6-4平面曲线弧长
高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]
![高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]](https://img.taocdn.com/s3/m/9c36fcd0783e0912a2162ad6.png)
5
二、 平面图形的面积
1. 直角坐标系中的平面图形的面积
在平面直角坐标系中求由曲线y f (x),y g(x)和直线x a,x b围成图
形的面积A,其中函数f (x),g(x)在区间[a,b]上连续,且f (x) g(x),如图所示.
在区间[a,b] 上任取代表区间[x, x dx],在区间两个端点处做垂直于x 轴的
A 1 r2 ( )d.
2
β
O
α
ρ 10
本讲内容
01 微元法 02 平面图形的面积 03 体积 04 平面曲线的弧长
11
三、 体积
1.旋转体的体积.
由一个平面图形绕这平面内一条直线旋转一 y 周而成的立体称为旋转体,这条直线称为旋转轴.
如圆柱、圆锥、圆台、球体都是旋转体. 设一旋转体由连续曲线 y f (x),直线x a, O a
直线,由于 dx 非常小,这样介于两条直线之间的图形可以近似看成矩形,因
此面积微元可表示为
[ f (x) g(x)]dx,
于是,所求面积A为
b
A a [ f (x) g(x)]dx.
若f (x) g(x),则有
A
b
[ f (x) g(x)]dx.
a
综合以上两种情况,由曲线 y f (x),y g(x)
y x 1(y)
d
c O
x 2(y) x
7
二、 平面图形的面积 例 1 求由两抛物线y x2与x y2 所围成图形的面积A .
解
解方程组
y x
x2,得到两抛物线的交点为(0,0),(1,1), y 2,
y
两抛物线围成的图形如图所示.
则所求面积 A 为
A
高数课件第六章定积分的应用:第二节定积分的几何应用

y
c
b O
x
bx
x
x x 1 sh dx ch dx c c b x xb s 2 ch dx 2c sh 0 c c 0 x b 1 x 2c sh ( c ch ) c sh c c c c
2
e e ch x 2 x x e e sh x 2 (ch x) sh x
Hale Waihona Puke 2 (t ) 2 (t ) d t
因此所求弧长
s
2 (t ) 2 (t ) d t
(3) 曲线弧由极坐标方程给出:
令 x r ( ) cos , y r ( ) sin , 则得
dx [r ( ) cos r ( ) sin ]d dy [r ( ) sin r ( ) cos ]d
2
选 x 为积分变量 (1) x [2, 0], dA1 ( x 3 6 x x 2 )dx 于是所求面积 A A1 A2
特别注意:
各积分区间 A ( x 3 6 x x 2 )dx 0 (x x 6 x)dx 上被积函数的 2 253 形式不同. . 12
0
3
2
3
x2 1 练习:1.求曲线 y , y 与直线 x 3 2 1 x 2
x 3 所围成的图形的面积。
2.求曲线 xy 1 与直线
x y 0 y 2
x y 2
P1
2
所围成的图形的面积。 2014考研题
提示:1
P2
y
1
32 1 0 2 1 1 3 x 1 x 1 1 s 2[ ( )d x ( ( 3 3 2) ) d x ] 2 0 1 x 1 3 2 2 1 x2
第3讲 圆周运动的角量描述

第四节圆周运动及其描述上一节学习了一般的平面曲线运动,本节学习一种特殊且常见的曲线运动――圆周运动。
1 圆周运动的线量描述回顾上一节,我们在自然坐标系下使用了位置、速度、加速度等量来描述曲线运动。
这些量称为线量,所以上一节对于曲线运动的描述称为线量描述。
由于圆周运动是一种特殊的曲线运动,因而上一节关于曲线运动的描述完全适用于圆周运动的描述。
所以可以把上一节的结论直接用于圆周运动的线量描述。
位置:s=s(t)速度:dsdt v=τ加速度:22d sdtτ=aτ(1a)2nvR=a n(1b)(1b)式中的R就是圆的半径,而v则是质点做圆周运动的速率。
质点作圆周运动时,如果切向加速度为0,就是所谓的匀速圆周运动......。
2 圆周运动的角量描述极坐标系2.1 角位移除了线量描述形式外,对于圆周运动还有一种常用的描述形式――角量描述。
如图1所示,以圆心为极点,沿着任意方向引出一条线作为极轴,就建立了一个坐标系,称为极坐标系。
