应力张量例题.ppt
应力张量例题

= −ab
两个应力张量表示同一应力状态。
一、应力张量不变量及其应用
应力张量不变量问题小结
1、由应力张量的三个主不变量可确定应力张量状态特 、 征方程,从而确定应力张量的三个主应力及其方向,由 征方程,从而确定应力张量的三个主应力及其方向, 此定义了应力的状态。 此定义了应力的状态。 2、判断两个应力的状态是否相同,可以通过判断对应 、判断两个应力的状态是否相同, 的三个主不变量是否相同来实现。 的三个主不变量是否相同来实现。
2 2
2
=±
5 14 3
二、几种重要应力的计算
等效应力
σ=
3 3 1 τ8 = ± 350 = 5 7 2 2 3
MPa
几种重要应力计算问题小 结
要求掌握一点处的主应力及主方向、最大切应力、 要求掌握一点处的主应力及主方向、最大切应力、八 面体应力、等效应力的计算方法。 面体应力、等效应力的计算方法。
n3 = 0
τ max =
八面体应力
1 (σ max − σ min ) = 1 (10 − (−5) ) = 7.5 MPa 2 2
1 3
σ 8 = (σ 1 + σ 2 + σ 3 ) = (10 + 0 − 5) = 1.67 MPa
τ8 = ±
1 3
1 3
(σ 1 − σ 2 ) + ( σ 2 − σ 3 ) + (σ 3 − σ 1 )
一、应力张量不变量及其应用
知识要点回顾 二阶张量的定义: 二阶张量的定义
Pkr = Pij lki lrj
( i, j =1,2,3; k,r =1′ ,2′,3′)
P 11 P 21 P31 P 12 P22 P32 P 13 P23 P33
第五章 应力张量 应变张量与应力应变关系

1、 2、 3是方程(5-7)的三个根,所
以,也可以将特征方程写成
( 1 )( 2 )( 3 ) 0
展开后有 3 ( 1 2 3 ) 2 ( 1 2 2 3 3 1 ) 1 2 3 0
与式(5-7)比较,得
I1 I2
方程(7)有三组解:
第一组是 m0, n0
第二组是 m0, n1/ 2
第三组是 m1/ 2, n0
有了m、n就可以从(4)中求得相应的l,并运用
(5)式得到相应的极值剪应力 ,由(2)式
得到极值剪应力面上的正应力 。 同理可从(3)和(4)中分别消去m和n,按上述 方法又可以得到六组解,但其中三组是重复的, 独立的解答一共六组,如表5-1所示。 表中前三组解答对应于主平面,其上剪应力为零; 而后三组解答对应于经过主轴之一而平分其他两 主轴夹角的平面,如图5-5示,其上剪应力为
1 和 2 的方向可取与 ν (3) 垂直平面上的任
意方向。即与ν (3) 垂直的方向都是主方向。
如果 123,则 ν (1)ν (2)、ν (2)ν (3)、
ν (3)ν (1)三者可以是零,也可以不是零,这
说明三个主方向可以相互垂直,也可以不垂 直,也就是说,任何方向都是主方向。
(3)主应力的极值性 命题1:最大(或最小)主应力是相应点处任 意截面上正应力的最大(或最小)值。
r r
这就是极坐标下的应力分量与直角坐标下应力 分量的转换公式。
反过来,取直角坐标系为新坐标系,极坐标系 旧坐标系,根据(5-2)式,用极坐标应力分量 表示直角坐标应力分量的关系为:
x xrxrr xx 2xrxr
cos2 r sin2 2sin cosr
应力张量例题

2)塑性变形中的滑移与孪生或晶界滑移,都主要与切应力有关。
取应力主轴为坐标轴,则任意斜微分面上的切应力为
? 2
12l 2
2 2
m2
32n2
1l2 2m2 3n2
2
最大切应力计算公式
max
1 2
max min
二、几种重要应力的计算
2)可根据三个主应力的特点来直观地区分各种应力状态,或者定性地比较某 一种材料采用不同的塑性成形工序加工时,塑性和变形抗力的差异。
应力状态特征方程 齐次线性应力平衡方程组
方向余弦条件
3 J1 2 J2 2 J3 0
x l yxm zxn 0
xyl y m zyn 0
二、几种重要应力的计算
例题解答 1) 画出该点的应力单元体 z
O x
5 -5 -5 5
-5 y
二、几种重要应力的计算
例题解答
2) 用应力状态特征方程求出该点的主应力及主方向
计算应力张量的三个主不变量
J1 x y z 55 5 5
J2
x yx
xy y y zy
216m21 32n22
2 2
3
2
3
1
2
1 3
1
2
1 3
2
2
1 3
3
2
1 3
1
2
第05讲 应力张量

