应力张量例题
应力张量例题

= −ab
两个应力张量表示同一应力状态。
一、应力张量不变量及其应用
应力张量不变量问题小结
1、由应力张量的三个主不变量可确定应力张量状态特 、 征方程,从而确定应力张量的三个主应力及其方向,由 征方程,从而确定应力张量的三个主应力及其方向, 此定义了应力的状态。 此定义了应力的状态。 2、判断两个应力的状态是否相同,可以通过判断对应 、判断两个应力的状态是否相同, 的三个主不变量是否相同来实现。 的三个主不变量是否相同来实现。
2 2
2
=±
5 14 3
二、几种重要应力的计算
等效应力
σ=
3 3 1 τ8 = ± 350 = 5 7 2 2 3
MPa
几种重要应力计算问题小 结
要求掌握一点处的主应力及主方向、最大切应力、 要求掌握一点处的主应力及主方向、最大切应力、八 面体应力、等效应力的计算方法。 面体应力、等效应力的计算方法。
n3 = 0
τ max =
八面体应力
1 (σ max − σ min ) = 1 (10 − (−5) ) = 7.5 MPa 2 2
1 3
σ 8 = (σ 1 + σ 2 + σ 3 ) = (10 + 0 − 5) = 1.67 MPa
τ8 = ±
1 3
1 3
(σ 1 − σ 2 ) + ( σ 2 − σ 3 ) + (σ 3 − σ 1 )
一、应力张量不变量及其应用
知识要点回顾 二阶张量的定义: 二阶张量的定义
Pkr = Pij lki lrj
( i, j =1,2,3; k,r =1′ ,2′,3′)
P 11 P 21 P31 P 12 P22 P32 P 13 P23 P33
弹性与塑性力学第2,3章习题答案

第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, 0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
弹性与塑性力学第2,3章习题答案

第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
张量分析与材料应力张量习题解答

练习题Ⅱ(金属所)1. 用下标符号证明:C B A B C A C B A )()()(⋅-⋅=⨯⨯。
2. 证明nknj ni mk mj mi lklj li lmn ijk δδδδδδδδδ=∈∈3. 证明ijk klm =(δil δjm -δim δjl )4. 证明ijk ikj =-6。
5. 证明ijkmik =-2δjm 。
6. 证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。
7. B 为矢量,M 为二阶张量,证明:(div M )⋅B =div(M ⋅B )-{ (B ∇)∶M } 8. 设在P 点的应力张量 σ如下:求法线方向为]221[的面上的正应力。
⎪⎪⎪⎭⎫ ⎝⎛----=211121112)(ij σ9. 设在P 点的应力张量 σ如下:求该处的主应力及主方向。
并验证主方向是相互正交的。
⎪⎪⎪⎭⎫ ⎝⎛=740473037)(ij σ10. 位移场u 在给定坐标系下的分量分别是:u 1= ax 2+bx 3,u 2=ax 1cx 3,u 3= bx 2+cx 3;其中a 、b 、c 皆为常数。
求这个位移场的应变张量Γ。
11. 弹性体的的应变张量场如下所示,这个应变张量场合理吗?⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=32222111216112226226)(x x x x x x x ij ε12. 在立方晶体中承受一均匀应力场,以]101[、]211[和[111]为x 1、x 2和x 3坐标轴的应力分量只有σ13和σ23两项,求以三个晶轴作坐标系的各应力分量σ’ij 。
练习题Ⅱ解答(金属所)1. 用下标符号证明: C B A B C A C B A )()()(⋅-⋅=⨯⨯。
解:CB A BC A e e e e e C B C B A )()()(()()()(⋅-⋅=-==∈∈=∈=∈⨯=∈⨯⨯i i j j j i j i jl im jm il m l j i klm ijk m l j ik m l klm j ijk i k j ijk c b a c b a )δ-δδδc b a c b a c b a a 2. 证明nknj ni mk mj mi lklj li lmn ijk δδδδδδδδδ=∈∈解:a ij 的行列式为333231232221131211det a a a a a a a a a A = 当行列式行与行、列与列对换一次行列式的值就变号一次,任意换行后有A a a a a a a a a a lmn n n n m m m l l l det 321321321=∈ 任意换列后有A a a a a a a a a a ijk kjik j i kj i det 333222111=∈ 因此,任意行与行、列与列交换后有A a a a a a a a a a lmn ijk nkmkninj mj mi nimi li det ∈=∈ 令a ij =δij ,det A =1,则有lmn ijk nknj ni mk mj mi lklj li ∈=∈δδδδδδδδδ 3. 证明ijk klm =(δil δjm -δim δjl ) 解:根据上题的结果,有)()3()3()()(im jl mj li li mj mj li mi lj mj li mi lj jl im li kj mk ki mj lk mi lj kk mj li kk mi lk kj mk lj ki mkmj mi lklj li kkkj ki klm ijk δδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδ-=++-++=++-++==∈∈4. 证明ijk ikj =-6解:ijk ikj =-ijk kij =-(δii δjj -δij δji )=-(33-δii )=-(9-3)=-65. 证明ijk mik =-2δjm解:ijk mik =ijk kmi =(δim δji -δii δjm )= (δjm -3δjm )=-2δjm6.证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。
塑性成形理论课后答案2修改

