工程热力学第五章

合集下载

工程热力学第五章

工程热力学第五章

Scv
dS21 = dSf + dSg ∆S21 = ∆Sf +∆Sg
Q
W
out(2)
熵的问答题
• 任何过程,熵只增不减 ╳ 任何过程, • 若从某一初态经可逆与不可逆两条路径到
达同一终点,则不可逆途径的∆S必大于可 达同一终点,则不可逆途径的∆S必大于可 逆过程的∆ 逆过程的∆S ╳
• 可逆循环∆S为零,不可逆循环∆S大于零 ╳ 可逆循环∆ 为零 不可逆循环∆ 大于零 为零, • 不可逆过程∆S永远大于可逆过程∆S ╳ 不可逆过程∆ 永远大于可逆过程∆ 永远大于可逆过程

ÑT ∫
δQ Q
=
' 1
T 1

Q
' 2
T2
<0
克劳修斯不等式的推导1 Q
2、反循环(卡诺循环) 、反循环(卡诺循环) (1)可逆循环 )
Q2 = T T2 1
T1 Q1 R W Q2 T2
Ñ Q = − Q + Q < 0 放热 ∫δ
1 2
Q2 T2 1 1 εC = = = = T Q −Q2 T −T2 Q 1 1 1 1 −1 −1 T2 Q2
熵的总结
系统熵增加的过程: 系统熵增加的过程: 1)不可逆吸热 2)可逆吸热 3)不可逆绝热 4)不可逆放热 系统熵减少的过程: 系统熵减少的过程: 1)可逆放热 2)不可逆放热 系统熵不变的过程: 系统熵不变的过程: 1)可逆绝热 2)不可逆放热
• 熵是广延量
闭口系 ∆S21 = ∆Sf +∆Sg
§5-3 状态参数熵及熵方程
n n
开口系 dScv = dSf + dSg + ∑δ mi,in si,in − ∑δ mi,out si,out

工程热力学(6)第五章

工程热力学(6)第五章

5
5-2
水蒸气的状态参数
一般情况下,水蒸气的性质与理想气体差 别很大 , 为了便于工程计算,将不同温度和不 压力下的未饱和水、饱和水、干饱和蒸汽和过 热蒸汽的状态参数列成表或绘成线算图。
国际规定,蒸汽表取三相点(即固、液、汽 三相共存状态)液相水的热力学能和熵为零。
即:
p = 611.7 Pa,v = 0.00100021 m3/kg, T = 273.16 K, u = 0 kJ/kg, s = 0 kJ/(kg· K) h u pv 0.00061 kJ/kg 0 kJ/kg
湿空气:含有水蒸气的空气。
干空气:完全不含水蒸气的空气。
在干燥、空气调节以及精密仪表和电绝缘的防 潮等对空气中的水蒸气特殊敏感的领域,则必须考 虑空气中水蒸气的影响。 湿空气中水蒸气的分压力很低,可视水蒸气为 理想气体。一般情况下,湿空气可以看作理想混合 气体。根据道尔顿定律,湿空气的总压力等于水蒸 气的分压力与干空气的分压力之和:
1
液体 汽化
蒸发 :任何温度下在液体表面进行的
汽化现象,温度愈高愈强烈。
沸腾 : 沸腾是在给定压力所对应的温
度下发生并伴随着大量汽泡产生 的汽化现象。
p
饱和状态:液面上蒸气空间中 的蒸气和液体两相达 饱和蒸气 到动态平衡的状态 。
饱和液体
ts
饱和压力ps、饱和温度ts: ps f (ts ) 水蒸气:ps=0.101325 MPa,ts=100 º C
hv 2501 1.863t
kJ/kg(干空气)
27
h 1.005t d (2501 1.863t )
6. 湿空气的焓-湿图
湿空气的焓-湿图是湿空气工程计算的重要工具。 (1) 定焓线簇 (2) 定含湿量线簇

