应力张量例题
应力张量例题

= −ab
两个应力张量表示同一应力状态。
一、应力张量不变量及其应用
应力张量不变量问题小结
1、由应力张量的三个主不变量可确定应力张量状态特 、 征方程,从而确定应力张量的三个主应力及其方向,由 征方程,从而确定应力张量的三个主应力及其方向, 此定义了应力的状态。 此定义了应力的状态。 2、判断两个应力的状态是否相同,可以通过判断对应 、判断两个应力的状态是否相同, 的三个主不变量是否相同来实现。 的三个主不变量是否相同来实现。
2 2
2
=±
5 14 3
二、几种重要应力的计算
等效应力
σ=
3 3 1 τ8 = ± 350 = 5 7 2 2 3
MPa
几种重要应力计算问题小 结
要求掌握一点处的主应力及主方向、最大切应力、 要求掌握一点处的主应力及主方向、最大切应力、八 面体应力、等效应力的计算方法。 面体应力、等效应力的计算方法。
n3 = 0
τ max =
八面体应力
1 (σ max − σ min ) = 1 (10 − (−5) ) = 7.5 MPa 2 2
1 3
σ 8 = (σ 1 + σ 2 + σ 3 ) = (10 + 0 − 5) = 1.67 MPa
τ8 = ±
1 3
1 3
(σ 1 − σ 2 ) + ( σ 2 − σ 3 ) + (σ 3 − σ 1 )
一、应力张量不变量及其应用
知识要点回顾 二阶张量的定义: 二阶张量的定义
Pkr = Pij lki lrj
( i, j =1,2,3; k,r =1′ ,2′,3′)
P 11 P 21 P31 P 12 P22 P32 P 13 P23 P33
弹性与塑性力学第2,3章习题答案

第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, 0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
弹性与塑性力学第2,3章习题答案

第二章2.1(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2); (b )应力主轴的方位;(c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式(2.26)计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j =272.47 nT 3=σ3j n j =157.31所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=314.62(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(2.43),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±0.866,±0.5) n i (2)=(0, μ0.5,±0.866) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(2.96),可算σotc =1/3(0+100+300)=133.3τotc =1/3(90000+40000+10000+6*30000) 1/2=188.56(e) 已经求得σ1=400、σ2=σ3=0,则有(2.91)给出的最大剪应力为τmax =2002.2(曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。
张量分析与材料应力张量习题解答

练习题Ⅱ(金属所)1. 用下标符号证明:C B A B C A C B A )()()(⋅-⋅=⨯⨯。
2. 证明nknj ni mk mj mi lklj li lmn ijk δδδδδδδδδ=∈∈3. 证明ijk klm =(δil δjm -δim δjl )4. 证明ijk ikj =-6。
5. 证明ijkmik =-2δjm 。
6. 证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。
7. B 为矢量,M 为二阶张量,证明:(div M )⋅B =div(M ⋅B )-{ (B ∇)∶M } 8. 设在P 点的应力张量 σ如下:求法线方向为]221[的面上的正应力。
⎪⎪⎪⎭⎫ ⎝⎛----=211121112)(ij σ9. 设在P 点的应力张量 σ如下:求该处的主应力及主方向。
并验证主方向是相互正交的。
⎪⎪⎪⎭⎫ ⎝⎛=740473037)(ij σ10. 位移场u 在给定坐标系下的分量分别是:u 1= ax 2+bx 3,u 2=ax 1cx 3,u 3= bx 2+cx 3;其中a 、b 、c 皆为常数。
求这个位移场的应变张量Γ。
