信号与线性系统分析试题及答案(10套)

合集下载

吴大正《信号与线性系统分析》(第4版)配套模拟试题及详解(一)【圣才出品】

吴大正《信号与线性系统分析》(第4版)配套模拟试题及详解(一)【圣才出品】

4 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.线性时不变系统,无初始储能,当激励 e1(t)=ε(t)时,响应 r1(t)=e-3tε(t)
当激励 e2(t)=δ(t)时,其响应 r2(t)= 。 【答案】δ(t)-3e-3tε(t)
【解析】线性时不变系统的微分特性,若系统在激励 e( t ) 作用下产生响应 r( t ) ,则当
二、填空题(本大题共 9 个空,每空 5 分共 45 分)不写解答过程,写出每小题空格内 的正确答案。
1.计算下列各式:
3 / 13
圣才电子书

(1)
十万种考研考证电子书、题库视频学习平台

(2)

【答案】(1)原式= 4 sin 6
t
6
d
2
t
6

(2)原式= 4 sin 6
极点必在单位圆内。
三、画图题(本大题共 2 小题,每题 6 分共 12 分)按各小题的要求计算、画图和回答
问题。
1.已知 f(t)波形如图 2 所示,试画出
的波形。
图2
答:翻转:先将 f(t)的图形翻转,成为 f(-t);
移位:再将图形向右平移 2,成为 f(-t+2);
扩展:然后波形扩展为原来的 3 倍,成为
A.δ>某一正数 B.δ<某一负数
2 / 13
圣才电子书

C.δ<某一正数
十万种考研考证电子书、题库视频学习平台
D.δ>某一负数
【答案】D
【解析】只有当收敛域位于 s 平面的左半平面时,对应的原始信号为衰减信号,它的傅
里叶变换存在,且能令拉氏变换中的 s j 来求傅里叶变换。所以,δ>某一负数,

(完整版)信号与系统复习题

(完整版)信号与系统复习题

信号与系统试题库一、填空题绪论:1。

离散系统的激励与响应都是____离散信号 __。

2.请写出“LTI ”的英文全称___线性非时变系统 ____。

3.单位冲激函数是__阶跃函数_____的导数. 4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。

5.如果一线性时不变系统的输入为f(t ),零状态响应为y f (t )=2f (t —t 0),则该系统的单位冲激响应h (t )为____02()t t δ-_________。

6。

线性性质包含两个内容:__齐次性和叠加性___。

7。

积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。

8。

已知一线性时不变系统,当激励信号为f (t)时,其完全响应为(3sint-2cost )ε(t );当激励信号为2f (t )时,其完全响应为(5sint+cost )ε(t),则当激励信号为3f(t )时,其完全响应为___7sint+4cost _____。

9。

根据线性时不变系统的微分特性,若:f (t)−−→−系统y f (t)则有:f ′(t)−−→−系统_____ y ′f (t )_______。

10。

信号f (n )=ε(n )·(δ(n)+δ(n-2))可_____δ(n)+δ(n —2)_______信号。

11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。

12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。

13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----.14、[]2cos32t d ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。

(完整word版)信号与系统专题练习题及答案

(完整word版)信号与系统专题练习题及答案

信号与系统专题练习题一、选择题1.设当t 〈3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1 B t=1和t=2 C t>—1 D t 〉-22.设当t 〈3时,x (t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。

A t>2或t 〉-1 B t=1和t=2 C t>—1 D t>—23.设当t<3时,x(t )=0,则使x (t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/2 5.下列各表达式中正确的是 BA. )()2(t t δδ= B 。

)(21)2(t t δδ= C. )(2)2(t t δδ= D 。

)2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B . A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统 7。

已知 系统的激励e(t )与响应r (t)的关系为:)()(2t e t r = 则该系统为 C .A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统8。

⎰∞-=t d ττττδ2sin )( A 。

A 2u (t ) B )(4t δ C 4 D 4u (t) 10. dt t t )2(2cos 33+⋅⎰-δπ等于 B 。

A 0 B —1 C 2 D —211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D . A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