在极坐标系中,质点的位置所对应的矢径r与极轴的夹角θ称为质点的角位置,而dθ称为dt时间内的角位移。
注意:1,角位移...d.θ.既有大小,又有方向.........(.但未必是矢量......1)。
其方向由右手定则确定,即:伸出右手,使四指沿着质点旋转的方向弯曲,与四指垂直的拇指所指的方向1矢量的严格定义是:矢量是在空间中有一定的方向和数值,并遵从平行四边形加法法则的量。
即为d θ的正方向。
2,有限大小的角位移不是矢量(因为角位移的合成不符合交换律,比如翻一本书:先x->90,再y ->90,最后z ->90得到的结果,与先x->90,再z ->90,最后y ->90得到的结果不一样),只有..当△..t . .0.时,角位移.....d .θ.才是矢量....。
3,质点作圆周运动时,其角位移只有两种可能的方向,因此可以在标量前...............................加正号或者是负号来指明角位移的方向.................。
高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
小学奥数讲义6年级-4-圆与扇形-难版

圆是所有几何图形中最完美的。
当一条线段绕着它的一个端点O 在平面上旋转时一周时,它的另一端点所画成的封闭曲线叫圆(也叫圆周),O 点称为这个圆的圆心。
连接一个圆的圆心和圆周上任一点的线段叫做圆的半径,圆的半径通常用字母r 表示。
连接圆上任意两点的线段叫做圆的弦。
过圆心的弦叫做圆的直径,圆的直径通常用字母d 表示,显然d=2r 。
圆的周长(用字母C 表示)与直径的比,叫做圆周率。
圆周率用字母π表示,它是一个无限不循环的小数,一般取近似值3.14。
圆的周长r 2d C π=π=。
利用等分圆周拼成近似长方形的方法可知圆的面积2r S π=。
顶点在圆心的角叫做圆心角。
圆周上任意两点间的部分叫做弧。
扇形是圆的一部分,它是由圆心角的两条半径和圆心角所对的弧组成的图形。
如果扇形的半径为r ,弧所对圆心角的度数为n ,那么弧的长度180rn L π=。
从而扇形的周长r2180r n C +π=,扇形的面积Lr 21180r n S 2=π=。
公式: 圆面积=2r π=214d π;扇形面积=2360nr π;圆周长=2r d ππ=; 扇形弧长=180360n n r d ππ=; 扇形周长=2180360n n r r d d ππ+=+;典型例题知识梳理【例1】★上面图形中的正方形的边长为4,求各个阴影部分面积的大小;【解析】图1,阴影的面积是两个扇形重合的部分,我们可以用两个扇形的面积减去正方形的面积。
π×42×41×2-2×2=8π-4=21.12 图2,方法1,阴影的面积是四个半圆的面积重合的部分,可以用四个半圆的面积和减去正方形的面积。
π×22×2-4×4=8π-16=9.12方法2,如下图,我们只要求出一个小弓形的面积,整个阴影的面积是8个这样的小弓形面积之和。
(π×22×41-2×2÷2)×8=8π-16=9.12 图3,阴影的面积有大圆的面积减去正方形的面积。
大学高数总习题六及课外习题课后参考答案及知识总结

总习题六★★★1.求由曲线32)4(x y -=与纵轴所围图形面积。
思路:曲线23(4),(4)y x x =-≤关于x 轴对称,又曲线的一条分支3/2(4)y x =-是关于x 的减函数,见图6-1可知用y 型或用对称性求图形面积较为简单。
解:曲线表达为3/24yx -=,它和y 轴的交点:(8,0±)∴51285332(2)4(2)4(83/588803/23/2=-=-=-=⎰⎰-y dy y dy y S ★★★2.求介于直线π2,0==x x 之间、由曲线x y sin =和x y cos =所围成的平面图形的面积。
解:⎰-=π20cos sin dx x x S24)sin (cos )cos (sin )sin (cos 24/54/54/4/0=-+-+-=⎰⎰⎰πππππdx x x dx x x dx x x★★★3.直线x y =将椭圆y y x 6322=+分成两块,设小块面积为A ,大块面积为B ,求B A /的值。
思路:由于x y =和y y x 6322=+的交点为)0,0(及)2/3 , 2/3(,12/3>,因此面积较小的一部分用y 型做较简单,见图6-3解:较小部分区域表达为:A D :⎩⎨⎧-≤≤≤≤2362/30y y x y y则sin 13/2/62093)84x ty t A y dytdt ππ=+-==-=-⎰⎰,3344B =+=+,∴/A B =★★★4.求椭圆13122=+y x 和13122=+y x 公共部分的面积。
