应力张量认识(一)
应力张量分量

应力张量分量引言应力张量分量是应力张量在一个特定的坐标系下的分量表示。
应力张量分量的理解对于材料科学和工程领域的应力分析具有重要意义。
在本文中,我们将了解应力张量的定义、表示方式、在不同坐标系下证明应力张量分量的变换规律以及一些应力分析方面的实际应用。
应力张量的定义应力张量是具有三个独立的分量的二阶张量,用于描述固体和液体中的应力状态。
应力可以理解为物体内部的力分布,因此应力张量可以表示为:σ = [σ11 σ12 σ13] [σ21 σ22σ23] [σ31σ32 σ33]其中,σ11、σ22 和σ33 表示沿着 x、y 和 z 轴的压力或拉力,σ12、σ13 和σ23 表示剪应力(或剪切应力)。
应力张量的表示方式为了确定应力张量的分量表示,我们需要选择一个参考坐标系。
在二维情况下,我们通常选择笛卡尔坐标系,其中坐标轴为 x 和 y。
在三维情况下,我们则使用三维笛卡尔坐标系,其中坐标轴为 x、y 和 z。
对于一个在一个给定坐标系下的应力张量,我们可以通过求解六个应力分量来表示它。
为了简化表示,通常使用下面的符号:σxx = σ11 σyy= σ22 σzz = σ33 σxy = σyx = σ12 σxz = σzx = σ13 σyz = σzy = σ23在这种表示方式下,σij 表示在 i 方向上对 j 方向的拉力或剪切力(也可以反过来表示)。
坐标系之间的转化当我们考虑不同的坐标系时,应力张量的表示会发生变化。
考虑两个不同的笛卡尔坐标系(原始坐标系和目标坐标系),它们的坐标轴可以写为以下矩阵的形式:[x'] [a11 a12 a13] [x] [y'] = [a21 a22 a23] [y] [z'] [a31 a32 a33] [z]其中,矩阵中的每个元素表示从目标坐标系中的一个坐标轴到原始坐标系中的相应坐标轴的投影。
为了推导出应力张量在不同坐标系下的表示,我们需要考虑以下事实:应力张量是下面这种形式的:σ = [ σxx σxy σxz] [ σxy σyyσyz] [ σxz σyz σzz]假设我们有一个 $n$ 维张量 $A$,其分量与坐标系之间的变换是 $A_{ij}^{'} = a_{ik} a_{jl} A_{kl}$。
应力张量的认识(一)

应力张量的认识(一)本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到后来逐渐认识的过程。
相关还有:Levy-Mises理论的思考从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。
初始,以一个基本定义记住了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。
曾经就有记录下对其理解的想法,但因思路尚未完善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。
我将这部分思考分为以下三部分:应力张量的认识(一)应力张量的认识(二)应力张量的认识(三)本文介绍第一部分应力的基本知识和常规认识。
应力初中物理就已知道,因外力作用而在物体内部产生的力成为内力。
单位面积上的内力即是应力,表征内力的强度。
为了研究某一点P处的应力,用某个截面在P点处切开物体,如下图所示。
根据定义可以得到P点的正应力σ、切应力τ,他们的合成即为全应力T。
需要注意的是,一个确定的截面对应了一组正应力和切应力。
但是过P点有无数的截面,那么如何才能真正描述P点的应力状态呢?应力状态点的应力状态是受力物体内某一点各个截面上应力的变化情况。
上面已经意识到过一点点有无数的截面,只有任意截面上的应力分量都可以确定,才可以说应力状态是确定的。
通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。
也即在P点截取一个无限小的平行六面体,称为单元体。
单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同的。
这样就只用三个互相垂直的截面上的应力来分析问题。
由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。
问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相反的?单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分的平面,截开前他们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。
应力张量的物理意义

应力张量的物理意义
从繁复变化中的万象中找到“不变”是科学和人类的终极追求。
“不变”=本质。
“不变”的含义是某一物理量不管从那个角度来看都是同一的。
精确一点来讲,就是在不同的坐标系下其值是不变的。
具体到应力张量,虽然应力张量有六个分量,但是它有三个不变量。
如果旋转坐标系,六个分量值变化,但是三个不变量是不变的。
不变量的定义有一定的任意性,比如如果定义了一组不变量,那么也是一组不变量。
从这个意义来讲,没有必要去追求各个不变量的物理意义。
对于常用的应力不变量,解释常见。
比如三维空间的面,过度的解释为变形能等。
如果还要解释,常见的方法是用Lode coordinates或Haigh–Westergaard coordinates应力不变量的最常见应用是用来构造屈服函数。
各向同性的屈服函数值在经过坐标旋转后的值必须不变,那么屈服函数必须由不变量来构成。
从线性代数的角度,我们可以将某一点的应力张量视为线性空间内的一组基。
这组基在不同的坐标系下是各异的,但是在任一坐标系下其特征向量组成的正交基是统一的。
我认为不变量的存在是为了解释这个本质。
由于力学单元体的定义,应力张量这个矩阵是严格对称的,保证了相似对角化的可行。
首先要知道1、应变状态:应变状态是弹性体内某一点各个不同方向的应变情况同应力分量一样,物体内任一点的六个应变分量随坐标系的旋转而改变.弹性体也存在三个相互垂直的应变主方向,在物
体发生变形后,沿这三个方向的。
应力张量符号表示一对切应力