信号与系统考试试题及答案

信号与系统考试试题及答案

长沙理工大学拟题纸课程编号1 拟题教研室〔或老师〕签名 教研室主任签名符号说明:sgn 〔f 〕为符号函数,仇,〕为单位冲击信号,/幻为单位脉冲序列,仪,〕为单位阶跃信号,式k 〕为 单位阶跃序列.一、填空〔共30分,每题3分〕1,f ⑴=〔尸+4〕4f 〕,求/"〔,〕=.*0〕 + 45⑺2,/'〔%〕 = {12-2,1},〃〔攵〕={3,424},求/〔攵〕*/#〕 = /〔攵〕*/?〔%〕 = {3,10,4,38-6,4} 3 .信号通过系统不失真的条件为系统函数""&〕= ------------ ° HljcoH't江 4江「/、/〔-〕Oax= ------- =—— 4 .假设/⑺最高角频率为那么对 4取样的最大间隔是 -------------- . 练ax /5 .信号/〔,〕= 4cos20加+ 2COS 30R 的平均功率为6 .一系统的输入输出关系为〕C 〕= /'〔3/〕,试判断该系统是否为线性时不变系统 --------- O 故系统为线性时变系统.F 〔5〕=--——! --7 .信号的拉式变换为 .一+1〕〔5-1〕,求该信号的傅立叶变换/〔/8〕= ----------- .故傅立叶变换/O&〕不存在.H ⑵= -- ----- \ ----- r8 .一离散时间系统的系统函数 2 + z7-z--,判断该系统是否稳定 -------------- .故系统不稳定.「〔/+2f 〕6〔T + lk 〃 =9 . J -x--------- 0 310 .一信号频谱可写为/〔jMnA^y 乂iQA^y 〕是一实偶函数,试问/⑺有何种对称性 ------------------- .关于仁3的偶对称的实信号.二、计算题〔共50分,每题10分〕1 .连续时间系统的单位冲激响应〃“〕与鼓励信号/«〕的波形如图A-1所示,试由时域求解该系 统的零状态响应〕'0〕,画出〕'〔/〕的波形.图A-12 .系统的零状态响应〕"〕= /«〕*〃0〕,其波形如图A-7所示.X P= Z|K 「= 22 +22 +l + l = 10 J?-w3.在图A-2所示的系统中,〕〔%〕 = 66-2〕,〃2〔幻=〔0・5〕匕〔%〕,求该系统的单位脉冲响应M2〕.图A-22 h(k)=6攵)+ 4(k) * h<k) = 5(k) + b(k - 2)* (0.5)匕网=3(k) + (0.5)k^2£(k - 2)4.周期信号/«〕的双边频谱如图A-3所示,写出/⑺的三阶函数表示式° 〕< 2 〔.M -1 »~ =2 |0 2 3 n图A-35.写出周期信号/⑷指数形式的傅立叶级数,利用欧拉公式即可求出其三阶函数表示式为8/«〕=2"."%=/2叩+2/3+2 + 2/卬 +/如=2 + 4cos/f +2cos24fK-006.信号f⑴=4/〕- - 1〕通过一线性时不变系统的响应〕«〕如图AK所示,试求单位阶跃信号£«〕通过该系统的响应并画出其波形.图A-4X0= /«〕+/〔1〕+…+/〔1〕+…=Z/〔i〕4.由于 5 故利用线性时不变特性可求出£«〕通过该7W〕} = W>〔D系统的响应为・. 波形如图A-8所示.进行拉斯反变换可得〃(,)=*+2_*)初*•J 1 4 完全响应为y(t) = y x (t) +e-2t -e-5\t>05.己知/⑺的频谱函数/C/3)= Sg 〃3+l )-Sg 〃3-l),试求/⑷,2, 同 < 1F(jco) = Sgn(co +1) - Sgn(a )-1) = < =2g 2(co)5.I 〞网>1 ,由于g2")0 2Sa (⑼,由对称性可得:254.)= 2咫2(-助=2甯2(助,因此,有2/(,) = — S 〃(f)丸三、综合计算题(共20分,每题10分)1. 一线性时不变因果连续时间系统的微分方程描述为),〞(/) + 7/(0 +1 Oy(t) = 2r ⑺ + 3/(r)")=f),y (吁1,y (°-)=1,由s 域求解:(1)零输入响应K"),零状态响应完全响应>'(');⑵系统函数"(S ),单位冲激响应并判断系统是否稳定: ⑶画出系统的直接型模拟框图.解:L (1)对微分方程两边做单边拉斯变换得S 2Y(S )-孙(.-)-y (0-) + 75/(5)_ 7y(0_) + 10Y(s) = (2s + 3)尸(s) 整理后可得y (s )=s ),(0-) + y (0-) + 7),(0-) + 2s+ 3 F"s 2 +75 + 10 s 2+ls + \O 零输入响应的s 域表达式为Z (s )=5 + 82-1— ---------------- - =------------ H ---------:s 〜+ 7s + 10 5 + 2 5 + 5进行拉斯反变换可得 y4)= 2c-2—零状态响应的S 域表达式为,(s) =25 + 3 1+7s + 10 /.)=25 + 3 (1 + 7s + 10)(s+ 1)1/4 1/3 12/7---- + ------- - -------- 5+1 5+2 S+5图A-8(2)根据系统函数的定义,可得“、乙⑸ 2s+ 3-1/3 7/3H(s)=-——=- ------------------ = ------- + ------F (5) S 2+7S + \0 S + 2 S + 5进行拉斯反变换即得i 7由于系统函数的极点为-2、-5,在左半s 平而,故系统稳定.2J +3s-2 l + 7s-10s-2由此可画出系统的直接型模拟框图,如图A-9所示y(k) + 3y(k -1) + 2y(k -2) = f(k)k>0f (k) = £(Z),y(—l) = -2, M —2) = 3,由 z 域求解:(1)零输入响应汽(幻,零状态响应力(幻,完全响应〉'伏); (2)系统函数“(Z ),单位脉冲响应做攵). (3)假设/(") = £(4)-£(攵-5),重求 ⑴、(2).2. (1)对差分方程两边进行z 变换得y (z) + 3{z-'y (z) + y(-l)} + 2{z-2y(Z) + r'y(-l) + y(-2)}=尸(z) 整理后可得 y (7} = -3y(-1)-2d)-2y(-2) =4z- = 44 ,' 1 + 3z-i + 2z"1 + 3Z "+2Z -2 \ + z7 1 + 2—进行z 变换可得系统零输入响应为工也)=[4(—/一4(一2)〞—(幻零状态响应的Z 域表示式为v/、 /⑵1 1 1/6 -1/2 4/3Y ( 7)= ____________ = __________________ _ _______ p _______ I ------------ fl + 3z~l +3z~2 \ + 3z'l +3z'2 1-Z -' (1-Z -1) (1 + Z-1) (l + 2z-1) 进行z 反变换可得系统零状态响应为1 ।3,伙】=[厂7(-1)〜:(一2力£(公6 2 4系统的完全响应为7 X 1y(k) = y x + y f (k) = [-(-1)A --(-2)k +&上(k)(2)根据系统函数的定义,可得"(s) =⑶将系统函数改写为2. 一线性时不变因果离散时间系统的差分方程描述为y f(z)i"l + 3^+2^2一1 2T+7r+T+27r进行z反变换即得万(攵)=[—(—iy+2(—2 门£(幻(3)假设八外二以幻一式卜-5),那么系统的零输入响应外(幻、单位脉冲响应Mk)和系统函数〞(乃均不变, 根据时不变特性,可得系统零状态响应为T{£(幻一£(攵- 5)}=力(幻一y f (k - 5)1 1 Q 1 1 Q6 2 4 6 2 4完全响应为y(k) = y x(k) + T[£(k)-£(k-5)}] 7 8 1 1 3o 2 3 o 2 4长沙理工大学拟题纸课程编号 2 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,5(E)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,£(*)为单位阶跃序列.一、填空(共30分,每题3分)y(t) = !-4-2X(0)1.某系统的输入输出关系为力(其中X(0)为系统初始状态,/⑺为外部激励),试判断该系统是(线性、非线性) -------------- (时变、非时变) ------------ 系统.线性时变广(2r2+3r)J(lr-2)Jr = _______________2. J 2 0 04 j:s(2t - 2)5(4 - 2t}dt =J:s(2t- 2)e(4 - 2f)力=J:dt = 1K-04.Z(k) = 2k{s(k)~ 式k -3)) J; (k) = {2, S ,3},计算于仆)*f式k) =力(%)*力(幻={21,21,26,12}5.假设信号/⑷通过某线性时不变系统的零状态响应为力⑴=监.—0),(<,0为常数)那么该系统的频率特性〞(13)= ------------- 单位冲激响应〃(/)= ------------ J 系统的频率特性"(W) = K .*,单位冲激响应/") = K /一°).6 .假设/“)的最高角频率为九(%),那么对信号y(,)= /«)/(2f)进行时域取样,其频谱不混迭的最大取样T丁 心=钙一= TT (s )间隔,max- -------------- ,maK 为 max inF'(s)=—;——! ----7 .信号的拉式变换为("+1).-1),求该信号的傅立叶变换尸(/.)= --------------- ,不存在8 .一离散时间系统的系统函数 2 + Z-I-Z--,判断该系统是否稳定 ------------ o 不稳定「(/+21)6(-/ + 1卜〃=9 . J-K10.一信号频谱可写为尸(,⑼二人侬州一衣)(⑼是一实偶函数,试问/«)有何种对称性 ,因此信号是关于1=3的偶对称的实信号.二、计算题(共50分,每题10分)1 .