第一章1-10. 已知一点的应力状态10100015520⨯⎪⎪⎪⎭⎫ ⎝⎛--=ij σMPa ,试求该应力空间中122=+-z y x 的斜截面上的正应力n σ和切应力n τ为多少?解:若平面方程为Ax+By+Cz+D=0,则方向余弦为:222CB A A ++=l ,222CB A B ++=m ,222CB AC n ++=因此:312)(-211222=++=l ,322)(-212-222-=++=m ;322)(-212n 222=++= S x =σx l +τxy m +τxz n=3100325031200=⨯-⨯S y =τxy l +σy m +τzy n = 3350321503150=⨯+⨯S z =τxz l +τyz m +σz n=320032100-=⨯-11191000323200323350313100S S S -=-=⨯-⨯-⨯=++=n m l z y x σ125003200335031002222222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++=z y x S S S S4.1391000125002=⎪⎭⎫⎝⎛-=τ1-11已知OXYZ 坐标系中,物体内某点的坐标为(4,3,-12),其应力张量为:⎪⎪⎪⎭⎫⎝⎛--=1030205040100 ij σ,求出主应力,应力偏量及球张量,八面体应力。
解:=1J z y x σσσ++=100+50-10=140=2J 222xy xz yz y x z x z y τττσσσσσσ---++=100×50+50×(-10)+100×(-10)-402-(-20)2-302=600=3J 321σσσ=2222xy z xz y yz x xz yz xy z y x τστστστττσσσ---+ =-192000019200060014023=-+-σσσσ1=122.2,σ2=31.7,σ3=49.5 σm=140/3=46.7;7.5630203.3403.53⎪⎪⎪⎭⎫ ⎝⎛--=' ij σ ;7.460007.4607.46m ⎪⎪⎪⎭⎫ ⎝⎛=i σσ8=σm =46.71.39)()()(312132322218=-+-+-±=σσσσσστ 1-12设物体内的应力场为3126x c xy x +-=σ,2223xy c y -=σ,y x c y c xy 2332--=τ,0===zx yz z ττσ,试求系数c 1,c 2,c 3。
材料成型力学习题集

I 2 1 2 2 3 3 1
I 3 1 2 3
例:已知应力状态如图所示,写出应力分量,并以张量形式表示之
8 z 3 y x 5 5 3 10 5 10 7 2 8
5
例:已知应力状态的六个分量,
x 7, xy 4, y 0, yz 4, zx 8, z 15( MPa)
b
p p
f
p
3)某材料屈服极限为 s 180 MPa ,试判断如图 所示应力状态中 (1)哪种已经进入变形状态 (2)画出变形状态图 (3)如果已经发生了很大塑性变形,此时的 屈服极限是多少?
100 100 100
20 20
100
100 100
100
4)某材料进行单向拉伸试验,当进入塑性状态时的断 面积 F 100 mm 2 ,载荷为 p 6000 N (1)求此瞬间的应力分量、偏差应力分量与球 分量; (2)画出应力状态分解图,写出应力张量; (3)画出变形状态图; (4)此时材料的屈服极限是多少? 5)已知应力状态和对 应的变形状态如图所 示,如果材料的屈服 极限为200MPa,则应 力 2 和 3是多少?
50 80
例
写出公称应变(或变形)的表达式,并指出其缺点。
例 试证明真应变满足变形的可比(加)性,工程应变不满足变形的 可比(加)性。 例 证明对数应变(真应变)满足体积不变条件. 例 轧制宽板时,厚向总的对数变形为ln H =0.357,总的压下率为(Hh h)/H=30%,共轧两道,第一道的厚向对数变形为0.223;第二道的压下率 为0.2,试求第二道的厚向对数变形和第一道压下率. 例 证明第一主应力是最大正应力,第三主应力是最小正应力
1 u x u y ( ) 2 y x
参考答案(第5章)