应力张量符号表示一对切应力【实用版】目录1.应力张量的基本概念2.应力张量的符号表示3.切应力的定义及表示方法4.应力张量与切应力的关系正文一、应力张量的基本概念应力张量是固体力学中描述物体内部应力分布的一个重要物理量,它可以反映出物体在受力情况下内部各个点处的应力状态。
应力张量是一个二阶张量,其包含了六个独立分量,分别表示物体在三个正交方向上的正应力和剪应力。
二、应力张量的符号表示应力张量的符号表示通常采用英文字母σij 来表示,其中σ表示应力张量,i 和 j 分别表示应力张量中的两个正交方向。
根据应力张量的定义,σij 表示作用在物体上两个正交方向上的应力之比。
在实际应用中,为了简化表达,通常将应力张量的六个分量表示为一个 3x3 的矩阵,即:σ ={σ11, σ12, σ13,σ21, σ22, σ23,σ31, σ32, σ33}三、切应力的定义及表示方法切应力是指物体在剪切变形过程中,由于内部各层之间的相对位移产生的应力。
切应力是一个矢量,其方向垂直于剪切面,并指向物体的截面形变方向。
切应力可以用符号τ表示,其分量表示为τxy、τyz 和τzx,分别表示 x-y 平面、y-z 平面和 z-x 平面上的切应力。
四、应力张量与切应力的关系应力张量与切应力之间存在密切的关系。
根据应力张量的定义,可以得到切应力的表达式:τ = σ * I其中,τ表示切应力,σ表示应力张量,I 表示单位张量。
由此可知,切应力是应力张量与单位张量的乘积。
在实际计算中,可以根据应力张量的六个分量计算出切应力的三个分量。
总结:应力张量是描述物体内部应力分布的重要物理量,它可以反映物体在受力情况下内部各个点处的应力状态。
应力张量的符号表示为σij,切应力是应力张量与单位张量的乘积。
第一章 应力.ppt

y , yx , yz
z , zx , zy
用矩阵表示:
z
z
x xy xz yx y yz zx zy z
应力符号的意义:
x
O
xz xy y y yx yz x zx zy z
z
zy
A
o
z
x x + dx x
xz xz + dx x x
xy +
xy x
y
dx
首先,以连接六面体前后两面中心的直线
为矩轴,列出
力矩的平衡方程
z
z z + dz z C zy zy + dz zx z + yz zx + dz dy z yz
(2)两主应力相等,设
由第一式自然满足 由第二式,得
方程的解为
表示通过oz轴的平面,该组平面上,剪应力为零。
表示任一个与圆锥面相切的微分面。在该组 面上剪应力取最大值。
(3)三个主应力相等
空间任一方向都为主方向,即任一平面都是主平面, 剪应力均为零。 该应力状态称为均匀受力状态,也称为静水应力状态。
y yz P
yx
dz
e
e'
dx
o A
zy
dy
zx
y y y+ dy y yx yx + dy B y
z
y
x
整理,并略去微量后,得
同样可以得出
剪应力互等定理
列出x轴方向的力的平衡方程
由其余两个平衡方程 和 可以得出与之相似的两个方
程。化简,除以dxdydz,得
第05讲 应力张量