一连续时间系统的单位冲激响应乃 ,愉入信号/(')= 3 +.32人一8〈'〈8时,试求该系统的稳态响应.二、解:1 .系统的频响特性为 H .&) = FT[h(t)] = ; ge (°)=利用余弦信号作用在系统上,其零状态响应的特点,即T {cos^r + 0)] = \H(ja^ )| cosQj + 认例)+ 6)可以求出信号/(0 = 3+cos2r,-eo<r < 8 ,作用在系统上的稳态响应为} = 1 + —cos2z,—O0< z V82 .信号/(2f + 2)如图A -1所示,试画出/(4-2,)波形.i/(2r + 2)图A-l2 . /(2/-2) -/(4-2/),根据信号变换前后的端点函数值不变的原理,有 /3+2) = /(4-2%) /(2r 2+2) = /(4-2G 2)'1/3,罔<3 0, \co\> 3-2-1变换前信号的端点坐标为4 =2,〃 =-2,利用上式可以计算出变换后信号的端点坐标为Zu = (4 — 2/1 — 2)/2 = —1J22 = (4 —-2)/2 = 3由此可画出/(4-2,)波形,如图A-8所示.3.信号/⑴如图A-2所示,计算其频谱密度函数/"⑼.4.信号/⑺可以分解为图A-10所示的两个信号与八")之和,其中&(f)=超(助 + -!-/i (r) = 2s{-t + 2) = 2s[-(t - 2)] e由于jco根据时域倒置定理:/(-Do〞一/⑼和时移性质,有再(/⑼=F71£(T + 2)1 = 2 昉(3)— -—F2(汝)=FT[f2(t)] = 6s-3) 故利用傅立叶变换的线性特性可得4.某离散系统的单位脉冲响应〃(幻=KT)'5+(一°・5)1]夕心,求描述该系统的差分方程.4.对单位脉冲响应进行z变换可得到系统函数为“-1 — 2 _ - 3-2,5z 1‘-1 + z-1 + 1+0.5Z-1 " l + 1.5z-| +0.5z-2 由系统函数的定义可以得到差分方程的z 域表示式为(1 +1"1+ O&T)y f⑵=(-3 - 2.5/ )F(z) 进行z反变换即得差分方程为y(k) + \.5y(k - 1) + 0.5y(k -2) = -3/'(2)一25f* - 1)5.一离散时间系统的模拟框图如图A-3所示,写出该系统状态方程和输出方程.X](k + 1) = 一ax[(攵)+ f(k \ x 2(k + 1) = -bx?(k) + f(k) 国绕输出端的加法器可以列出输出方程为X (左)=为⑹ + x 2(k\y 2(k) = x l (幻 + 々⑹写成矩阵形式为三、综合计算题(共20分,每题10分)1.描述某线性时不变因果离散时间系统的差分方程为31y ⑹一力…+邛.2) = 2浜)+ 3〃1)人.f(k) = £(⑥,><-1) = 2, y(-2) = -l在Z 域求解:(I)系统的单位脉冲响应力(幻及系统函数〞(Z ): (2)系统的零输入响应以(公; (3)系统的零状态响应力"(外;(4)系统的完全响应)'("),暂态响应,稳态响应; (5)该系统是否稳定?.对差分方程两边进行z 变换得31丫 ⑵一⑵+>-1)}+7{4丫&) + %-.(-1)+义-2)} = (2+32-1)尸⑵48整理后可得3 1 1 4''(T )_ Q M-l) _ 77 y (-2)2 + 37T y (Z) = ------------ ——1——十; \ F(z) 1-1 —、+-尸 4 848(1)根据系统函数的定义,可得5.根据图A-5中标出的状态变量,围绕输入端的加法器可以列出状态方程为玉(左+ 1)x^(k +1)一.玉(女)-b x4k)—J — 11 + 1 f(k)升⑹=1 丁2(幻 1 1 _内(幻 1 々(幻h*) = F-i [H(z)] = [16(1/-14(;了阳.r 1 x ✓ 1 \k 14 1^ 40q . »(^) = [-16(-) + —(-) +—]^) 乙 J J (4)系统完全响应/,、〃、「55」、氏 97」、氏 40 小y(k) = y x (k} + y f (k) = [-—(-) + —(-) + —^)「55/、氏 97/ g 小40 〃、 [——(一)+ — (一) ]£(攵)£(k)从完全响应中可以看出, 4 2 24 4 随着k 的增加而趋于零,故为暂态响应,3 不随 着k 的增加而趋于零,故为稳态响应.(5)由于系统的极点为号=1/2,与=1/4均在单位圆内,故系统稳定.2.试分析图A-4所示系统中B 、C 、D 、E 和F 各点频谱并画出频谱图./⑷的频谱尸"&)如图A-6,&.(/)=&(,_"),丁 = 0・.2K--<»B 、C 、D 、E 和F 各点频谱分别为品(/助=4 £#3-〃线),4 =:=100乃 //---X * 11 00xF&S = — F(y<y)*F^(j6?) = -g) = 50 2/3-"100冗)F D (J3) = Fc (J 2 Hi(ja ))F E (jTy) = —[F D (CO +\ 00^-) + F D (d )-l 00^)]2进行z 反变换即得"⑵= 〃⑵= 2 + 3尸 = _____________ + ________尸⑵ 1 3 T 1 -2 1 1-1 1 1-1 4 8 2 416 -14 (2)零输入响应的z 域表达式为 3 1 17 y(_ 1)--^1 >(_ 1)- 3 y (-2) 工口)=^——H« D T 1 一,4 取z 反变换可得系统零输入响应为13 1 T豆一/ _ 9/4 T -5/8< 3 _[ 1 _*) . 1 _1 . 1 -1 1——Z 、-z - 1 —— Z 1--Z 4 8 24(3)零状态响应的z 域表达式为'⑵=-v~~~\ -------------- /⑵= 48取z 反变换可得系统零状态响应为2 + 3z 〞-16 14/3 40/3(4*z-2)(T )一干+ 干+中-20r2(»,r0.1F「(〃>) = Y (〃)) = F E (ja))H2( jco)长沙理工大学拟题纸课程编号 3 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,须,)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,式卜)为单位阶跃序列.一、填空(共30分,每题3分)1.假设信号/⑴通过某线性时不变系统的零状态响应为»⑴=灯Q T.), (K /为常数)那么该系统的频率特性---------------- ,单位冲激响应〃")= ------------- .系统的频率特性"(W)= Ke〞.,单位冲激响应力⑺=K"I.).2.假设/⑺的最高角频率为/£法),那么对信号>.)=/(,)/(2,)进行时域取样,其频谱不混迭的最大取样丁 1 1 ,、J = ----------- = ------ (S)T ___ T max o, 久 '间隔ma、- ...... , max 为max ./〃73J:£(2t - 2)5(4 - 2t}dt =J:s(2t- 2)e(4 - 2t)dt = j dt = 14,工⑹=2"{仪外一£伙一3)}/伙)={2,5,3},计算工(幻*/2的=0/(攵)*/式外={2621,26,12}),«)= /"⑺+ 2X(0) 乙,、5.某系统的输入输出关系为“dt(其中X(0)为系统初始状态,/«)为外部激励),试判断该系统是(线性、非线性) -------------- (时变、非时变) -------------- 系统.线性时变,3 , 1I ⑵2+3/2(—— 2)4 = _____________6. J 2 o 0+3相-2/⑶=一,(Re(s) >.),7.某连续信号的单边拉式变换为5(厂+9) 求其反变换/«)=------------ cf (/) = (2cos3f+ 6“ sin 3r)ty(f)8,a二口e ' 〞"'>-2'计算其傅立叶变换Y(j°)= ----------------------------------------- .r(»=.—!—=——----------------------------------jco+2 jco+5 (汝尸+7/G+lOE(z)=?「二幽 >3) 9.某离散信号的单边z 变换为(z — 2)(z + 3),求其反变换/(&)= -------------/(幻=z*F(s)]=⑵ + (-3)、伏)h(t) = —「H(jco)e J6X dt =—「e-w ./晨〃 =—「/*年力=冬2乃 Lx 2 4 2 万 L%n二、计算题(共50分,每题10分)1./⑴的频谱函数尸(j3)= Sg 〃3+l)-Sg 〃3-l),试求/⑺.[2,同<1 F("D ) = Sgn(a )+1) - Sg 〃3-1) = S=2g 2(a ))1.m 网,由于g2")= 2Sa ⑼,由对称性可得:254(/) = 2咫2(-助=2砥3),因此,有 22.h(t) = . (/) + J(/)]* [% ⑴ + — = [£(f -1) + 6(f)] *_2) + e -2^(f)]=-1) *- 2) +-1) *+ J(O* 2) + J(r)* e^2,£(t)-6 ]=—(1 - e-3"3))£« - 3)+ 一(1 - e-2"-D )£(f _ 1)+e^£(t - 2) + e^s(t) 3 23.信号/")和g")如图A-2所示,画出了⑺和g«)的卷积的波形.3 . /«)和g«)的卷积的波形如图A-9所示."(1&) =、10.某理想低通滤波器的频率特性为“3 间 < 纵° 其他 ,计算其时域特性的)=0)]2.某系统如图A-1所示,求系统的各单位冲激响应.其中九⑴=e[t -1), h 2 (r) = e-3,s(t - 2), h 3 (r) = e-2,S (t)图A-l4.