11. 弹性体的的应变张量场如下所示,这个应变张量场合理吗?⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=32222111216112226226)(x x x x x x x ij ε12. 在立方晶体中承受一均匀应力场,以]101[、]211[和[111]为x 1、x 2和x 3坐标轴的应力分量只有σ13和σ23两项,求以三个晶轴作坐标系的各应力分量σ’ij 。
练习题Ⅱ解答(金属所)1. 用下标符号证明: C B A B C A C B A )()()(⋅-⋅=⨯⨯。
解:CB A BC A e e e e e C B C B A )()()(()()()(⋅-⋅=-==∈∈=∈=∈⨯=∈⨯⨯i i j j j i j i jl im jm il m l j i klm ijk m l j ik m l klm j ijk i k j ijk c b a c b a )δ-δδδc b a c b a c b a a 2. 证明nknj ni mk mj mi lklj li lmn ijk δδδδδδδδδ=∈∈解:a ij 的行列式为333231232221131211det a a a a a a a a a A = 当行列式行与行、列与列对换一次行列式的值就变号一次,任意换行后有A a a a a a a a a a lmn n n n m m m l l l det 321321321=∈ 任意换列后有A a a a a a a a a a ijk kjik j i kj i det 333222111=∈ 因此,任意行与行、列与列交换后有A a a a a a a a a a lmn ijk nkmkninj mj mi nimi li det ∈=∈ 令a ij =δij ,det A =1,则有lmn ijk nknj ni mk mj mi lklj li ∈=∈δδδδδδδδδ 3. 证明ijk klm =(δil δjm -δim δjl ) 解:根据上题的结果,有)()3()3()()(im jl mj li li mj mj li mi lj mj li mi lj jl im li kj mk ki mj lk mi lj kk mj li kk mi lk kj mk lj ki mkmj mi lklj li kkkj ki klm ijk δδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδδ-=++-++=++-++==∈∈4. 证明ijk ikj =-6解:ijk ikj =-ijk kij =-(δii δjj -δij δji )=-(33-δii )=-(9-3)=-65. 证明ijk mik =-2δjm解:ijk mik =ijk kmi =(δim δji -δii δjm )= (δjm -3δjm )=-2δjm6.证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。
应力张量例题

2)塑性变形中的滑移与孪生或晶界滑移,都主要与切应力有关。
取应力主轴为坐标轴,则任意斜微分面上的切应力为
? 2
12l 2
2 2
m2
32n2
1l2 2m2 3n2
2
最大切应力计算公式
max
1 2
max min
二、几种重要应力的计算
2)可根据三个主应力的特点来直观地区分各种应力状态,或者定性地比较某 一种材料采用不同的塑性成形工序加工时,塑性和变形抗力的差异。
应力状态特征方程 齐次线性应力平衡方程组
方向余弦条件
3 J1 2 J2 2 J3 0
x l yxm zxn 0
xyl y m zyn 0
二、几种重要应力的计算
例题解答 1) 画出该点的应力单元体 z
O x
5 -5 -5 5
-5 y
二、几种重要应力的计算
例题解答
2) 用应力状态特征方程求出该点的主应力及主方向
计算应力张量的三个主不变量
J1 x y z 55 5 5
J2
x yx
xy y y zy
216m21 32n22
2 2
3
2
3
1
2
1 3
1
2
1 3
2
2
1 3
3
2
1 3
1
2
参考答案(第5章)

第二组的应变分量为:
ε x = a2 + 2a4 x + a5 y, γ xy = γ yx = ε y = a9 , γ yz = γ zy = 0 ε z = 0, γ zx = γ xz = 0
1 ( a3 + a5 x + 2a6 y + a8 + 2a10 x + a11 y )⎫ ⎪ 2 ⎪ ⎬ ⎪ ⎪ ⎭
−6
( ) = ( −320 − 32 5 ) × 10
10. 根据柯西方程,得到第一组的应变分量为:
1 ( a3 + a5 )⎫ ⎪ 2 ⎪ ε y = a6 , γ yz = γ zy = 0 ⎬ ⎪ ε z = 0, γ zx = γ xz = 0 ⎪ ⎭
ε x = a2 , γ xy = γ yx =
1.