【工程热力学精品讲义】第5章

【工程热力学精品讲义】第5章

T1
T2 2
2. 多热源可逆循环
t
1
q2 q1
1
A1B 2 mn1 A1A2mn1
1 Aqrmnq 1 TmL 1 T2
Aopmno
TmH
T1
T
T2
.2
. Tm
T1 1
o s1
s2 s
T
T2
.2
.o.. A
.. p TmH
q
B r Tm
T1 1
L
o s1
s2 s
18
循环热效率归纳:
t
wnet q1
讨论:1) 违反上述任一表达式就可导出违反第二定律;
2)热力学第二定律数学表达式给出了热过程的
方向判据。
27
3)
s2 s1
2 δq T 1
r irr
并不意味着
s12,rev
s12,irrev ,因
a)
2 1
δq Tr
irr
s12
b) 若热源相同,则说明 δqr δqirrev 或热源相同,热量
“有序”、“整齐”。
克劳修斯熵
dS
δQ T
rev
?
波尔茨曼熵 S k lnW
吸收热量,系统微观粒子的运动更为剧烈,微观粒子处于更
“无序”、“混乱”的状态,即熵值增大;反之放热系统微观粒子
的运动受“冻结”,使微观粒子“有序”、“整齐3”2 ,熵值减小。
33
5–4 熵方程与孤立系统熵增原理
一、熵方程 1. 熵流和熵产
q1 A34op3 THs34
t
wnet q1
q1 q2 q1
1 q2 q1
1 TLs12 1 TL

工程热力学 第五章

工程热力学 第五章

S g 2
1 1 Q0 ( ) T0 T0
1 1 Exl Q0T0 ( ) T0 S g 2 T0 T0
温差传热引起的火用损失与熵产成正比。
温差传热火用损失
T
1
2
T
1
2
TA
TA
1’
2’
ExQ
T0
TB
ExQ
T0
7
AnQ
5 6
S
AnQ
5 6 8 S
Exl T0 Sg1
Exl ExQA ExQB
5.3.1 温差传热火用损失
1 1 QT0 ( ) TB TA
温差传热是不可逆过程
1 1 S g1 Q( ) TB TA
1 1 Exl QT0 ( ) T0 S g1 TB TA
温差传热火用损失
同理,放热温差传热也是不可逆过程。
δExQ
Wout ExQ
T0 (1 )δQ T
ExQ
T0
δQ Q T0 Q T0 S T
AnQ Q ExQ T0 S
热量火用 ExQ
恒温热源
T
ExQ
T T0 Q(1 ) Q T0 S T
AnQ
T0 T0 S Q T
E xQ
dsg 0
没有功损失,火用总量守恒。 不可逆过程: 损失。
功损失,火用总量减少,能量品质贬值,火用
火用和火无的基本概念
孤立系统熵 增原理
孤立系统火用 减火无增
过程进行方 向的判据
火用的分类
做功的能力
不平衡势
化学势差 温度和压力差 速度差 位置差 浓度差
火用

工程热力学第五章(热力学第二定律)09(理工)(沈维道第四版)

工程热力学第五章(热力学第二定律)09(理工)(沈维道第四版)

T2 w 300 有 t tC 1 1 70% 由 t q1 T1 1000
w t q1 0.7 100 70kJ
四、卡诺定理举例(2)
(2) 当吸热和放热均有温差时,工质实际在吸热温 度为800K和放热温度为400K的两个热源间工作, 则热效率为
T2 400 t tC 1 1 50% 70% T1 800
循环净功为
w t q1 0.5 100 50kJ
可见,由于传热温差的存在,循环热效率降低了。
§5-4 熵与克劳修斯不等式
热二律推论之一
卡诺定理给出热机的最高理想
热二律推论之二
克劳修斯不等式反映方向性
第五章 热力学第二定律
§5-1 热力学第二定律的实质
热力学第一定律
能量守恒与转换定律
能量之间数量的关系
所有满足能量守恒与转换定律 的过程是否都能自发进行?
一、自发过程的方向性
自发过程:不需要任何外界作用而自动进 行的过程。 摩擦生热: 机械能变热能 自动地热能变机械能?


水自动地由高处向低处流动 自动地低处流向高处? 两液体混合过程自动进行 自动地将两种液体分离? 热量自发地由高温物体传向低温物体
◆ §5-3 卡诺定理
热二律的推论之一 卡诺定理有两个分定理, 下面予以介绍
◆ 一、 卡诺定理
定理1:在相同的高温恒温热源和相同的低温 恒温热源间工作的所有可逆热机,热效率相 同,且与工质的性质无关。
定理2:在相同的高温恒温热源和相同的低温恒 温热源间工作的所有热机,以可逆热机的热效 率最高。不可逆热机热效率总小于这两个热源 间工作的可逆热机的热效率。 可见,在两个不同 T 的恒温热源间工作的一切 可逆热机的热效率相同, tR = tC 在给定的温度界限间工作的一切热机,tC最高 热机极限 减小不可逆性,可提高热效率。