某连续时间系统的系统函数〞⑸悬,画出其直接型系统模拟框图,并写出该系统状态方程的输出方程.H〔5〕= ------ : -----5.将系统函数改写为l + 5sy+3s-由此可画出系统的直接型模拟框图,如图A-11所示.选择枳分器的输出作为状态变量,围绕模拟框图输入端的加法器可得到状态方程为图A-11£⑴=%2.〕, ±2 ⑴=f〔0 - 5%2 ⑴ + f ⑴围绕模拟框图输出端的加法器可得到输出方程为刈=7王«〕 + 2勺〔,〕6.试证实:用周期信号力"〕对连续时间带限信号/«〕〔最高角频率为〕取样,如图A-3所示,只要取样间隔咻,仍可以从取样信号人"〕中恢复原信号图A-35.利用周期信号频谱和非周期信号频谱的关系可以求出心"〕的傅立叶系数为厂1 r n T 0 2产绮、 24F,t = T2Sa =2T Sa〕.°=于由此可以写出周期信号fr⑺的傅立叶级数展开式M )= »产=E 等)*知n--oox // 一 对其进行傅立叶变换即得fr (0的频谱密度F T .&)片(/⑼=2乃 £-〃%)X 乙1今取样信号工⑴=/(/)力,(/),利用傅立叶变换的乘积特性可得j ①)=;F (J ⑼*耳(J ⑼=£ 2S/(竺产)F3-〃g) 2乃 n —0C 2/ 4从以(/助可以看出,当为之24r 时,工(/⑼频谱不混迭,即◎〞仍可从取样信号方⑺中恢复原信号f"三、综合计算题(共20分,每题10分)1.描述某线性时不变因果连续时间系统的微分方程为y"(O + 7y «) +10y (0 = 2/〞 ⑺ + f[t}f ⑴=/£«),)=4, y (o -)=-3,在 s 域求解:(1)系统的单位脉冲响应/?〞)及系统函数H(s). (2)系统的零输入响应/〞) (3)系统的零状态响应‘7")(4)假设/«) = /"-"£«-1),重求(1)、⑵、⑶.解:1.对微分方程两边做单边拉斯变换得S 2Y(S )-町(.一)一 y (0") + 75/(5)- 7),(0-) + 10X(5)= (2s + 1)F (5) 整理后可得(1)根据系统函数的定义,可得进行拉斯反变换即得/z(O = (-^2/+3^5r )f(r)(2)零输入响应的s 域表达式为U/、 45 + 25 -5/3 17/3Y(s) = - ..................... = -------- + ------+75 + 10 5 + 2 5 + 5取拉斯反变换即得yx (')= _ge-2' +y-^5/,r >0(3)零状态响应的s 域表达式为取拉斯反变换即得匕 «)=(-0.25eT +^2/ -0.75e-5z )^(r)请浏览后下载,资料供参考,期待您的好评与关注!y (s )=) 一/(O-) + 7y(0-) 25 + 1s 2 +75 + 10s 2 +75 + 10 JJH(s) =Yf (s) 2s + 1 -1 3尸⑸— ----------- = --------- F ----- s-+7s + 10 s + 2 s + 5 25 + 1 /(S )= T(s- +75 + 10)(5 + 1)-0.25 1-0.75 + --------5 + 56. /(0 = [£(t +1) - £{t - l)]cos(100r) 的 频 谱 F*o) =FT{ [s(t +1) - £(t — l)]cos(l OOf)} = Sa(co - 100) + Sa(co +100)g _ /?(k) = g ⑹ 一 g(A — 1) = (ft ⑹ - (g)h*(攵-1)8,假设 /(0 = 2 + 4cosCOr) + 3cos(20r),(-o < r < oo) 3)= 10为基频),那么 f(t)的平均功率P=f 方「= 2? +22 + 2? + (32 + (1)2 = 16.54t \ m,'〔/〕= /〔:〕/〔7〕9,假设/⑷最高角频率为那么对 4 2取样,其频谱不混迭的最大间隔是 -------------- ,©max 3%10.假设离散系统的单位脉冲响应力〔幻=[〔-1〕1+〔-°5〕11£〔口,那么描述该系统的差分方程为 y 〔k 〕 + 1.5y 〔k -1〕 + 0.5y 〔k -2〕 = -3/〔幻一 2.5/〔攵-1〕二、计算题〔共50分,每题10分〕1 ./⑴的波形如图A-1所示,令. A/‘⑺图A-1试计算输入为-*〕 = 23〔%〕 + £代〕时,系统的零状态响应〕膜〕,“、sin 4/5.连续信号 t 的频谱 -------------------------------- /(〃?) =咫8(&)= < 4,囱<40,网>47. 己知一离散时间LTI 系统的单位阶跃响应计算该系统单位脉冲响应⑴用仪/〕和k 〕表示/⑷:〔2〕画出了〔一2,-4〕的波形.⑵将〃一2,-4〕改成/[-2« + 2〕],先压缩,再翻转,最后左移2,即得/〔一2,-4〕,如图A-8所示.八〔一〕“£〔4NL \\( 一)£(& —1)2.某线性时不变(LTD离散时间系统,当输入为演“一1)时,系统地零状态响应为2 试计算输入为/(%)= W) +仪外时,系统的零状态响应,3.信号/«)的频谱如图A-2所示,求该信号的时域表示式.-----------7}- ................. co 0F -5, 4 5 6图A-2由于系统函数为H(jco) = [g2(a)+5)+ g2(co-5)]e~j2a由于g2(')= 2Sa(.),由傅立叶变换的对称性可得:254“)= 2咫2(-助=2处23) 即— Sa(t)<^>g2(co)由调制性质,有2— Sa(t}cos5t <=> g)(3 + 5) + g)(少一5)71由时移性质,有2—Sa(t - 2)cos5(r - 2) o [g, 3 + 5) + g, (.- 5)k“"7T -因此2h(t) = — Sa(t - 2)cos5(r- 2)4.一连续时间系统的频响特性如图A-3所示,输入信号/⑷= 5 + 3cos2f+cos4/,—8</vs,试求该系统的稳态响应)'")▲〞(为)图A-34.利用余弦信号作用在系统的零状态响应的特点,即T{ cos^jZ +.)} = )| cos(卬 + 或4) +.)在此题中,火G)=0,因此由上式可以求出信号/⑺作用在系统上的稳态响应为T[f(t)] = 5H(jO) + 3H(J2)cos2r + //(J4)cos4r = 5 + 2cos2r -oo vs5.信号f⑴=£“)- - 1)通过一LTI系统的零状态响应为)*)=演/ +1) - -1),试求图A-4所示信号g(f)通过该系统的响应人〞)并画出其波形.. g0)—乙--- «--------- ►/T| i图A-45.由于以""[如'")’",所以,利用线性时不变系统的积分特性,可得y R (0 = L y(r)dr = £x[J(r + 1) +J(r-l)Jr] = s[t + 1) + s{t-\) 其波形如图A-9所示.JLfe i图A-9三、综合计算题(共20分,每题10分)1.描述一线性时不变因果连续时间系统的微分方程为y〞⑺ + 5/(0 + 6y(r) = 2/f) + f(t)f⑴=e-■),y(°-)=i,y's=1由s域求解:(1)零输入响应)'X⑺零状态响应力"),完全响应)*):(2)系统函数“(S),单位冲激响应〃“),并判断系统是否稳定:(3)画出系统的直接模拟框图(1)由于H,(jco) = --[g2(co-3)-g2(co+3)] + [3(c()-2)-3(co+2)],Sa(r) = g)(0)又由于江-,由调制定理,可得—Sa(t) sin(30 =上[g?(口—3) —取(切 + 3)]7t 2j即一/‘Sa(f)sin(3f) =-!火2(口一3)-心(3 + 3)]乃2由于sin(2r) = —2) —5(3+2)],即■/ sin(2f) o 6(3 - 2)- 6(少 + 2)7t由频域微分性质,可知:-所以有■—jth(t) = [5i/(/)sin(3r) - sin ⑵)]万,整理得1 3 2h(t) = —[Sa(t)sin(3t) -sin(20] = —Sa(t)Sa(3t) --Sa(2t)70 71 71(2)由于“行⑼是一个带通滤波器,下限角频率为2rad/s,上限角频率为4rad/s,因此,只有角频率为3rad/s 请浏览后下载,资料供参考,期待您的好评与关注!的信号分量可以通过该滤波器.由cos (卬)->\H (凡)|cos[^r +旗例)]可知O.4cos0/) . 0.4|H(j3)|cosPr + 旗 3)]由于口(万)|=.5,奴3) = 0,所以有:0.4cos@)f 0.2cos@),即 /'(,) = 1 + 0.6cosr + 0.4cos3r + 0.2cos5r —> y(f) =0.2cos(3r)2.在图A-5所示的系统中,周期信号P (')是一个宽度为7)的周期矩形脉冲串,信号/⑺的频谱为 F(js) , (1)计算周期信号p«)的频谱工;⑵计算〃⑺的频谱率密度〃03): ⑶求出信号/p ⑺的频谱表达式心口⑸(4)假设信号/⑺的最高频率°%为了使乙频谱不混迭,T 最大可取多大?图A-51)利用傅立叶级数的计算公式可得到周期信号PQ )的频谱/为⑵周期信号〃“)的指数函数形式的傅立叶级数展开式为〃⑺=z 产、〃=7C 1 \ ^ /对其进行Fourier 变换即得〃⑴的频谱密度尸㈠⑼为P(/3) = 1Sag 算卜0_〃4)⑶由于/p") = /(')〃"),利用傅立叶变换的乘积特性,可得I8 讯5(/3) = 丁/(1&)*= Z 〒Sa(4)从信号(⑺的频谱表达式G 〞5可以看出,当4之29〃时,0".)频谱不混迭,即P")1 T/2 [ r/2 1-7721 -r/2AT(-jna )^e2万一初%r=r/2 r="r/2Cz Mo =7tA sin(〃g"2) _ M | T 〃g"2 T ’一9)长沙理工大学拟题纸课程编号 5拟题教研室(或老师)签名 教研室主任签名符号说明:sgn(f)为符号函数,仇,)为单位冲击信号,/幻为单位脉冲序列,仪,)为单位阶跃信号,式k)为 单位阶跃序列.