第二组的应变分量为:
ε x = a2 + 2a4 x + a5 y, γ xy = γ yx = ε y = a9 , γ yz = γ zy = 0 ε z = 0, γ zx = γ xz = 0
1 ( a3 + a5 x + 2a6 y + a8 + 2a10 x + a11 y )⎫ ⎪ 2 ⎪ ⎬ ⎪ ⎪ ⎭
−6
( ) = ( −320 − 32 5 ) × 10
10. 根据柯西方程,得到第一组的应变分量为:
1 ( a3 + a5 )⎫ ⎪ 2 ⎪ ε y = a6 , γ yz = γ zy = 0 ⎬ ⎪ ε z = 0, γ zx = γ xz = 0 ⎪ ⎭
ε x = a2 , γ xy = γ yx =
1.
该斜面的方向余弦为: l =
1 3 1 ,m = ,n = 11 11 11 50 70 30 , Sy = , Sz = 11 11 11
根据公式得到该斜面的应力分量为: S x = 正应力为: σ = S N = S xl + S y m + S z n = 切应力为:τ = 2.
290 ≈ 26.3MPa 11
11. 根据应变定义,得到应变张量为:
⎡εx 0 ε ij = ⎢ 0 ε y ⎢ ⎢ ⎣γ zx 0
得到三个应变不变量为:
γ xz ⎤
0⎥ ⎥ εz ⎥ ⎦
I1 = ε x + ε y + ε z
2 I 2 = ε xε y + ε y ε z + ε z ε x − γ x z 2 I 3 = ε xε yε z − ε yγ xz
第二章-应力分析-例题-东北大学课件