该斜面的方向余弦为: l =
1 3 1 ,m = ,n = 11 11 11 50 70 30 , Sy = , Sz = 11 11 11
根据公式得到该斜面的应力分量为: S x = 正应力为: σ = S N = S xl + S y m + S z n = 切应力为:τ = 2.
290 ≈ 26.3MPa 11
11. 根据应变定义,得到应变张量为:
⎡εx 0 ε ij = ⎢ 0 ε y ⎢ ⎢ ⎣γ zx 0
得到三个应变不变量为:
γ xz ⎤
0⎥ ⎥ εz ⎥ ⎦
I1 = ε x + ε y + ε z
2 I 2 = ε xε y + ε y ε z + ε z ε x − γ x z 2 I 3 = ε xε yε z − ε yγ xz
第二章-应力分析-例题-东北大学课件

2019年固体力学与岩石力学基础例题第二章 应力分析例题2.1 设某点的应力张量为012120201⎛⎫ ⎪= ⎪ ⎪⎝⎭σ试求过该点平面12331x x x ++=上的应力矢量,并求正应力矢量和切应力矢量。
解:设该平面的法线矢量为:v =(l ,m ,n)由几何关系知:l 1=m 3=n 1联立方程:l 2+m 2+n 2=1于是解得:l =√1111,m =3√1111,n =√1111所以,该平面上的应力矢量的三个分量分别为:T x =σx l +τyx m +τzx n =0×√1111+1×3√1111+2×√1111=5√1111 T y =τyx l +σy m +τzy n =1×√1111+2×3√1111+0×√1111=7√1111 T z =τzx l +τzy m +σz n =2×√1111+0×3√1111+1×√1111=3√1111该平面的法向应力和切向应力为:σv =T x l +T y m +T z n =5√1111×√1111+7√1111×3√1111+3√1111×√1111=2911τv 2=T v 2−σv 2=8311−841121=72121τv =6√211解答完毕。
例题2.2 设有图2.1示三角形水坝,试列出OP 面(光滑面)的应力边界条件。
图2.1解:在OP 面上有应力边界条件:(σx1x2)x1=0=γx 2 (τx1x2)x1=0=0式中,γ为水的比重。
解答完毕。
例题2.3 已知一点的应力张量为2201211210σ⎛⎫ ⎪ ⎪ ⎪⎝⎭过该点的一个作用面,作用面上的应力矢量=N 0,求: 1)22σ;2)作用面法线与坐标系的夹角余弦(,,)l m n 。
解:由于具有一个平面,使得在过改点的一个平面上,应力矢量为0,即:0×l +1×m +2×n =0 1×l +σ22×m +1×n =0 2×l +1×m +0×n =0又根据几何关系:l 2+m 2+n 2=1解得:σ22=12l =√66 m =−√63n =√66解答完毕。
塑性力学习题

习题及思考题 7-1. 接触摩擦对塑性变形过程有哪些影响?压力加工中摩擦可分为哪几种类型?各类型有什么特点? 7-2.简述轧制过程的基本滑动摩擦机理。 7-3.试分析热轧时和冷轧时各种因素对摩擦系数的影响? 7-4.确定摩擦系数的方法有哪几种?
习题
500
1-1Leabharlann 已知一点的应力状态为
300
800
300 0
300
800 300 105 Pa 1100
力 Pn 和正应力 n 。
500
1-2
已知一点的应力张量为
300
800
300 1000 3
300
800 300 105 Pa 1100
求方向余弦为 l1 l2 l3 的斜面的全应 求方向余弦为 l1 l2 l3 平面上的总
应力和正应力。
3 1 1 1-5 已知一点的应力张量 ij 1 0 2 ,试求主应力。
1 2 0
1-6 已知某点的应力分量: x a, y a, z a, yz a, xy zx 0 试求主应力及最大剪应力值。
力状态系数 )
3-22 证明当1 2 3 时八面体平面上的剪应力 8 max
2(3 2 ) 。 3
习 题(复习提纲) 4-1 分别简述平面镦粗和轧制时单位摩擦力沿接表面的分布规律。 4-2 全滑动摩擦平面镦粗的近似平衡微分方程式和卡尔曼近似平衡微分方程式分别采用了哪些假设条件?并尝试推
1 0 0
5.已知一点的应变张量为 ij
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、应变连续方程问题
知识要点回顾
2 x yz
x
zx y
xy z
yz x
2 y zx
y
xy z
yz x
zx y
2 z xy
x
yz x
zx y
xy z
在三维空间内三个切应变分量一经 确定,则线应变分量也就被确定!