一、填空(共30分,每题3分)1.[4/)一£«-2)15(2/ -2) =./.—4/ - 2)卜 6(2/ - 2) = [£(/)-^(r-2)]-l J(r-l) = l一 1)222 .假设某离散时间EH 系统的单位脉冲响应出6={2』,3},鼓励信号/(幻={1,-2],2},那么该系统的零状态响应/(")*〃/)= ----------- c 利用排表法可得 /(%)*〃(2) = {2,-33-1,5,6}3 .连续时间信号/«)= sin«)的周期丁.= ------------- .假设对/⑺以人=1%进行抽样,所得离散序列八幻二 ------- ,该离散序列是否是周期序列 ---------- o7(A )= /“)|07=sink .不是4 .对连续时间信号延迟%的延迟器的单位冲激响应为6"一,.), ---------------- 积分器的单位冲激响应为£“) -------,微分器的单位冲激响应为 ---------- o £«)“(j ⑼=1 + W5 .一连续时间LTI 系统的频响特性I% 该系统的幅频特性= ---------------------- 相频特性 ---------------- 是否是无失真的传输系统 ----------- .不是〞(/0) = /arctan 助= 1 .(⑼=2OTCtan ⑻f (―)2^ =6 .根据Parseval 能量守恒定律,计算人.0 t ------------------------ 0力=5 ji 咫 2(助|"刃=;!/43=乃7.一连续时间LTI 系统得单位冲激响应为〃“),该系统为BIBO (有界输入有界输出)稳定系统的充要]>(琲〃条件是 ------- .-8,信号/⑺的最高频率为e (m‘〃s ),信号/2«)的最高频率是 -------------------- ©)%(女) 9 .某连续时不变(LTI)离散时间系统,假设该系统的单位阶跃响应为4h(k) = g(k)-g(k-\) = [^\ 响应为141V4;10--------------------------------------------------------------------------------------------- .连续时间信号/(')= sin42(f) + w(f_//2)],其微分/'«)= ------------------------_ 2a )m (rad/s) 0 .,那么该系统的单位脉冲£(1)H(Z )= ——————r、(1)将系统函数改写为 l + 3z"+2z-+Z 、,由此可画出系统的直接型模拟框图,如图A-10所示.4 .连续时间LTI 因果系统工程微分方程为y 〞⑺- 5),⑺ + 6y(t) = /(r) + 4/f >.输入 /⑴=,初始状态 N°-)= L y'(O-)= 3.(1)利用单边拉式变换的微分特性将微分方程转换为S 域代数方程.(2)由s 域代数方程求系统的零输入响应入⑴和零状态响应>'/⑴o 4、(1)对微分方程两边做单边拉斯变换即得s 域代数方程为 S 2Y(S ) - sy(O-) - y'(0~)- 5sY(s)-5y(O-) + 67(5)= (4s + 1)F(J ) (2)整理上述方程可得系统完全响应得s 域表达式为其中零输入响应的s 域表达式为v/、 s —21匕⑸二7^7r 三取拉斯反变换可得取拉斯反变换可得4«) = ( —卜一+一3/一%斗⑺5 .连续系统的系统函数"(S )的零极点如图A-3所示,且"(8)= 2.图A-3(1)写出〃(s )的表达式,计算该系统的单位冲激响应〃“); (2)计算该系统的单位阶跃响应g (').5、(1)由零极点分布图及“(8)的值可得出系统函数〞(s)为请浏览后下载,资料供参考,期待您的好评与关注!丫(S )= 盯(0-) + ),(.-)一53,(0-)4s+ 1 s 2+55 + 6+ 1—5S + 6 F(s) 零状态响应的s 域表达式为'($)= zT s — 5s + 6F(s) =45 + 1-1/4 -3 13/4 ------ + -------+ -------(S — 2)($ —3)(5— 1) 5 + 1 5-2 5-3“⑸〞—=3)=2 + 3 + 二^(5+ 1)(5+ 3) (5+ 1)(5+ 3)5 + 1 5 + 3取拉斯反变换可得h ⑴=26(,) + (31 -15/')£«)(2)单位阶跃响应的s 域表达式为取拉斯反变换可得g") = (- 3e-‘ +5e -"立⑺三、综合计算题(共20分,每题10分)1. 一离散时间LTI 因果系统的差分方程为y (外 + 3y(k -1) + 2y(k -2) = 2f(k)+f(k-l)系统的初始状态= 1/2M —2) = 1/4,愉入/(攵)=式k) o(1)由z 域求系统的零输入响应为(幻和零状态响应丁/公. (2)求该系统的系统函数"(Z ),并判断系统是否稳定. 1、(1)对差分方程两边进行z 变换得y (z) + 3[/y (z) + y(-D] + 2[z-2y(Z) + z\(—l) + y(-2)] = (2 + z 〞"⑵ 整理后可得二 ='—〉-2)+ _ 甲1 + 3Z "+2Z -21 + 3二+2「零输入响应的z 域表达式为_3y(-l)-2/y(-1)-2y(-2) __2_/ = ] -3 * '1 + 3]+2z"1 + 37+2Z -2 \ + zT 1 + 2/取z 反变换可得系统零输入响应为y x U)= 1(-1/-3(-2/kU)零状态响应的Z 域表达式为(2 + z"Q) 2 + ' —1/2 2 1/2/ (7) = --------------------------------- = ----------------------------------------------- = --------------- + ---------------- + -----------71 + 3/ +2z- (1 + 3] +2Z -2)(1 — Z T) 1 — Z T 1 + 2/ 「才取z 反变换可得系统零状态响应为V (幻=[一? 一1» + 2(-2) J f 仪幻〃⑵=四=,(2)根据系统函数的定义,可得 /口)l + 3z +2z-由于系统的极点为芍=-1,Z2 =-2,均不在单位圆内,故系统不稳定2.某高通的幅频特性和响频特性如图A-4所示,其中@=80万------ >3-.269一阳图A-4⑴计算该系统的单位冲激响应""):G(S ) = H(s)LT[e(t)] =25(5-2) 1 (5+ 1)(5 +3) S 一3 5--- + ----- 5+1 5+3CD(2)假设输入信号/«)= 1 + 0・58$60加+ 0.2.05120",求该系统的稳态响应丫02、(1)由于系统的频率特性为:"C/&)=U-g2&3)k-s.又由于co咐=1, r阚)""),所以,有h} (0 = J(/)-" Sa(a)c t) = d(t)一80S.80 加)乃由时移性质得/?(,) = h} (t — t()) = 3(,一八))一805380%(7-%)](2)由于高通系统的截频为80%,信号/(,)只有角频率大于80万的频率分量才能通过,故y(t) = 0.2cosl20^(r-r())长沙理工大学拟题纸课程编号6 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,须,)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,式卜)为单位阶跃序列.一、填空(共30分,每题3分)I J: « - 3)3(—2/ + 4卜〃 =(f — 3)6(/ — 2)力=万(f - 3)| 1=2= -0.5[;(1-3)6(-2/ + 4)力6/八EV , \ £>/ \ . -V/ \ 〉'(,)=-[/(,)+ J(T)12.实信号/«)的傅立叶变换/OM = H3)+ K3),信号, 2 的傅立叶变换3为---------------- .H(5)= —3.某连续时间系统的系统函数为s + 1,该系统属于------------- 类型.低通4.如以下图A-1所示周期信号/«),其直流分量= ------------- ,4图A-1X 上任+ 1, ^>0!>(〃)y^hi=L .八=伏+1)5(幻5.序列和= ---------------------由于I., .6. LTI离散系统稳定的充要条件是----------- .“(Z)的全部极点在单位圆内.7.信号/⑺的最高频率」.(及),对信号〃〃2)取样时,其频率不混迭的最大取样间隔T 1 11 = ----------- = ----»nr, max .1max= ------------- o 'max 为max ©8.一连续系统在输入/⑺作用下的零状态响应〉"〕=/'〔4,〕,那么该系统为 ---------------- 系统〔线性时变性〕.线性时变9.假设/⑺最高角频率为9",那么对〕"〕一、"了〕"5〕取样,其频谱不混迭的最大间隔是------------ .T 万44= ------------ =T—* 3绦/⑵= ---------- ----------10./〔*〕的Z变换屋+ ]〕屋+ 2〕,尸⑵得收敛域为H>max〔Z],Z2〕= 2时,/⑹是因果序列.二、计算题〔共50分,每题10分〕1.某线性时不变连续时间系统的单位冲激响应川,〕和输入/⑺如图A-2所示,从时域求解该系统的零状态响应〕*〕.1、系统的零状态响应y«〕=%〕*、〔>如图A-4所示, 刈xp1 2 3图A-42.系统y'«〕+2y⑴=/«〕的完全响应为M + 3应.2、对微分方程取拉斯变换得sy〔s〕-y〔0-〕 + 2y 〔s〕 = F 整理得r〔5〕=2122+_Lr〔5 5 + 2 5 + 2因此有匕"〕=吗匕⑸」s + 2 , s +取拉斯反变换,得零输入响应为工〔力='〔.