工程热力学__第五章气体动力循环

工程热力学__第五章气体动力循环

k 1 k
p2 p1
k 1 k
T2 T1
T1 1 1 1 1 1 k 1 T2 T2 p2 k T1 p1
T
2 1
3
4
t,C
T1 1 T3
热效率表达式似乎与卡诺循环一样
s
勃雷登循环热效率的计算
热效率:
t 1
p
2 3 2 4 T 3
4
1 1
v s
定压加热循环的计算
吸热量
q1 cp T3 T2
放热量(取绝对值)
T 2
1
3
4
q2 cv T4 T1 热效率
w q1 q2 q2 t 1 q1 q1 q1
s
定压加热循环的计算
k 1 热效率 t 1 k 1 k ( 1) t
T1
s
燃气轮机的实际循环
压气机: 不可逆绝热压缩 燃气轮机:不可逆绝热膨胀 T
定义:
3 2 1
2’
4’
压气机绝热效率
h2 h1 c h2' h1
4
燃气轮机相对内效率
oi
h3 h4' h3 h4
s
燃气轮机的实际循环的净功
净功
' w净 h3 h4' h2' h1
oi h3 h4
h2 h1
T
2 1
2’
3
4’
c
' opt w净 oic
k 2 k 1
4
吸热量
q h3 h2' h3 h1
' 1

工程热力学(第5章--水蒸汽的热力性质)

工程热力学(第5章--水蒸汽的热力性质)
v′增大(因水的膨胀性大于压缩性); v″减小(因汽的压缩性大于膨胀性);
18
5-2 水蒸气的定压产生过程
所以:随着p升高,b点向右移动,d点向左移动,即 预热过程增长,汽化过程缩短,过热过程增加。
19
5-2 水蒸气的定压产生过程
当压力升高至pc=22.064MPa时,汽化过程缩成一点,即临 界点C,同时产生两线(CM、CN)和三区(Ⅰ、Ⅱ、Ⅲ)。
D = t - ts
h
15
➢水蒸气定压产生过程中热量的计算
1.水的定压预热阶段:
液体热 ql h ' h0 kJ/kg
T
2.饱和水的定压汽化过程:
汽化潜热 r h" h ' kJ/kg
Ts
b
e d
r Ts s" s ' kJ/kg
3.干蒸汽的定压过热过程:
过热热 qs h h" kJ/kg
2
本章主要内容 水蒸气的饱和状态 水蒸气的定压产生过程 水蒸气的热力性质图表 水蒸气的基本热力过程
3
5-1 水蒸气的饱和状态
一、汽化:液态→汽态 (如锅炉水冷壁中水的汽化过程)
汽化方式有两种:1)蒸发,2)沸腾。
1、蒸发——在液体表面缓慢进行的汽化现象。
特点:它能在任何温度下进行;液体的蒸发速度取决于 液体的性质、液体的温度、蒸发表面积和液面上气流的流速。
饱和状态的特点: p s
①汽水共存;
ts
②汽水同温;
③饱和压力与饱和温度
成一一对应关系.
ts f ps
8
饱和温度与饱和压力的关系
ts f ps
ps上升, ts上升 ts上升, ps上升
饱和压力 0.005MPa

工程热力学-第五章 热力学第二定律

工程热力学-第五章 热力学第二定律
时作出的最大有用功称为冷量㶲,用Ex,Q0表示。
Q0即为冷量
5
孤立系统中㶲只会减少,不会增加,极限情况下 (可逆过程)保持不变—能量贬值原理。
dEx,iso ≤ 0 或 I≥0
孤立系统的熵增等于熵产,因此㶲损失为:
I = T0D Siso = T0Sg
6
ห้องสมุดไป่ตู้
火无 (anergy):系统中不能转变为有用功的那 部分能量称为Wu;用An表示。
则: E Ex An
3
热量㶲
在温度为T0的环境条件下,系统(T>T0 )所
提供的热量中可转换为有用功的最大值称为热量
㶲,用Ex,Q表示。
4
冷量㶲 把与温度低于环境温度的物体(T<T0 )交换的热 量叫冷量;温度低于环境温度的系统,吸入热量Q0
第五章 总结
1、卡诺循环
c
1
T2 T1
2、热力学第二定律的数学表达式
2 δq
s2 s1 1 Tr
3、闭口系熵方程
δq ds
Tr
δq
Ñ Tr 0
dS Sg S f ,Q 或S12 Sg S f ,Q
1
4、开口系熵方程
dS (si mi s j mj ) Sf ,Q Sg
Sf,m Sf ,Q Sg
5、孤立系统熵增原理
dSiso dSg 0 或 Siso Sg 0
6、作功能力的损失与孤立系统熵增之间的关系
I T0Siso
2
㶲(exergy): 1、在环境条件下,能量中可转化为有用功的最
高份额称为㶲;用Ex表示。
2、热力系只与环境相互作用、从任意状态可逆 地变化到与环境平衡时,作出的最大有用功
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S与传热量的关系
热力过程 S12 S 2 S1 12 T
对于循环 △S=0
S
Q
r
= 可逆 >不可逆 <不可能
克劳修斯不等式
Q
Tr
除了传热,还有其它因素影响熵
12
不可逆绝热过程 Q 0 dS 0 不可逆因素会引起熵变化 总是熵增
熵流和熵产
对于任意微元过程有 dS 定义 熵流
Tr为热源温度
注意:过程可逆, 传热温差为0,故热源 温度Tr=工质温度T
δQrev 循环积分 0 Tr 或 Qrev T 0
该积分称为克劳修斯积分
定义 定义
熵 比熵
Qrev Qrev dS Tr T qrev qrev ds Tr T
热源温度 =工质温 度