思路:由图形的对称性可得所求面积是0=x 和x y =及22113y x +=所围在第一象限内区域1D 面积的8倍,见图6-4解: 1D:02y y x ⎧≤≤⎪⎨≤≤⎪⎩∴1260088)cos 3y t D SS y dy tdt π==-=★★★5.求由曲线t a y t a x 33sin ,cos ==所围图形面积。
第六章 运动学基础2

a2
at 2
an2
(v2
c2 )a2 v2
(v2 )2
(1
v2 c2 v2
)a2
v4
2
c2 v2
a2
v4
2
a v3 (负号不合理舍去)
c
v2 c2 a v
§ 6-3 刚体的平动
一、定义 Translational motion of a rigid body
z 刚体在运动过程中,其上任
点的切向加速度和法向加速度的大小分别为:
a v 0 ,
an
v2
80
因为: a a2 an2 32 an
所以:
v2 80
an 32
即: ρ = 2.5 (m)
例6-7 半径为r的轮子沿直线轨道无滑动的滚动(称为纯滚
动),设轮子转角=t,如图所示。求用直角坐标和弧坐标表
示的轮缘上任一点M的运动方程,并求该点的速度、切向加速
5. 点的加速度
v vτ
a dv dv τ v dτ dv τ v dτ ds dv τ v2 dτ
dt dt dt dt ds dt dt
ds
dv τ v2 n
dt
①②
dτ 1 n
ds
at an
①切向加速度at---反映速度的大小随 时间的变化率,方向沿切线方向。
v2
at dt , an
v
a
aE
v D
a
F a v
aG v =0
提示:图示各点的速度均为可能,在速度可能的情况下, 点 C,E, F,G 的加速度为不可能,点 A,B,D 的加速度为可能
例6-5 列车沿半径为R=800m的圆弧轨道作匀加速运动。 如初速度为零,经过2min后,速度到达54km/h。求列车 起点和未点的加速度。
第03章06节平面曲线的曲率

第6节 曲线的曲率6.1弧长微分在曲线()y f x =上取定一点000(,())P x f x 为起点,从000(,())P x f x 到(,())x f x 的曲线段长记为()s x ,并规定当0x x <时()0s x <。
()s x 是单调增加的函数。
下面求弧长微分ds 。
()()()()s x s x x s x ≤∆≤∆≤∆≤∆∆≤∆≤∆ds =,()ds s x '== 如果()()xt y t ϕψ=⎧⎨=⎩则,()ds s t '==如果()ρρθ=则,()ds s θ'==以后经常要用到以上弧长微分公式。
图6.1y +离 散数 学6.2曲线的曲率这节讨论曲线的曲率,也就是曲线的弯曲程度。
设曲线()y f x =在()00,()x f x 的切线0L 与x 轴正向的夹角为0θ,在()00,()x x f x x +∆+∆的切线x L ∆与x 轴正向的夹角为x θ∆。
经过x ∆,切线的夹角变化了0x θθθ∆∆=-设()00,()x f x 和()00,()x x f x x +∆+∆之间曲线的长为s ∆。
容易想见,()00,()x f x 和()00,()x x f x x +∆+∆之间曲线的曲率(弯曲程度)与θ∆成正比,与s ∆成反比,平均曲率()k x sθ∆∆=∆ 让0x ∆→求极限,就得到曲线()y f x =在()00,()x f x 的曲率(弯曲程度)000()lim ()limx x d k x k x s dsθθ∆→∆→∆=∆==∆ 下面我们求出d dsθ从而得到求曲率的计算公式。
用x 作参数 ()()s s x x θθ=⎧⎨=⎩()()2222tan ()1()cos 1tan ()1()()()1()f x d f x dx d f x dx f x d f x dxd f x dx f x θθθθθθθ'=''=''+='''+=''='+第1章集 合322()1()d f x d ds dxdxds f x θθ''=='⎡⎤+⎣⎦003220()()1()f x k x f x ''='⎡⎤+⎣⎦例子:求半径为r 的圆上一点的曲率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线弧为
x
y
(t)
,
(t)
(t)
其 中 ( t )( , t ) 在 [,] 上 具 有 连 续 导 数 .