-〕6-4£.〕由给定的系统全响应可知,鼓励信号应为:fdd〕,因此,求系统的零输入响应和零状态响⑸〕严s〕其拉斯变换为图A-2"S 户占,因而有y f (t) = (ke t -ke 2t )e(t)因此.系统的全响应为y(t) = [ke-1 + NO"-,- 2 ]£«)+ 3二小⑴比拟,可得:k = 2, ),(.一)= 5 y x (t) = y(0')e^£(t) = 5e^£(t)系统的零状态响应为>7 (0 =叱-心把⑺=2(e-l - e-2f )s(t)i N-1*]=—Z/k —川3.N=5点滑动平均系统的输入输出关系为N“.,求系统的单位脉冲响应,并判断系统是否因果、稳定.3.根据系统的单位脉冲响应的定义,当系统的输入信号/(外为单位脉冲序列演幻时,其输出y (幻就是系统 的单位脉冲响应力依),即1 N-l 1 1h*) = — >5(k — n) = 一[6(= + d(k -1) + 5(k - 2) + d(k -3) + 5[k -4)]= 一国Z)-式k - 5)]NM 5 5由于 〃(%)满足 h(k) = 0,k <.£|力冈1=41=1 j- J 氏一0所以系统是因果、稳定的.H ⑸=———— -----------4.连续时间系统的系统函数1 + 2s- + 3s +1 ,写出其状态方程和输出方程°4.根据系统函数画出系统的模拟框图,并选择积分器的输出作为状态变量,如图A-5所示,围绕模拟框图输入 端的加法器可得到状态方程为图A-5吊(1)=々«),左⑺二七⑷,£3.)= _3.)_2勺.)_3七") + /«)围绕模拟框图输出端的加法器可得到输出方程为〉'“)=$⑺+9〞)5.在图A-3所示的系统中,周期信号〃⑺是一个宽度为1'(TV T)的周期矩形脉冲串,信号/⑺的频谱为 F(js),乙(s) =取拉斯反变换,得零状态响应为—F (5)=——-—— ........................ — 5 + 2 (s + l)(s + 2) 5 + 1 5 + 2与给定的系统全响应武')=[2,… 因此,系统的零输入响应为(1)计算周期信号p(f)的频谱工;⑵计算〃⑷的频谱率密度〃()⑼: ⑶求出信号/.⑺的频谱表达式分〞⑸(4)假设信号/⑺的最高频率为了使勺.⑹频谱不混迭,T 最大可取多大?TK 二(4)从信号(⑺的频谱表达式/"⑨可以看出,当多々2%时,色〞句频谱不混迭,即以三、综合计算题(共20分,每题10分)1.描述一线性时不变因果离散时间系统的差分方程为6y (女)一5y(k - 1) + y(k -2) = f(k)k >0/‘(%)=式k), >'(-1) =-2, y(—2) = 3,由 % 域求解:(1)零输入响应工(外零状态响应力(外,完全响应,'("): (2)系统函数“(Z ),单位冲激响应〃伏): (3)假设f*) = 2式k-D,重求⑴、(2) 1.(1)对差分方程两边进行z 变换得6y(z) — 5{/y (z) + >'(—l)} + {z-2y (z) + /N —l) + y(-2)} = F(z) 整理后可得*、5),(一1)一[-.(一1) 一),(一2), 尸⑵丫 (z) = --------------- ; --- S ------ + --------- ; ----- r6-5z +Z- 6-5z +z-请浏览后下载,资料供参考,期待您的好评与关注!〃⑺图A-35、(1)利用傅立叶级数的计算公式可得到周期信号〃⑺的频谱心为[7721 r/2F"=1J A U =1-7721 -r/2A T(—jS )C2万一初eyyr=r/2 r="r/2⑵周期信号P«)的指数函数形式的傅立叶级数展开式为XT AP3=£ 亏 Sa对其进行Fourier 变换即得〃⑴的频谱密度,(/助为X T AP(js) = 2笈Z —Sa〃=Y T⑶由于Jp ⑺= /("〃"),利用傅立叶变换的乘积特性,可得18 rA工,(加)=丁产(M*P (W )=c4 sin("g"2) _ tA T T3 — 〃%)一.)零输入响应的Z 域表示式为零状态响应的z 域表示式为取z 反变换可得系统零状态响应为系统的完全响应y ⑹=外〔幻+力*〕 = [-5〔夕+1〔乎+蛔.〔2〕根据系统函数的定义,可得取z 反变换即得系统单位冲激响应为〃〔攵〕=[;〔〕"一!〔9国外乙 乙 J J〔3〕假设/〔幻=2仪〞-1〕,那么系统的零输入响应以〔攵〕、单位冲激响应力〔口和系统函数"〔Z 〕均不变,根据线 性时不变特性,可得系统零状态响应为力伙〕=[一〔;〕1 + +1]£〔々 T 〕乙 J J系统全响应为y ⑹=X ⑹+力〔攵〕=[-沼〕氏+ R 〕>⑹+[-〔;产+杲严+ i]£d 〕 乙 乙 J J 乙 J J 2.连续时间线性时不变〔LTI 〕系统的微分器的系统函数为:Z (s) = s假设设:那么用〔2〕式代替〔1〕式中的s 来设计离散时间ED 系统的方法称之为双线性变换法.是在设计过程中须确定 的一个大于零的数.〔1〕试画出离散系统的框图.〔2〕确定离散时间系统的频率响应画出它的幅度及相位响应.2,解:〔1〕令"d 〔Z 〕为离散系统的系统函数,那么由题中给出的公式〔1〕和〔2〕得:(―T)工⑵=5y(-1) 一 zN-l) -),(-2)-13+2/ -9/2 7/36 — 5Z "+Z -26-5z" +z"取z 反变换可得系统零输入响应为o 1 7 1n 〔外=【一3〔3〕' +]〔7〕人上〔发〕丫售〕=尸⑵-1/2 1/6 1/26-5/+Z-2(6-527+1)(1-1)H(z) =1/2一 1/3F ⑺6-5Z "+Z -2। 1, 1 一六〃d (z) =因此可知该系统可由两个子系统级联构成,如图A-6 (a)所示:图A-7长沙理工大学拟题纸(7)一、填空(共30分,每题3分)1、某连续系统的零状态响应为,'(/)= 2/«)-1 ,试判断该系统特性(线性、时不变、稳定 性)-非线性、时不变、稳定系统-5(f)cos (2f)= J(r)cos(2r) = J(r)3、假设离散时间系统的单位脉冲响应为力(口={1,-1,2},那么系统在/(幻={1,2,-2,1}鼓励下的零状态响应r -/⑹*/?⑹= {1,1,27-5,2 •为.可简化为图A-6 (b):(b) 图A-6(2)由系统函数可得该系统的频率响应凡®%⑵L 出为%(*)=Ts 1 + 产 Tsq .n c. /.、 J 弓),2$皿(5)2 Q 虐—n 一n『=J- 5- = — tan(5)e -.-,彳、 J s CCS 厂外 2e - (e 2 +e -) cos (—)7 O 凡(*)= j — tan —注意Owl :时,有:Ts 2幅频特性和相频特性如图A-7 (a)、(b)所示.,Q(a)(b)4、一周期信号/⑷的周期"=2乃,其频谱为尸° =1,6 =05et=0.5e-,\ 尼=—0.2j,%=S2/ ,写出/(/)的时域表达式f(t)= £ F n e jn%, = 1 + 0.5/'*')+ 0.5V-G + 0,2je-j3^ - 0.2je j^'1 n-oo=1 + cos(gf + TT)+ 0.4cos(3gr - zr / 2)(由于 g = 24/" = 1)=1 + cos(f + 4)+ OAcosQt - /z7 2) = 1 -cos(Z) + 0.4siii(3r)nv .、2+〃y. F〔JCD〕= ------- ----------5、信号/«〕= e cos〔100f〕£〔f〕的频谱2/&〕=o100?+4-b6、连续系统与离散系统的重要区别特点是,离散系统的频谱具有周期性:7、设连续时间信号/⑺的傅立叶变换为产".〕,那么尸〔"〕的傅立叶变换为.2叭-⑼.8、单位门信号gf«〕的频谱宽度一般与其门信号的宽度T有关,T越大,那么频谱宽度越窄 .9、拉普拉斯变换域傅立叶变换的根本差异是J言号满足绝对可积条件时才存在傅立叶变换:它们的关系是—而信号不满足绝对可积条件时也可能存在拉普拉斯变换:产sin co , d coJ co10、二、计算题〔共50分,每题10分〕F〔5〕=——1、s〔Je "〕,收敛域Re〔s〕>°,试求其拉氏反变换了⑴,并画出了⑺的波形.1 1 1 00।L 由于自四一 "〕= h, 〔Re⑸>.〕x 12"〕 0 r令7 = 2,得〃・. 1-6 O由傅立叶变换的时域卷积性质,有X00f ⑴=s〔t〕 * Z 5〔1 - 2"〕 =>" 2〃〕〃-. 〃i〕,其波形如图A-6所示.⑴系统的单位冲激响应力〞);(2)输入 fS = 1 + 0・6cosf + 04cos3f + 0.2cos5fLs <t <s ,系统的输出 y(f). 2.解(1)由于H ,(ja )) = ~[g 2(co-3)-g 2(co+3)]+[3(cD-2)-3(co+2)]乙又由于江 -,由调制定理,可得-Sa«) sin(3r) =,■;[w (公 一 3) — 心(刃 + 3)1乃 2)一/’Sa(f)sin(3f)o -2[g2(G-3)-g2(G + 3)]2由于sin(2f) = -M33-2)-53+2)],即—sin(2r) = 6(3—2)-6(—+2) 7t由频域微分性质,可知:一"〃")0所以有一 jth(t) = -—[ Sa(t) s in(3r) - s in(2r)]万 ,整理得1 3 2h(t) = —[Sa(0 sin(3f) - sin(2z)] = — Sa(t)Sa(3t)--Sa(2t)(2)由于""⑼是一个带通滤波器,下限角频率为 的信号分量可以通过该滤波器.由 COS3J) T 〃(J4)|cos 画/ + 收.)]可知O.4cos0r) —>0.4|H(j3)|cos|3r+ ^?(3)]2、某连续LTI 时间系统得频率响应〞(/⑼如图A-1所示,试求:7t2rad/s,上限角频率为4rad/s,因此,只有角频率为3rad/s。