对所有微元不可逆循环积分求和 对该不可逆循环 δQ Tr 0
δQ T 0 r
克劳修斯积分不等式
克劳修斯积分含义: (1)工质经过任何不可逆循环,克劳修斯积分小于零; (2)工质经过任何可逆循环,克劳修斯积分等于零; (3)工质经过任何循环,克劳修斯积分不可能大于零。 可以利用来判断一个循环是否能进行,是可逆循环, 还是不可逆循环。
熵变的计算方法
水和水蒸气:查图表 固体和液体: 通常 cp cv c 常数 例:水 c 4.1868kJ/kg.K
Qre dU pdv dU cmdT
Qre cmdT 熵变与过程无关,假定可逆: dS T T T2 S cm ln T1
熵变的计算方法

Q
Tr
2 B 1
0

Qห้องสมุดไป่ตู้
Tr
1 A 2

Q
Tr
2 B 1
过程是否可逆的判据
对于可逆过程1-B-2

Q
Tr
1 B 2

Q
Tr
2 B 1
S 2 S1
不可逆过程1-A-2

Q
Tr
1 A 2
S 2 S1
不可逆过程的熵变大于过程热量与热源温度比 值的积分
W
功 源
孤立系熵增原理举例(5)
冰箱制冷过程
△Siso=△S+△ST1+△ST2
T0 Q1 W Q2
Q1 Q2 T0 T2
若想 Siso 0 必须加入功W,使
Q1 Q2
T2
理想气体绝热自由膨胀
典型的不可逆过程
A B 真空
U 0
T 0
Siso
T2 v2 S2 S1 m cv ln R ln T1 v1
将δQ2改为代数值
任意可逆循环 1-A-2-B-1
Q1
Tr1

Q2
Tr 2
0
将一般可逆循环分割为无穷多个微元卡诺循环, 对全部微元循环积分求和
Q1 Q2 1 A2 Tr 2 2B1 Tr 2 0

Qrev
Tr
1 A 2

Qrev
Tr
2 B 1
0
a
S f Q
Tr
Q
Tr
=:可逆过程 >:不可逆过程
熵产:纯焠由不可逆因素引起
S g dS Q
Tr
熵产永远大于0
dS Sf Sg
S Sf Sg
结论:熵产是过程不可逆性大小的度量。
熵流、熵产和熵变
熵变可正可负可为零,只取决于过程的初、终 态 S 0 S 0 可逆绝热过程 熵流和熵产与过程有关
克劳修斯积分说明
注意:克劳修斯积分适用于热力循环,其热 量的正和负是以循环工质为对象进行分析 1000 K 问题:热机A能否作为制冷机 使用?(则相对于工质来说,吸 收了800kj能量,放出了2000kJ 能量。
2000 kJ
A
1200 kJ Q Q1 Q2 2000 800 0.66kJ / K 0 800 kJ 300 K
热源(蓄热器):与外界交换热量,T几乎不变 假想蓄热器
热源的熵变
T1 T1 Q1
R
Q1 S T1
W
Q2
T2
熵变的计算方法
功源(蓄功器):与只外界交换功 无耗散
功源的熵变
S 0
理想弹簧
三、克劳修斯积分不等式——循环 可逆与否的判据
将循环中所有可逆循 环部分积分,有
Q
T 0
任意不可逆循环 1-A-2-B-1
两恒温热源间工作的不可逆热机
Siso Q1 ' Q2 ' 0 T1 T2
T1
Q1’ Q1 W’
R
T T1
IR
W
Q2’
T2 S
Siso
Q2
T2
孤立系熵增原理举例(4)
功热是不可逆过程
Siso ST1 S功源 Q 0 T1
T1 Q
单热源取热功是不可能的
Siso ST1 S功源 Q 0 T1
第五章
热力学第二定律
能量的品质、自发过程 卡诺循环和卡诺定理 状态参数熵 孤立系熵增原理
§5-4 熵和克劳修斯积分
热二律推论之一
卡诺定理给出热机的最高理想
热二律推论之二
克劳修斯不等式反映方向性
热二律推论之三
熵反映方向性
一、状态参数熵的导出
取微元卡诺循 环a-b-f-g-a
Q1 Tr 2 1 1 Q2 Tr1 Q1 Q2 Tr1 Tr 2
在热源T1和环境间工作的卡诺热机,做功为 WT1=Q(1-T0/T1) 在热源T2和环境间工作的卡诺热机,做功为 WT2=Q(1-T0/T2) 由于T1 >T2 , WT2<WT1 热量从高温物体传至低温物体时,其数量不 变,但不可逆传热导致其做功能力降低。即 能量贬值,或耗散。
孤立系熵增原理举例(2)
由于2-B-1过程可逆