2019年固体力学与岩石力学基础例题第二章 应力分析例题2.1 设某点的应力张量为012120201⎛⎫ ⎪= ⎪ ⎪⎝⎭σ试求过该点平面12331x x x ++=上的应力矢量,并求正应力矢量和切应力矢量。
解:设该平面的法线矢量为:v =(l ,m ,n)由几何关系知:l 1=m 3=n 1联立方程:l 2+m 2+n 2=1于是解得:l =√1111,m =3√1111,n =√1111所以,该平面上的应力矢量的三个分量分别为:T x =σx l +τyx m +τzx n =0×√1111+1×3√1111+2×√1111=5√1111 T y =τyx l +σy m +τzy n =1×√1111+2×3√1111+0×√1111=7√1111 T z =τzx l +τzy m +σz n =2×√1111+0×3√1111+1×√1111=3√1111该平面的法向应力和切向应力为:σv =T x l +T y m +T z n =5√1111×√1111+7√1111×3√1111+3√1111×√1111=2911τv 2=T v 2−σv 2=8311−841121=72121τv =6√211解答完毕。
例题2.2 设有图2.1示三角形水坝,试列出OP 面(光滑面)的应力边界条件。
图2.1解:在OP 面上有应力边界条件:(σx1x2)x1=0=γx 2 (τx1x2)x1=0=0式中,γ为水的比重。
解答完毕。
例题2.3 已知一点的应力张量为2201211210σ⎛⎫ ⎪ ⎪ ⎪⎝⎭过该点的一个作用面,作用面上的应力矢量=N 0,求: 1)22σ;2)作用面法线与坐标系的夹角余弦(,,)l m n 。
解:由于具有一个平面,使得在过改点的一个平面上,应力矢量为0,即:0×l +1×m +2×n =0 1×l +σ22×m +1×n =0 2×l +1×m +0×n =0又根据几何关系:l 2+m 2+n 2=1解得:σ22=12l =√66 m =−√63n =√66解答完毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)塑性变形中的滑移与孪生或晶界滑移,都主要与切应力有关。
取应力主轴为坐标轴,则任意斜微分面上的切应力为
? 2
12l 2
2 2
m2
32n2
1l2 2m2 3n2
2
最大切应力计算公式
max
1 2
max min
二、几种重要应力的计算
2)可根据三个主应力的特点来直观地区分各种应力状态,或者定性地比较某 一种材料采用不同的塑性成形工序加工时,塑性和变形抗力的差异。
应力状态特征方程 齐次线性应力平衡方程组
方向余弦条件
3 J1 2 J2 2 J3 0
x l yxm zxn 0
xyl y m zyn 0
二、几种重要应力的计算
例题解答 1) 画出该点的应力单元体 z
O x
5 -5 -5 5
-5 y
二、几种重要应力的计算
例题解答
2) 用应力状态特征方程求出该点的主应力及主方向
计算应力张量的三个主不变量
J1 x y z 55 5 5
J2
x yx
xy y y zy
216m21 32n22
2 2
3
2
3
1
2
1 3
1
2
1 3
2
2
1 3
3
2
1 3
1
2
3
2
3
1 3
1 2 2 2 3 2 3 1 2
2 3
J
2
Q
2
1
arccos 1 54o44
3
二、几种重要应力的计算
知识要点回顾
3、等效应力 1)取八面体切应力绝对值的 3 倍所得的参量称为等效应力,也称为广义应
力或应力强度,用 表示。 2
2)等效应力是一个不变量,是一个与材料塑性变形有密切关系的参 数。
n
八面体平面的方向余弦 l m n 1
8
1 3
1
2
3
m
1 3
J1
3
8
J 2
1J22l2
1 m
022m2
0
0
232nm 2
0
0
01l2
3 m
知识要点回顾
3、八面体应力
1)以受力物体内任意点的应力主轴为坐标轴,在无限靠近该点处作与三个应 力主轴等倾斜的微分面,其法线与三个主轴的夹角都相等。在主轴坐标系空 间八个象限中的等倾微分面构成一个正八面体。正八面体的每个平面 称八面 体平面,八面体平面上的应力称为八面应力。
2)八面体平面是一点应力状态的特殊平面,平面上的应力值对研究
yz z z xz
zx x
5 0 5 0 5 5
0
5 0
5 5
5
50
x xy xz
5 0 5
J3 yx y yz 0 5 0 0
xzl yzm z n 0
l2 m2 n2 1
(1) (2) (3)
二、几种重要应力的计算
知识要点回顾 2、最大切应力
2 12l2 22m2 32n2 1l2 2m2 3n2 2
1)与正应力一样,切应力也随坐标变换而变化,可取得极值。取其中绝对值 最大的切应力为最大切应力,记为 max 。
二、几种重要应力的计算
知识要点回顾 1、主应力
P11 P12 P13
P21
P22
P23
P31 P32 P33
P1•1 0
0 P2•2
0
0
0 0 P3•3
1)应力张量为实对称张量,通过坐标转换可以得到切应力为零的状态,此时 的应力称为主应力。本质上与矩阵代数中通过初等变换将一个矩阵化为标准 形的问题相同。
2 ab
2
ab ab
2 ab
2 0
2
00
00
ab ab 0 22
J3
ab 2
ab 2
0 0
0 00
0
a b ab
2
结论
两个应力张量表示同一应力状态。
一、应力张量不变量及其应用
应力张量不变量问题小结
1、由应力张量的三个主不变量可确定应力张量状态特 征方程,从而确定应力张量的三个主应力及其方向,由 此定义了应力的状态。 2、判断两个应力的状态是否相同,可以通过判断对应 的三个主不变量是否相同来实现。
一个应力状态有重要作用。
3
Q
2
1
arccos 1 54o44
3
二、几种重要应力的计算
知识要点回顾 3、八面体应力
S1 S2
l1 m
2
S3 n3
8 =S1 S2
l
S3 m l 21 m2 2 n23
一、应力张量不变量及其应用
应力张量是二阶实对称张量,有三个独立的主不变量。 利用应力张量的三个主不变量,可以判别应力状态的异同。
例题
试判断以下两个应力张量是否表示同一应力状态?
a 0 0
1 ij
0
b
0
0 0 0
ab
2
ab 2
0
2 ij
a
b 2
ab 2
0
0
0 0
一、应力张量不变量及其应用
例题解答
对于
1 ij
J1 a b0 a b
J2
a 0
0b
b0
00
00
0
a
ab
a00 J3 0 b 0 0
000
同理,对于
2 ij
J1
a
2
b
a
2
b
0
a
b
ab
J2
等效应力定义式
3 2
8
3 2
2 3
J
2
3J2
二、几种重要应力的计算
例题
对于oxyz直角坐标系,受力物体内一点的应力状态为
5 0 5
ij
0
5
0
(Mpa)
5 0 5
1) 画出该点的应力单元体;
2) 试用应力状态特征方程求出该点的主应力及主方向;
3) 求出该点的最大切应力、八面体应力、等效应力。