信号与系统考试试题及答案

信号与系统考试试题及答案

长沙理工大学拟题纸课程编号 1 拟题教研室(或老师)签名 教研室主任签名 符号说明:)sgn(t 为符号函数,)(t δ为单位冲击信号,)(k δ为单位脉冲序列,)(t ε为单位阶跃信号,)(k ε为单位阶跃序列。

一、填空(共30分,每小题3分)1. 已知)()4()(2t t t f ε+=,求_______)("=t f 。

)('4)(2)("t t t f δε+2. 已知}4,2,4,3{)(},1,2,2,1{)(=-=k h k f ,求______)()(=*k h k f 。

}4,6,8,3,4,10,3{)()(-=*k h k f3. 信号通过系统不失真的条件为系统函数_______)(=ωj H 。

0)(t j Ke j H ωω-=4. 若)(t f 最高角频率为m ω,则对)4(t f 取样的最大间隔是______。

m T ωπωπ4max max == 5.信号t t t f ππ30cos 220cos 4)(+=的平均功率为______。

101122222=+++==∑∞-∞=n n F P6. 已知一系统的输入输出关系为)3()(t f t y =,试判断该系统是否为线性时不变系统______。

故系统为线性时变系统。

7. 已知信号的拉式变换为)1)(1(1)(2-+=s s s F ,求该信号的傅立叶变换)(ωj F =______。

故傅立叶变换)(ωj F 不存在。

8. 已知一离散时间系统的系统函数2121)(---+=z z z H ,判断该系统是否稳定______。

故系统不稳定。

9. =+-+⎰∞∞-dt t t t )1()2(2δ______。

310. 已知一信号频谱可写为)(,)()(3ωωωωA e A j F j -=是一实偶函数,试问)(t f 有何种对称性______。

关于t=3的偶对称的实信号。

二、计算题(共50分,每小题10分)1. 已知连续时间系统的单位冲激响应)(t h 与激励信号)(t f 的波形如图A-1所示,试由时域求解该系统的零状态响应)(t y ,画出)(t y 的波形。

信号和系统试题及答案

信号和系统试题及答案

信号和系统试题及答案一、选择题(每题4分,共20分)1. 信号的频谱分析中,傅里叶变换的物理意义是什么?A. 信号的时域表示B. 信号的频域表示C. 信号的相位信息D. 信号的幅度信息答案:B2. 在线性时不变系统中,系统的输出与输入的关系是什么?A. 线性关系B. 非线性关系C. 时变关系D. 随机关系答案:A3. 下列哪个函数不是周期函数?A. sin(t)B. cos(2t)C. e^(-t)D. cos(2πt)答案:C4. 系统稳定性的判定可以通过什么方法?A. 奈奎斯特准则B. 伯德图C. 相位裕度D. 所有以上答案:D5. 系统函数H(s)的零点和极点分别代表什么?A. 系统输入和输出B. 系统稳定性和不稳定性C. 系统增益和衰减D. 系统频率响应答案:B二、填空题(每题4分,共20分)1. 连续时间信号的傅里叶变换定义为:X(jω) = ____________。

答案:∫x(t)e^(-jωt)dt2. 如果一个系统的冲激响应h(t)是因果的,则系统的零状态响应y(t)与输入x(t)的关系为:y(t) = ____________。

答案:∫h(t-τ)x(τ)dτ3. 一个线性时不变系统的特性可以用其系统函数H(s)来描述,其中s 是复频域变量,代表的是 ____________。

答案:拉普拉斯变换4. 如果一个系统的频率响应H(jω)在ω=ω0处有极点,则在时域中对应的响应h(t)将具有 ____________。

答案:振荡特性5. 系统的因果性意味着系统的输出不会在输入之前出现,这可以用系统的冲激响应h(t)满足的条件来表示:h(t) = ____________。

答案:0,t < 0三、简答题(每题10分,共30分)1. 请简述傅里叶级数与傅里叶变换的区别。

答案:傅里叶级数适用于周期信号,是将周期信号分解为正弦和余弦函数的和,而傅里叶变换适用于非周期信号,是将信号分解为复指数函数的积分。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案 一、单项选择题(每题2分,共10分) 1. 信号与系统中的“信号”指的是( )。 A. 电信号 B. 光信号 C. 任何形式的传递信息的函数 D. 声音信号

答案:C 2. 线性时不变系统的最基本性质不包括( )。 A. 线性 B. 时不变性 C. 因果性 D. 可逆性 答案:D 3. 傅里叶变换的实质是将信号从( )域转换到频率域。 A. 时域 B. 频域 C. 空间域 D. 复频域

答案:A 4. 以下哪个函数是周期函数?( ) A. \( f(t) = e^{-at} \)(a > 0) B. \( f(t) = \sin(\omega t) \) C. \( f(t) = t^2 \) D. \( f(t) = \cos(\omega t) + \sin(\omega t) \)

答案:B 5. 信号的采样定理指出,如果一个信号的频率最高为f,那么采样频率至少为( )。

A. f B. 2f C. f/2 D. 2f/2

答案:B 二、填空题(每题2分,共10分) 1. 信号的频谱是信号在______域的表示。 答案:频率

2. 系统的脉冲响应h(t)描述了系统对______信号的响应。 答案:脉冲

3. 一个因果稳定系统的传递函数的极点必须位于______的左半平面。 答案:复 4. 信号的时域表示和频域表示之间的转换可以通过______变换实现。

答案:傅里叶

5. 离散时间傅里叶变换(DTFT)和离散傅里叶变换(DFT)的主要区别在于DTFT是______的,而DFT是______的。

答案:连续;离散

三、简答题(每题5分,共15分) 1. 简述信号的分类及其特点。 答案:信号可以分为连续时间信号和离散时间信号。连续时间信号是指在时间上连续变化的信号,例如模拟信号。离散时间信号是指在时间上离散取值的信号,例如数字信号。连续时间信号可以进一步分为周期信号和非周期信号,周期信号具有固定的重复模式,而非周期信号则没有。 2. 什么是系统的因果性?请举例说明。 答案:系统的因果性是指系统的输出在任何时刻仅取决于该时刻及以前输入的值,而不依赖于未来的输入值。例如,一个简单的RC电路就是一个因果系统,因为其在任何时刻的输出电压仅取决于该时刻及以前的输入电压。

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。

若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。

则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。

若x(t)为周期为T的信号,则y(t)也是周期为T的信号。

A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。

答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。

答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。

答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。

信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。

信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。

2. 请简要说明周期信号和非周期信号的区别。

答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。

非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。

...以上是关于信号与系统试题及答案的文档。

希望能对您的大学期末考试复习有所帮助。

祝您考试顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准答案(一)一、填空题(每空1分,共30分)1、无线电通信中,信号是以电磁波形式发射出去的。

它的调制方式有调幅、调频、调相。

2、针对不同的调制方式有三种解调方式,分别是检波、鉴频、和鉴相。

3、在单调谐放大器中,矩形系数越接近于1、其选择性越好;在单调谐的多级放大器中,级数越多,通频带越窄、(宽或窄),其矩形系数越(大或小)小。

4、调幅波的表达式为:uAM(t)= 20(1 +0.2COS100πt)COS107πt(V);调幅波的振幅最大值为24V,调幅度Ma为20℅,带宽fBW为100Hz,载波fc为5*106Hz。

5、在无线电技术中,一个信号的表示方法有三种,分别是数学表达式、波形、频谱。

6、调频电路有直接调频、间接调频两种方式。

7、检波有同步、和非同步检波两种形式。

8、反馈式正弦波振荡器按照选频网络的不同,可分为LC、RC、石英晶振等三种。

9、变频器可由混频器、和带通滤波器两部分组成。

10、列出三个常见的频谱搬移电路调幅、检波、变频。

11、用模拟乘法器非线性器件实现调幅最为理想。

二、选择题(每小题2分、共20分)将一个正确选项前的字母填在括号内1、下列哪种信号携带有调制信号的信息(C )A、载波信号B、本振信号C、已调波信号2、小信号谐振放大器的主要技术指标不包含(B )A、谐振电压增益B、失真系数C、通频带D、选择性3、丙类谐振功放其谐振回路调谐于( A )分量A、基波B、二次谐波C、其它高次谐波D、直流分量4、并联型石英晶振中,石英谐振器相当于(C )元件A、电容B、电阻C、电感D、短路线5、反馈式正弦波振荡器的起振条件为( B )A、|AF|=1,φA+φF= 2nπB、|AF| >1,φA+φF = 2nπC、|AF|>1,φA+φF ≠2nπD、|AF| =1,φA+φF ≠2nπ6、要实现集电极调制特性应使功放工作在(B )状态A、欠压状态B、过压状态C、临界状态D、任意状态7、自动增益控制可简称为( B )A、MGCB、AGCC、AFCD、PLL8、利用非线性器件相乘作用来实现频率变换其有用项为( B )A、一次方项B、二次方项C、高次方项D、全部项9、如右图所示的电路是(D )A、普通调幅电路B、双边带调幅电路C、混频器D、同步检波器10、在大信号包络检波器中,由于检波电容放电时间过长而引起的失真是(B)A、频率失真B、惰性失真C、负峰切割失真D、截止失真三、判断题,对的打“√”,错的打“×”(每空1分,共10分)1、谐振放大器是采用谐振回路作负载的放大器。