三、应变连续方程问题
例题
设 x a x2 y2 ; y axy; xy 2bxy; 其中a、b为常数,
criterion 3. 米塞斯屈服准则★ ★ ★ Mises yield
criterion 4. 屈服准则的几何描述★ ★ Geometrical
representation of yield criterion 5. 屈服准则的实验验证与比较★ Tests &
comparison of yield criterions
max
1
2
max min
1 10 (5) 7.5
2
MPa
八面体应力
8
1 3
1
2
3
1 10 0 5 1.67
3
MPa
8
1 3
1 2 2 2 3 2 3 1 2
5 14 3
二、几种重要应力的计算
等效应力
3 2
8
3 1 350 5 7 23
MPa
几种重要应力计算问题小 结
2)塑性变形中的滑移与孪生或晶界滑移,都主要与切应力有关。
取应力主轴为坐标轴,则任意斜微分面上的切应力为
? 2
12l 2
2 2
m2
32n2
1l2 2m2 3n2
2
最大切应力计算公式
max
1 2
max min
二、几种重要应力的计算
知识要点回顾
3、八面体应力
1)以受力物体内任意点的应力主轴为坐标轴,在无限靠近该点处作与三个应 力主轴等倾斜的微分面,其法线与三个主轴的夹角都相等。在主轴坐标系空 间八个象限中的等倾微分面构成一个正八面体。正八面体的每个平面 称八面 体平面,八面体平面上的应力称为八面应力。
例题解答
2) 用应力状态特征方程求出该点的主应力及主方向
计算应力张量的三个主不变量
J1 x y z 55 5 5
J2
x yx
xy y y zy
yz z z xz
zx x
5 0 5 0 5 5
0
5 0
5 5
5
50
x xy xz
5 0 5
J3 yx y yz 0 5 0 0
2、掌握一点处的主应力及主方向、最大切应力、八面体应力、等效应力 的计算方法;掌握一点处的主应变及主方向、八面体应变、等效应变的计 算方法。
3、掌握应变连续方程。
第四节 屈服准则 Part 4. Yield Criterion
本节主要内容 Contents
1. 基本概念★ ★Concepts 2. 屈雷斯加屈服准则★ ★ ★ Tresca yield
2)八面体平面是一点应力状态的特殊平面,平面上的应力值对研究
一个应力状态有重要作用。
3
Q
2
1
arccos 1 54o44
3
二、几种重要应力的计算
知识要点回顾 3、八面体应力
S1 S2
l1 m
2
S3 n3
8 =S1 S2
l
S3 m l 21 m2 2 n23
n
八面体平面的方向余弦 l m n 1
xzl yzm z n 0
l2 m2 n2 1
(1) (2) (3)
二、几种重要应力的计算
知识要点回顾 2、最大切应力
2 12l2 22m2 32n2 1l2 2m2 3n2 2
1)与正应力一样,切应力也随坐标变换而变化,可取得极值。取其中绝对值 最大的切应力为最大切应力,记为 max 。
1、要求掌握一点处的主应变及主方向、八面体应变、 等效应变的计算方法,由于与应力问题的计算方法相 似,此处不再重复。 2、注意应变连续方程:由位移求应变,连续方程自 动满足;由应变求位移则对边连续方程进行验证。
应力应变分析问题小结
1、掌握应力张量与应变张量的三个主不变量的计算,利用主不变量判断 应力、应变状态的异同;
三、应变连续方程问题
知识要点回顾
小应变几何方程
2 x y2
2 y2
u x
2 xy
u
y
(1)
2 y x2
2 x2
v y
2 v xy x
(2)
(1)式加(2)式
2 x
y2
2 y