主应力
1、主应力的求解
旋转坐标轴,使Q点的斜面ABC
正好是主平面(τ=0),则斜面上 全应力S就是正应力σ(σ=S)。
S在三轴上的投影
SSyx
l m
S z n
以l,m,n为未知数的齐次线性 方程组。其解有二。
S S
x y
xl yxm zxn xyl ym zyn
1
2
3
又 l2 m2 n2 1
S1122
S22
2 2
S32
2 3
1
椭球面方程,其主半轴的长度分 别为σ1,σ2,σ3。——称应力椭球 面。它是任意斜面全应力矢量S端 点的轨迹。
应力椭球体
2、应力状态的分类
a)若σ1≠σ2≠σ3≠0——三向应力状态。 b)若σ1≠σ2≠0,σ3=0——二向应力状态。 c)若σ1≠0;σ2=σ3=0——单向应力状态。 d)若σ1≠σ2=σ3——圆柱应力状态(包括单向应力状态)。⊥ σ1 的方向均为主方向。 e)若σ1=σ2=σ3——球应力(静水应力)状态。τ≡0,各方向均 为主方向。
3阶张量
张量的概念
2、张量的概念
标量:一个数,当坐标变换时,(xi)= ’(xi’),即不依赖 于坐标,则定义为标量——零阶张量。
矢量:三个数的集合,当坐标变换时,根据式ai’=Mi’iai,由 a1,a2,a3变为a1’,a2’,a3’,则此三个分量定义为矢量——一阶
张量。
张量:32个数的集合,当坐标变换时,根据式Ti’j’=Mi’i Mj’jTij,由Tij变为Ti’j’,则此九个分量定义为二阶张量——简
1 9 2 3 3 3 3 3
应力、应变的张量描述方程

自由指标和哑标举例:
ai bi ai bi a1b1 a2b2 a3b3
3 i 1 3
aij b j aij b j ai1b1 ai 2b2 ai 3b3
aij bi c j aij bi c j a11b1c1 a12b1c2 a13b1c3
力状态可以用应力张量σ( )表示,它具有二重方向性,是
二阶张量,而标量和矢量分别为零阶和一阶张量。
x3=z u3(uz)
矢量可以在参考直 角坐标系下分解,以位 移矢量 u 为例,它可以 表示成位移分量ux、 uy 、 uz与基矢ex、 ey 、 ez的 乘积之和的形式:
e3 ( k ) u ( u ) 1 x e1 ( i ) o e ( j ) 2 x1=x
1.1 张量初步
力学中常用的量可以分成几类:只有大小没有方向性 的物理量称为标量,通常用一个字母来表示,例如温度T、 密度ρ、时间t等。既有大小又有方向的物理量称为矢量, 常用黑体字母(或字母上加一箭头)来表示,例如矢径r( )
和力 r F( )等。具有多重方向性的的更为复杂的物理量称为 F 张量,常用黑体字母或字母下加一横表示,例如一点的应
ij n j ni ij ij n j 0
(1-9) (1-10)
式(1-9)有零解的条件是: ij ij 0
x xy xz ij ij 0 yx y yz 0 zx zy z
(1-11)
I1 x y z ii y yz x xz x xy I2 z zx z yx y zy 1 2 2 2 x y y z z x xy yz zx ij ij ii jj 2 (1-12) x xy xz I 3 yx y yz 或 ij zx z ii ui,i
应力张量和应变张量的关系