( √ )2、基极调幅实现的是普通调幅,也是高电平调幅。

( √ )3、已知某调幅波的最大振幅10V ,最小振幅为6V ,则调幅度Ma 为40%。

( × )4、同步检波器只能实现普通调幅波的解调。

( × )5、混频器的作用是改变调幅波的载波频率为固定中频。

(√ )6、LC 并联谐振回路谐振时其纯电阻最小。

(× )7、不可以用高频功放构成倍频器。

(× )8、调频和调相简称调角。

( √ )9、 声表面波滤波器的主要部件是叉指换能器。

(√ )10、反馈式正弦波振荡器是正反馈一个重要应用。

(√ )四、简答题(共20分)1、什么叫调制?在无线通信系统中为什么要进行调制?(6分)答:把要传送的信号“装载”到高频振荡信号的过程,称为调制。

(2分)因为(1)无法制造合适尺寸的天线;(2分)(2)接收者无法选择所要接收的信号。

(2分)2、在同步检波器中,为什么参考电压与输入载波同频同相?二者不同频将对检波有什么影响?二者不同相又会对检波产生什么影响?(6分)答:为了保证同步检波器不失真地解调出幅度尽可能大的信号。

(2分)若不同频,则检波时输出电压会失真。

(2分)若不同相,则检波时输出电压不会失真,但幅度会减小。

(2分)3、根据相位平衡条件,判断下面电路是否产生振荡,并说明理(4分)答:不能振荡,因为不满足“射同基反”的原则。

(4分)4、某非线性器件的伏安特性为i=a1u+a3u3。

试问该器件能否实现相乘作用?为什么?(4分)答:不能实现相乘作用,因为伏安表达式中没有二次方项。

(4分)计算题(共20分)1、某谐振功率放大器,已知VCC=24V ,PO=5W 。

求:当η=60%时,管耗PT 和IC0各为多少?(6分) 58.3360%O V P P Wη===1、解:8.335 3.33T V O P P P W=-=-= (3分) 8.3334724V CO CC P I mA V ===(3分)LC 1VC 22、写出下面电路的输出电压表达式(6分)u -=+2、解:根据“虚短”u0i -==+根据“虚短”i (2分) 1i +-有u =u =uZ u 2-12R 而u =R +R (2分) 2M o i K u u =Z u 2212M o i R K u u R R =+-u2212M o i R K u u R R =+i1所以u12122i M i u R R R K u +=o 即u (2分)3、若单频调幅波载波功率Pc=1000W ,Ma=0.3,求两个边频功率之和Psb 为多少?总功率Pav 为多少?(4分)22110.310004522c ma P W ==⨯⨯=sb 3、解:P (2分)1000451045c sb P P W =+=+=av P (2分)4、若某电压信号u (t )=5cos Ωtcos ωct (V )(ωc>>Ω)画出频谱图。

(4分)4、解:(4分)标准答案(二)一、填空题(每空1分,共30分)1、接收机分为直接放大式、和超外差式 两种。

2、 扩展放大器通频带的方法有组合电路法、负反馈法和集成电路法三种。

3、在集成中频放大器中,常用的集中滤波器主要有:LC 带通滤波器、陶瓷、石英晶体、声表面波滤波器等Um/V 5/2 5/2 0 ω ωc -Ω ωc +Ω ωc四种。

4、丙类谐振功放有欠压、临界和过压三种工作状态,其性能可用负载特性、调制特性和放大特性来描述。

5、普通调幅波的数学表达式UAMt=Ucm(1+Ma cosΩt)cosωct,为了实现不失真调幅,Ma一般≤1。

6、实现AGC的方法主要有改变发射级电流IE和改变放大器的负载两种。

7、根据频谱变换的不同特点,频率变换电路分为频谱搬移电路和频谱的非线性变换电路。

8、要产生较高频率信号应采用、LC振荡器,要产生较低频率信号应采用RC振荡器,要产生频率稳定度高的信号应采用石英晶体振荡器。

9、三点式振荡器有电容和电感三点式电路。

10、丙类功放最佳工作状态是临界状态,最不安全工作状态是强欠压状态。

11、反馈式正弦波振荡器由放大部分、选频网络、反馈网络三部分组成。

12、调频电路有直接、间接调频两种方式。

13、调幅测试中,根据示波器所显示的调幅波波形可以计算出相应的调幅度Ma。

已知某普通调幅波波形及其参数如图1-1所示,试求Ma =0.25%。

二、选择题(每小题2分、共20分)将一个正确选项前的字母填在括号内1、下列不属于小信号谐振放大器的技术指标是(C )A、电压增益B、通频带C、非线性失真系数D、选择性2、某调幅广播电台的音频调制信号频率100Hz~8KHz ,则已调波的带宽为( A )A、16KHzB、200KHzC、4KHzD、8KHz3、对于同步检波器,同步电压与载波信号的关系是(C )A、同频不同相B、同相不同频C、同频同相D、不同频不同相4、串联型石英晶振中,石英谐振器相当于( D )元件A、电容B、电阻C、电感D、短路线5、图1-2所示电路为(A )电路A、集电极串馈电路B、集电极并馈电路C、基极串馈电路D、基极并馈电路6、下列电路不属于频谱搬移电路的是(B )图1-2A、调幅电路B、调频电路C、检波电路D、变频电路7、反馈式正弦波振荡器的平衡条件是(A )A、AF=1,φA+φF = 2nπB、AF>1,φA+φF = 2nπC、AF<1,φA+φF = 2nπD、AF=1,φA+φF = nπ8、影响丙类谐振功率放大器性能的主要参数不包括( D )A、VCCB、VBBC、UbmD、Ri9、在大信号峰值包络检波器中,由于检波电容放电时间过长而引起的失真是(B )A、频率失真B、惰性失真C、负峰切割失真D、截止失真10、要求本振信号功率大,相互影响小,放大倍数大,宜采用( A )混频电路A、基极输入,发射极注入B、基极输入,基极注入C、发射极输入,基极注入D、发射极输入,发射极注入三、判断题,对的打“√”,错的打“×”(每空1分,共10分)1、谐振放大器处在谐振时其增益最大。

(√)2、小信号谐振放大器抑制比越大,其选择性越好。

(√ )3、高频功放的动态线是一条直线。

( × )4、石英晶振可分为串联型和并联型。

( √ )5、LC 正弦波振荡器的振荡频率由反馈网络决定。

(× )6、利用非线性器件的相乘作用实现频谱搬移。

( √ )7、大信号包络检波器是利用二极管的单向导电性及检波负载电容的充放电过程来完成检波的。

( √ )8、谐振放大器的Kr0.1愈接近于1,则放大器的选择性愈好。

(√ )9、振荡器与放大器的主要区别之一是:放大器的输出信号与输入信号频率相同,而振荡器一般不需要输入信号。

( √ )10、三极管实现的调幅电路属于高电平调幅电路。

(√ )四、简答题(共20分)将下列采用调幅方式实现的无线通信系统中的超外差式接收机的组成框图补充完整。

(6分)答:高频放大器、混频器、中频放大器、检波器、低频放大器本地振荡器 (6分)2、简述AGC 电路的作用。

(4分)2、答:AGC 的作用是当输入信号变化很大时,保持接收机的输出信号基本稳定。

即当输入信号很弱时,接收机的增益高;当输入信号很强时,接收机的增益低。

(4分)3、三点式振荡器的原则是什么?(4分)答:“射同基反”的原则。

即Xce 与Xbe 的电抗性质相同,Xcb 与Xbe (或Xce )的电抗性质相反。

(4分)4、大信号包络检波器中,若把二极管极性反接,是否起到检波作用?若能,则输出波形与原电路有什么不同?(6分)4、答:可以检波。

(3分)输出波形与原调制信号极性相反。

(3分第五题: 计算题(共20分)1、一个单调谐放大器,若回路谐振频率f0为10.7MHz ,通频带fbw 为120KHz ,则有载品质因数Qe 为多少?(4分)60310.7101201089bw f f ⨯==⨯=e 1、解:Q (4分)2、某谐振功放原工作在临界状态,若等效负载R(1)增大一倍 (2)减小一倍则输出功率PO 如何变化?(6分)2、解:(1)R 增大一倍,功放工作在过压状态212cm o U P R = cm U 基本不变o P 则减小一半(3分) (2)R 减小一倍,功放工作在欠压状态2112o cm P I R =cm I 1基本不变 、o P 则减小一半 (3分)3、某调幅发射机未调制时发射功率为9KW ,当载波被正弦信号调幅时,发射功率为10.125KW 。

相关文档
最新文档