x2
2 xy
u y
2 xy
v x
2 u v
xy
y
x
2 2 xy
xy
2 xy xy
二、几种重要应力的计算
知识要点回顾 1、主应力
P11 P12 P13
P21
P22
P23
P31 P32 P33
P1•1 0
0 P2•2
0
0
0 0 P3•3
1)应力张量为实对称张量,通过坐标转换可以得到切应力为零的状态,此时 的应力称为主应力。本质上与矩阵代数中通过初等变换将一个矩阵化为标准 形的问题相同。(主应力就是法应力,不在矩阵主轴上的分量都是切应力。)
xyl y m zyn 0
xzl yzm z n 0
方向余弦条件
l2 m2 n2 1
5 l 0m 5n 0
代 入 数
据
0l
5
m
0n
0
5l
0m
5
n
0
(1)
l2 m2 n2 1
将各主应力代入方程组(1)可得对应的主方向
对于 1 :
5 10l 0m 5n 0
屈服准则
在一定的变形条件下,当各应力分量之间满足一定关 系时,质点才开始进入塑性状态,这种关系称为屈服 准则,又称为塑性条件。
f ij = C
屈服函数
1.2 有关屈服函数的讨论 1.2 Discussion on yield function
? f ij C
弹性状态
? f ij C ? f ij C
5 0 5
ij
0
5
0
(Mpa)
5 0 5
1) 画出该点的应力单元体;
2) 试用应力状态特征方程求出该点的主应力及主方向;
3) 求出该点的最大切应力、八面体应力、等效应力。
二、几种重要应力的计算
例题解答 1) 画出该点的应力单元体 z
O x
5 -5 -5 5
-5 y
二、几种重要应力的计算
a 0 0
1 ij
0
b
0
0 0 0
ab
2
ab 2
0
2 ij
a
b 2
ab 2
0
0
0 0
一、应力张量不变量及其应用
例题解答
对于
1 ij
J1 a b0 a b
J2
a 0
0b
b0
00
00
0
a
ab
a00 J3 0 b 0 0
000
同理,对于
2 ij
J1
a
2
b
a
2
b
0
a
b
ab
J2
0l
5
10
m
0n
0
解
5l
0m
5
10
n
0
之
l2 m2 n2 1
的主方向
1
l1
1; 2
m1 0;
n1
1 2
二、几种重要应力的计算
2) 用应力状态特征方程求出该点的主应力及主方向
对于 2 : 对于 3 :
l2
1; 2
m2 0;
n2
1 2
l3 0; m3 1; n3 0
3) 最大切应力
P23 P33 P33 P13
P31 P11
P11 P12 P13
P21
P22
P23
P31 P32 P33
一、应力张量不变量及其应用
应力张量是二阶实对称张量,有三个独立的主不变量。 利用应力张量的三个主不变量,可以判别应力状态的异同。
例题
试判断以下两个应力张量是否表示同一应力状态?
8
1 3
1
2
3
m
1 3
J1
3
8
J 2
1J22l2
1 m
022m2
0
0
232nm 2
0
0
01l2
3 m
216m21 32n22
2 2
3
2
3
1
2
1 3
1
2
1 3
2
2
1 3
3
2
1 3
1
2
3
2
3
1 3
1 2 2 2 3 2 3 1 2
2 3
J
2
Q
2
1
arccos 1 54o44
zx zy z 5 0 5
应力状态特征方程
3 J1 2 J2 J3 0 3 5 2 50 0 0
( 10)( 5) 0
1 10 2 0 3 5 MPa
二、几种重要应力的计算
例题解答
2) 用应力状态特征方程求出该点的主应力及主方向
齐次线性应力 平衡方程组
x l yxm zxn 0
试问上述应变场在什么情况下成立?