Qrev
Tr

2 1
Qrev
Tr
2 B 1
1 B 2
代入公式(a):

Qrev
Tr Tr
2
Qrev
Tr
1 A 2
1 B 2

Qrev
Qrev
T
1
p A
2

Qrev
Tr
1 A 2

Qrev
Tr
1 B 2
从状态1到状态2,无论
熵流与系统和外界的热传递有关,吸热为正放热为负
绝热过程
Sf 0
任意过程
Sf 0
熵产与系统是否可逆有关,不可能为负
可逆过程 Sg 0
不可逆过程 Sg 0
熵的问答题
• 任何过程,熵只增不减 ╳ • 若从某一初态经可逆与不可逆两条路径到
达同一终点,则不可逆途径的S必大于可 逆过程的S ╳
汽轮机、水泵
h h1 h2’ h2 p1 p2
2 2’
q = 0
可逆过程:
s
wt h1 h2
1 不可逆过程 wt h1 h2'
汽轮机相对内效率
s
h1 h2' oi h1 h2
§5-5 孤立系统熵增原理
无质量交换
孤立系统
dSiso
无热量交换
无功量交换
Sf 0
= :可逆过程 Sg 0 >:不可逆过程
例题
A 热机是否能实现
方法:将热源、冷 源和热机组成一个 孤立系统,孤立系 统的熵变为其组成 部分熵变之和
1000 K
不可逆 A 2000 kJ 1200 kJ
注意:熵增原理适用于孤立系 统,其热量的正和负是以各 组成部分为对象进行分析, 吸热为正,放热为负
800 kJ
300 K
过程能否实现的判据
0
作功能力损失
卡诺定理tR> tIR
假定 Q1=Q1’ , WR > WIR 作功能力损失
可逆
作功能力:以环境为基准,系统可能作出的最大功
T1
Q1’ WIR
IR
WR WIR
两恒温热源间工作的可逆热机
△Siso=△S+△ST1+△ST2
Q1 Q2 0 T1 T2
T1 Q1 W
t t,C
Q2 T2 1 1 Q1 T1
R
Q2
T2
孤立系熵增原理举例(2)
两恒温热源间工作的可逆热机
Siso Q1 Q2 0 T1 T2
T1 Q1 W Q2
1
B v
沿哪条可逆路线,
Qrev 积分都相等 Tr
熵是状态参数
熵变与路径无关, 只与初终态有关
dS 0
S dS
1 2 2
Qrev
T
1
熵的物理意义
熵变表示可逆过程中热交换的方向和大小
可逆时
dS 0 dS 0 dS 0
Q 0 Q 0 Q 0
二、熵变的计算方法
克劳修斯积分例题
A 热机是否能实现

Q
2000 800 可能 T 1000 300 0.667kJ/K 0 不可逆
1000 K
2000 kJ A 1200 kJ 1500 kJ 800 kJ 500 kJ 300 K
如果:W=1500 kJ Q 2000 500 T 1000 300 不可能 0.333kJ/K 0
孤立系熵增原理举例(1)
有温差传热过程(T1→T2) Q
用克劳修斯不等式

Tr
相关文档
最新文档