主应力
1、主应力的求解
旋转坐标轴,使Q点的斜面ABC
正好是主平面(τ=0),则斜面上 全应力S就是正应力σ(σ=S)。
S在三轴上的投影
SSyx
l m
S z n
以l,m,n为未知数的齐次线性 方程组。其解有二。
S S
x y
xl yxm zxn xyl ym zyn
1
2
3
又 l2 m2 n2 1
S1122
S22
2 2
S32
2 3
1
椭球面方程,其主半轴的长度分 别为σ1,σ2,σ3。——称应力椭球 面。它是任意斜面全应力矢量S端 点的轨迹。
应力椭球体
2、应力状态的分类
a)若σ1≠σ2≠σ3≠0——三向应力状态。 b)若σ1≠σ2≠0,σ3=0——二向应力状态。 c)若σ1≠0;σ2=σ3=0——单向应力状态。 d)若σ1≠σ2=σ3——圆柱应力状态(包括单向应力状态)。⊥ σ1 的方向均为主方向。 e)若σ1=σ2=σ3——球应力(静水应力)状态。τ≡0,各方向均 为主方向。
3阶张量
张量的概念
2、张量的概念
标量:一个数,当坐标变换时,(xi)= ’(xi’),即不依赖 于坐标,则定义为标量——零阶张量。
矢量:三个数的集合,当坐标变换时,根据式ai’=Mi’iai,由 a1,a2,a3变为a1’,a2’,a3’,则此三个分量定义为矢量——一阶
张量。
张量:32个数的集合,当坐标变换时,根据式Ti’j’=Mi’i Mj’jTij,由Tij变为Ti’j’,则此九个分量定义为二阶张量——简
1 9 2 3 3 3 3 3
第二章-应力分析-例题-东北大学课件

2019年固体力学与岩石力学基础例题第二章 应力分析例题2.1 设某点的应力张量为012120201⎛⎫ ⎪= ⎪ ⎪⎝⎭σ试求过该点平面12331x x x ++=上的应力矢量,并求正应力矢量和切应力矢量。
解:设该平面的法线矢量为:v =(l ,m ,n)由几何关系知:l 1=m 3=n 1联立方程:l 2+m 2+n 2=1于是解得:l =√1111,m =3√1111,n =√1111所以,该平面上的应力矢量的三个分量分别为:T x =σx l +τyx m +τzx n =0×√1111+1×3√1111+2×√1111=5√1111 T y =τyx l +σy m +τzy n =1×√1111+2×3√1111+0×√1111=7√1111 T z =τzx l +τzy m +σz n =2×√1111+0×3√1111+1×√1111=3√1111该平面的法向应力和切向应力为:σv =T x l +T y m +T z n =5√1111×√1111+7√1111×3√1111+3√1111×√1111=2911τv 2=T v 2−σv 2=8311−841121=72121τv =6√211解答完毕。
例题2.2 设有图2.1示三角形水坝,试列出OP 面(光滑面)的应力边界条件。
图2.1解:在OP 面上有应力边界条件:(σx1x2)x1=0=γx 2 (τx1x2)x1=0=0式中,γ为水的比重。
解答完毕。
例题2.3 已知一点的应力张量为2201211210σ⎛⎫ ⎪ ⎪ ⎪⎝⎭过该点的一个作用面,作用面上的应力矢量=N 0,求: 1)22σ;2)作用面法线与坐标系的夹角余弦(,,)l m n 。
解:由于具有一个平面,使得在过改点的一个平面上,应力矢量为0,即:0×l +1×m +2×n =0 1×l +σ22×m +1×n =0 2×l +1×m +0×n =0又根据几何关系:l 2+m 2+n 2=1解得:σ22=12l =√66 m =−√63n =√66解答完毕。
塑性加工力学_第3章应力分析PPT课件