d s (d)x 2(d)y 2[2 (t)2 (t)d ])2 (t
2(t)2(t)dt
弧长
s
2(t)2(t)d.t
222
例 3 求 星 形 线 x3y3a3(a0)的 全 长 .
0
2 0
1a2co 2xsdx s1,
故原结论成立.
四、极坐标情形
曲线弧为 rr() ()
其 中 () 在 [,] 上 具 有 连 续 导 数 .
xyrr(())scions ()
d s(d)2 x(d)2 yr2()r2()d,
弧长
s
r2()r2()d .
例 5求 极 坐 标 系 下 曲 线 ra si 3n 3的 长 .
证 设 正 弦 线 的 弧 长 等 于 s 1
2
s10
1y2dx2 0
1a2co2xsdx
2
1a2co 2xd s,x
0
设 椭 圆 的 周 长 为 s 2
2
s20
x2y2d,t
根据椭圆的对称性知
s 2 2 0 st i2 n 1 a 2 ct o 2 ds t
2
1a2co 2td s t
解
x acos3 t
星形线的参数方程为
y
a
sin3
t
(0t2 )
根据对称性 s4s1 第一象限部分的弧长
42 x2y2dt423asin tcotdst
0
0
6a.
例 4证 明 正 弦 线 yasix n(0x2)的 弧 长 xcot s
等 于 椭 圆 y1a2sitn(0t2)的 周 长 .
x2 2y2 2的周长.
六、在摆线xa( t sint ),ya(1cost )上求分摆 线第一拱成1:3的点的坐标.
谢 谢!
解 ra ,
s
r2 () r2 ()d
2
2
0
a22a2da 0
21d
ห้องสมุดไป่ตู้
a 2 1 4 2 l2 n ( 1 4 2 ). 2
五、小结
平面曲线弧长的概念 弧微分的概念
直角坐标系下
求弧长的公式 参数方程情形下 极坐标系下
思考题
闭 区 间 [a,b]上 的 连 续 曲 线 yf(x)
3、曲 线 r 1 自 3 至 4 一 段 弧 长 为
4
3
____________ .
二、计算半立方抛物线y2 2(x1)3被抛物线y2 x
3
3
截得的一段弧的长度 .
三、计算星形线xaco3st,yasin 3t的全长.
四、求心形线r a(1cos )的全长.
五、证明:曲线ysinx(0x2)的弧长等于椭圆
(a0 ) (03)
解 r3asi3 n2co3s1 3asin32co3s,
s
r2 () r2 ()d
3 0
a2 si3n 6a2 si3n 4 co 3 2 sd
a
3
0
sin
3
2
d
3 a. 2
例 6求 阿 基 米 德 螺 线 ra (a0 )上 相 应 于 从 0到 2 的 弧 长 .
是 否 一 定 可 求 长 ?
思考题解答
不一定.仅仅有曲线连续还不够,必须保证 曲线光滑才可求长.
练习题
一、填空题:
1、曲线y ln x上相应于 3 x 8的一段弧长为
____________;
2、渐伸线 x a(cost t sint) , y a(sint t cost)
上相应于 t 从 0 变到 的一段弧长为______;