括:动量守恒装置、两个小车、光电门、计时器、测量尺等。
实验步骤:1. 将动量守恒装置放置在平滑的水平桌面上。
2. 将两个小车放在动量守恒装置的轨道上,使它们靠近并保持相对静止。
3. 调整光电门的位置,使其能够准确地测量小车的运动时间。
4. 用测量尺测量小车的质量,并记录下来。
5. 在实验开始前,确保动量守恒装置的轨道平整,并保证小车能够自由运动。
6. 用计时器测量小车的运动时间,并记录下来。
7. 重复实验多次,取平均值。
实验数据及分析结果:我们进行了三组实验,每组实验重复了五次。
下面是我们的实验数据和分析结实验组一:小车1的质量为0.2kg,小车2的质量为0.3kg。
碰撞前,小车1的速度为0.5m/s,小车2的速度为-0.3m/s。
碰撞后,小车1的速度为-0.1m/s,小车2的速度为0.7m/s。
实验组二:小车1的质量为0.4kg,小车2的质量为0.4kg。
碰撞前,小车1的速度为0.2m/s,小车2的速度为-0.4m/s。
碰撞后,小车1的速度为-0.3m/s,小车2的速度为0.1m/s。
实验组三:小车1的质量为0.5kg,小车2的质量为0.6kg。
碰撞前,小车1的速度为0.3m/s,小车2的速度为-0.2m/s。
碰撞后,小车1的速度为-0.2m/s,小车2的速度为0.4m/s。
通过对实验数据的分析,我们可以得出以下结论:1. 在碰撞前后,两个小车的动量之和保持不变,验证了动量守恒定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量守恒定律概念及实验
动量守恒定律概念
如果一个系统不受外力或所受到的外力的矢量和为零,那么这个系统的总动量是不变的,这个规律我们叫做动量守恒定律。
大家要注意的是,动量是矢量,必须说明方向;在用动量守恒定律解题时,要规定好正方向。
动量守恒定律是自然界中最普遍的守恒定律之一,它既适用于宏观的巨大物体,也适用于微观粒子;既可用在低速运动的物体上,也适用于高速运转的物体。
动量守恒可用运动学公式、牛顿运动定律推导。
动量守恒定律的物理公式
基本公式:m1v1+m2v2= m1v1′+m2v2′;此公式为两个物体动量守恒的表达式。
多个物体碰撞可以写成:m1v1+m2v2+ m3v3+……= m1v1′+m2v2′+ m3v3′+……
公式还可以写成:p1+p2=p1′+p2′或者:Δp1+Δp2=0,Δp1=-Δp2;
在这里提醒大家:公式使用前规定好正方向,公式里所有出现动量的书写,要注意数值的正负性。
动量守恒定律实验
在实验中,我们要验证的是方程:m1·OP=m1·OM +m2·ON是否成立。
让质量较大的小球m1从斜槽上滚下,与放在斜槽末端的质量较小的小球m2发生正碰,碰前m1的入射速度为υ1,两球总动量为m1υ1.碰撞后,入射小球m1的速度为υ1′,被碰小球m2的速度为υ2′,两球总动量为队m1υ1′+m2υ2′,
根据动量守恒定律,应有m1υ1=m1υ1+m2υ2如果测出两球的质量m1和m2及两球在碰撞前后的速度υ1、υ1′、υ2′,代入上式,就可以验证动量是否守恒。
用天平可测出两球质量m1、m2.用平抛运动知识可以测出其速度:因它们下落的高度相同,故飞行时间相同,设为t,则它们飞行的水平距离s=υt,在图中有OP=υ1t……①OM=υ1′t ……②ON=υ2′t ……③如果实验中测得的m1、m2,OP、OM、ON满足关系m1·OP=m1·OM +m2·ON把①②③代入上式后消去t可得到mυ1= m1υ1′+ m2υ2′
结论:验证了m1·OP=m1·OM +m2·ON;式子是成立的,就验证了动量守恒定律。