引言
为了简化研究过程,塑性理论通常采用以下假设:
• 变形体是连续的,即整个体积内不存任何空隙。这样, 应力、应变、位移等物理量也都是连续的,并可用坐标 的连续函数来表示。
• 变形体是均质的和各向同性的。这样,从变形体切取的 任一微元体都能保持原变形体所具有的物理性质,不随 坐标的改变而变化。
3、应 力:单位面积上的内力,称为应力。 S:全应力 σ:正应力,垂直于作用面 τ:剪应力
全应力、正应力、切应力 :
P2
P3
P1
N Sσ
dP dF
Z
CF
P8 τ Q
P4
P7
P6
P5
O
x
面力、内力和应力
C
τyz τ
S
τyQx σy N
C y
P
全应力:
S
lim 0 F
正应力:
s
lim
0
N F
切应力:
(sx s) yx
zx
即: xy (sy s) zy 0
xz
yz (sz s)
得应力状态的特征方程:
s 3 I1s 2 I 2s I 3 0
∴ 解此方程式可求得有三个主应力分量
• 将s1,s2,s3分别代入下列方程,并可求得该主应力分量的作用方向
(l1,m1,n2), (l2,m2,n2), (l3,m3,n3) :
lim T
0 F
单向均匀拉伸时任意截面上的应力
S0
dP dF
P F0
s0
F0 P
N θ
0 0
σ0
σθ
S0
S
s
P F1 S
连续介质力学第三章(分析“应力”文档)共110张PPT

x xy xz
ij
y
yz
=
(对称)
z
x
1 2
xy
y
(对称 )
u
x
1 2
u y
v x
1 2
u z
w x
=
v y
1 2
v z
w y
(对称)
w
z
1
2 1
2
xz yz
z
◆ 几何方程:
x
u x
;
y
v y
性体变,从而出现奇异屈服面。
⑩.平衡(或运动)微分方程
◆ 平衡微分方程:
x
x
yx
y
zx
z
F
x 0
2u t2
xy
x
y
y
zy
z
F
y
0
2v t2
xz
x
yz
y
z
z
F
z 0
2w t2
ij'j Fi 0
◆ 一个客观的弹性力学问题,在物体体内任意一点的 应力分量和体力分量必定满足这组方程。
xxyssii n n xyycco o s sq q00sci on s xy
(xyq0)ctg (xyq0) tg
yxtan
左边界:据圣文南原理和平衡的原理得:
Fx 0 , Fy 0 , M0 0 ,
h
hxdy 0
h
hxydy P0
h
h x ydy M 0
h xdy 0
理论上可证明:当一点的应力状态确定时,经推导 必可求出三个实根,即为主应力,且主应力彼此正交。
应力张量例题