应力张量和应变张量的关系在物理和工程的世界里,有两个小伙伴总是形影不离,那就是应力张量和应变张量。
就像老鼠和米饭,或者说是鱼和水,这俩家伙其实是相辅相成的,缺一不可。
今天咱们就来聊聊这两位的关系,顺便让这话题变得轻松有趣,让大家听了觉得“这还真有意思!”1. 应力张量——你能忍受多少压力?1.1 什么是应力张量?应力张量嘛,可以简单理解为“压力的图谱”。
想象一下,你在参加一场拔河比赛,另一边的人使劲拉,你的手臂就会感受到拉力。
这个拉力就是应力。
如果我们把这个感觉用一个数学对象来表示,那就是应力张量。
它可以告诉我们在一个物体内部,各个方向上受到了多大的压力。
1.2 应力的分类应力可不是单一的,它分成好几种,像是“拉应力”、“压应力”和“剪应力”。
拉应力就像你拉一根橡皮筋,越拉越长;压应力则像是在面团上用力按,面团就变扁了。
至于剪应力嘛,想象一下你在切水果,刀子刮过的地方就是受到剪应力的地方。
通过这些应力,我们就能感受到物体内部的变化和状态。
2. 应变张量——变形的小精灵2.1 应变张量的概念说到应变张量,它就像是应力张量的反应者,专门负责记录物体是如何变形的。
用个简单的比喻来说,假如应力是拉面师傅的力量,那么应变就是拉出来的面条。
面条在拉伸的过程中,变长了,变细了,这就是应变在作怪。
2.2 应变的种类应变同样有多种形式,比如“拉伸应变”、“压缩应变”和“剪切应变”。
拉伸应变就像你把橡皮筋拉得细细的,压缩应变就像把一个泡沫压扁,而剪切应变就像你用力划过一块巧克力,让它变得不平整。
这些变形的形式让我们对材料的性能有了更深的理解。
3. 应力与应变——亲密无间的关系3.1 他们是好朋友说到应力和应变的关系,其实就是一个因果关系。
就像是“打虎亲兄弟,上阵父子兵”,应力会导致应变的发生。
你想啊,当一个物体受到外力作用时,它肯定会有所反应,这个反应就是应变。
这就像你被朋友拉着走,脚步肯定要跟着他的节奏走,这样才能保持平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应力张量的认识(一)
本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到 后来逐渐认识的过程。
相关还有:Levy-Mises 理论的思考
从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。
初始,以一个基本定义记住 了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。
曾经就有记录下对其理解的想法,但因思路尚未完 善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。
我将这部分思考分为以下三部分: 应力张量的认识(一) 应力张量的认识(二) 应力张量的认识(三) 本文介绍第一部分应力的基本知识和常规认识。
应力
初中物理就已知道,因外力作用而在物体内部产生的力成为内力。
单位面积上的内力即是应力,表征内力的强 度。
为了研究某一点 P 处的应力,用某个截面在 P 点处切开物体,如下图所示。
根据定义可以得到 P 点的正应力 σ、切应力 τ,他们的合成即为全应力 T。
需要注意的是,一个确定的截面对应了一组正应力和切应力。
但是过 P 点有无数的截面,那么如何才能真正 描述 P 点的应力状态呢?
应力状态
点的应力状态是受力物体内某一点各个截面上应力的变化情况。
上面已经意识到过一点点有无数的截面,只有 任意截面上的应力分量都可以确定,才可以说应力状态是确定的。
通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。
也即在 P 点截 取一个无限小的平行六面体,称为单元体。
1/4
单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同 的。
这样就只用三个互相垂直的截面上的应力来分析问题。
由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。
问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相 反的? 单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分的平面,截开前他 们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。
所以,从各自的方向上来看,应 力方向还是相同的。
应力张量
根据上面的微单元体上的应力分量,是否可以求出任意截面的应力分量?
答案是肯定的。
根据三个方向的静力平衡就可以列式计算得到上图的任意的法向为(n1,n2,n3)的截面上的应力 分量。
三个互相垂直的截面上的 9 个应力分量可以确定任意截面的应力,也就是说可以确定一点的应力状态了。
同 时从这三个截面的选取上来看,他们和坐标系无关。
于是我们把用上面九个应力分量作为一个整体来描述一点应力状态的物理量叫作应力张量,记作
主应力 如果作用在某一截面上的全应力和这一截面垂直,即该截面上只有正应力,则这一截面称为主平面,其法线方 向称为应力主方向,其上的应力称为主应力。
如果三个坐标轴方向都是主方向,则称这一坐标系为主坐标系。
求解方法依然是根据静力平衡条件。
2/4
应力张量不变量 在求解主应力的过程中会得到以主应力为未知数的三次方程,叫做状态方程。
状态方程的三个系数唯一由主应力确定,而一点的主应力是唯一的,这样就得到了不随坐标变化的三个量,叫 作应力张量不变量
用一般应力表示为
主切应力 切应力有极值的截面叫主切应力平面,面上的切应力叫作主切应力。
六个主切应力中绝对值最大的叫作最大切 应力。
通过计算可知,主切应力平面与主应力平面成 45° 夹角。
由于塑性变形是由切应力引起的,所以最大切应力可以作为判断屈服的准则。
应力张量分解 将三个正应力的平均值叫作平均应力,静水应力,应力张量减去这部分后得到应力偏张量。
应力偏张量同样有 三个不变量。
3/4
应力张量分解的物理意义在于: 物体在应力张量作用下的变形分为体积变化和形状变化两部分;前者取决于应力球张量,后这取决于应 力偏张量;体积变化表征弹性变形,当应力偏张量满足一定条件后,则物体发生塑性变形。
应力平衡微分方程
以上说明的都是一点的应力状态,而物体内部不同点的应力状态一般是不同的,那么如何描述相邻点间的应力 变化关系呢?
以物体内某一点 P(x,y,z)为顶点截取边长分别为 dx,dy,dz 的直角平行六面体微元,另一个顶点的坐标则为 (x+dx,y+dy,z+dz)。
根据静力平衡方程,并处理掉高阶小量,得到应力平衡微分方程:
问题:这部分中微六面体应力状态分析的图与之前一点应力状态的图即为相似,却有不同,如何理解? 二者的涵义完全不同。
点的应力状态图强调的是同一个点在不同截面下的状态,而微六面体应力状态分 析强调的是相邻两个点之间的应力关系。
可以说前者是静态的,后者揭示的是相互作用的关系。
总结
这一部分梳理了我们常规学习的内容,可以概括为两点: 应力张量——某点的应力状态
应力平衡方程——相邻点的相互作用 接下来的部分将记录我对应力张量更为本质涵义的理解。
4/4
。