ab
J3 0 b 0 0 0 0 0
结论
两个应力张量表示同一应力状态。
一、应力张量不变量及其应用
应力张量不变量问题小结
1、由应力张量的三个主不变量可确定应力张量状态特
征方程,从而确定应力张量的三个主应力及其方向,由
(2)
齐次线性应力平衡方程组
方向余弦条件
l 2 m2 n 2 1
(3)
二、几种重要应力的计算
知识要点回顾 2、最大切应力
l 2 m 3 n 1l 2 m 3n
2 2 2 1 2 2 2 2 2 2
2 2
1)与正应力一样,切应力也随坐标变换而变化,可取得极值。取其中绝对值 最大的切应力为最大切应力,记为 max 。 2)塑性变形中的滑移与孪生或晶界滑移,都主要与切应力有关。
数。 等效应力定义式
3 8 2
3 2 J2 3 2
3J 2
二、几种重要应力的计算
例 题 对于oxyz直角坐标系,受力物体内一点的应力状态为
5 0 5 (Mpa) ij 0 5 0 5 0 5
1) 2)
画出该点的应力单元体; 试用应力状态特征方程求出该点的主应力及主方向;
例题解答
对于 ij
1
同理,对于
J1
2 ij
J1 a b 0 a b
a 0 b 0 0 0 J2 ab 0 b 0 0 0 a
a 0 0
ab ab 0 ab 2 2 a b a b ab 0 0 2 0 2 J2 2 ab 0 a b a b 0 0 2 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1 1 1 1 1 2 3 1 2 3 3 3 3 3
2
2
2
3
1 3
1 2 2 3 3 1
应力状态特征方程
3 J1 2 J2 2 J3 0
xy l y m zy n 0 xz l yz m z n 0
(1)
x l yx m zx n 0
试判断以下两个应力张量是否表示同一应力状态?
a 0 0 1 ij 0 b 0 0 0 0
a b 2 a b 2 ij 2 0
a b 2 ab 2 0
0 0 0
一、应力张量不变量及其应用
例题解答
对于 ij
1
同理,对于
J1
2 ij
J1 a b 0 a b
a 0 b 0 0 0 J2 ab 0 b 0 0 0 a
a 0 0
ab ab 0 ab 2 2 a b a b ab 0 0 2 0 2 J2 2 ab 0 a b a b 0 0 2 2 2
取应力主轴为坐标轴,则任意斜微分面上的切应力为
l 2 m 3 n 1l 2 m 3n
2
?
2 2 1
2
2
2
2
2
2
2 2
最大切应力计算公式
max
1 max min 2
二、几种重要应力的计算
知识要点回顾 3、八面体应力
1)以受力物体内任意点的应力主轴为坐标轴,在无限靠近该点处作与三个应 力主轴等倾斜的微分面,其法线与三个主轴的夹角都相等。在主轴坐标系空 间八个象限中的等倾微分面构成一个正八面体。正八面体的每个平面 称八面 体平面,八面体平面上的应力称为八面应力。 2)八面体平面是一点应力状态的特殊平面,平面上的应力值对研究
一、应力张量不变量及其应用
知识要点回顾 二阶张量的定义:
P kr P ij lki lrj
i, j =1,2,3; k,r =1 ,2,3
P 11 P 21 P31 P 12 P22 P32 P 13 P23 P33
二阶张量主不变量:
J1 P 11 P 22 P 33
一个应力状态有重要作用。
3
Q 1
1 54 44 3
2
arccos
二、几种重要应力的计算
知识要点回顾 3、八面体应力 八面体平面的方向余弦
S1 l 1 S2 m 2 S3 n 3
8 = S1 S2
l 2 S3 m l 1 m2 2 n 2 3 n
P J 2 11 P21 P22 P 12 P22 P32 P23 P33 P33 P 13 P31 P 11
P 11 J 3 P21 P31
P 12 P22 P32
P 13 P23 P33
一、应力张量不变量及其应用
应力张量是二阶实对称张量,有三个独立的主不变量。 利用应力张量的三个主不变量,可以判别应力状态的异同。 例 题
此定义了应力的状态。 2、判断两个应力的状态是否相同,可以通过判断对应
的三个主不变量是否相同来实现。
二、几种重要应力的计算
知识要点回顾 1、主应力
P 11 P 21 P31
P 12 P22 P32
P 13 P23 P33
P 11 0 0
0
P22
(2)
齐次线性应力平衡方程组
方向余弦条件Biblioteka l 2 m2 n 2 1
(3)
二、几种重要应力的计算
知识要点回顾 2、最大切应力
l 2 m 3 n 1l 2 m 3n
2 2 2 1 2 2 2 2 2 2
2 2
1)与正应力一样,切应力也随坐标变换而变化,可取得极值。取其中绝对值 最大的切应力为最大切应力,记为 max 。 2)塑性变形中的滑移与孪生或晶界滑移,都主要与切应力有关。
0
0 0 P33
1)应力张量为实对称张量,通过坐标转换可以得到切应力为零的状态,此时 的应力称为主应力。本质上与矩阵代数中通过初等变换将一个矩阵化为标准 形的问题相同。(主应力就是法应力,不在矩阵主轴上的分量都是切应力。) 2)可根据三个主应力的特点来直观地区分各种应力状态,或者定性地比较某 一种材料采用不同的塑性成形工序加工时,塑性和变形抗力的差异。
ab 2 a b J3 2 0 a b 2 ab 2 0 0 0 0 0
ab
J3 0 b 0 0 0 0 0
结论
两个应力张量表示同一应力状态。
一、应力张量不变量及其应用
应力张量不变量问题小结
1、由应力张量的三个主不变量可确定应力张量状态特
征方程,从而确定应力张量的三个主应力及其方向,由
lmn
1 1 8 1 2 3 m J1 3 3
1 3
8
1 m 0 0 2 2 2 2 2 2 2 2 2 2 1 2 2 l J2 J22 0 0 2 3 3 1 m n l m n 2 3 m 1 2 1 2 1 2 3 0 6 0 3 m