材料材料及热处理知识

合集下载

工程材料及热处理pdf

工程材料及热处理pdf

工程材料及热处理一、引言工程材料是现代工业和科技领域中不可或缺的一部分,广泛应用于建筑、机械、电子、航空航天、交通运输等领域。

热处理是工程材料加工过程中的重要环节,通过改变材料的内部结构,提高其力学性能、物理性能和化学性能。

本文将详细介绍工程材料的分类、性能与特点、热处理原理、常见热处理工艺、材料选用原则、材料检测与评估、热处理设备与工艺优化以及工程材料应用领域。

二、工程材料分类工程材料可分为金属材料和非金属材料两大类。

金属材料包括钢铁材料、有色金属材料和合金等;非金属材料包括塑料、橡胶、陶瓷、玻璃等。

这些材料在性能上各有特点,适用于不同的工程领域。

三、材料性能与特点1.金属材料:具有较高的强度、塑性和韧性,具有良好的导电性和导热性。

不同的金属材料在耐磨性、耐腐蚀性等方面也表现出不同的特点。

2.非金属材料:具有轻质、高强、耐腐蚀等特点,且具有良好的绝缘性能。

非金属材料在加工过程中具有较好的可塑性和可加工性。

四、热处理原理热处理是通过加热、保温和冷却等工艺手段,改变材料的内部结构,从而提高其力学性能和物理性能。

热处理过程中,材料的内部原子或离子重新排列,形成新的晶体结构,从而改变材料的性质。

五、常见热处理工艺1.退火:将材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。

退火可以消除材料的内应力,改善其组织和性能。

2.淬火:将材料加热到一定温度后迅速冷却,使材料表面硬化而内部保持韧性。

淬火可以提高材料的硬度和耐磨性。

3.回火:将淬火后的材料加热到一定温度后保温一段时间,然后缓慢冷却至室温。

回火可以消除材料的内应力,改善其组织和性能。

4.表面处理:通过化学或电化学方法对材料表面进行处理,提高其耐磨性、耐腐蚀性和抗氧化性等性能。

六、材料选用原则1.根据工程要求选择合适的材料类型和牌号;2.考虑材料的性能参数,如强度、硬度、韧性等;3.考虑材料的耐腐蚀性、耐磨性等特殊要求;4.考虑材料的加工工艺和经济性等因素。

工程材料及金属热处理知识

工程材料及金属热处理知识

工程材料及金属热处理知识工程材料是指用于机械、建筑、电气等领域的材料。

它们通常需要具有高强度、耐腐蚀、耐磨损等特性。

工程材料可以分为金属材料、非金属材料和复合材料。

金属材料是最常见的工程材料,包括铁、钢、铜、铝、镁等金属以及它们的合金。

金属材料具有良好的导电性、导热性、高强度和塑性。

常见的金属材料处理方法有退火、淬火、回火、冷作等。

其中,淬火是加热金属到一定温度后迅速冷却,目的是增加材料的硬度和强度;回火则是通过再次加热金属来减轻淬火后的内应力,使得金属具有更好的韧性。

非金属材料包括塑料、橡胶、陶瓷等。

它们通常具有较低的密度、化学稳定性、耐腐蚀和绝缘性。

热处理方法主要包括退火、烧结和化学处理。

复合材料是将不同材料组合在一起形成的新材料,如碳纤维增强塑料、玻璃纤维增强塑料等。

这种材料结合了各种材料的优点,因此在许多领域都有广泛的应用。

金属的热处理是一种改变金属结构和性质的方法。

经过热处理,金属可以获得更高的硬度、强度和耐蚀性。

以下是一些金属热处理方法的描述:退火:将金属加热到适当温度,保持一段时间后缓慢冷却。

该方法可使金属软化、去除内部应力,并提高延展性和冲击性能。

淬火:将金属加热到一定温度,然后迅速冷却。

这会使金属的组织产生变化,从而提高硬度和强度。

回火:通过在较低的温度下将金属加热一段时间,以达到减轻淬火后产生的内部应力的目的。

正火:将金属加热到适当的温度,然后在空气中自然冷却。

这样的过程可以增加材料的硬度和强度。

淬化:使用醇类或水溶液使淬火后的金属变脆,然后在热水中浸泡一段时间来恢复其硬度和强度。

热处理对于工程材料的重要性不言而喻。

能够正确选择和使用热处理方法将有助于确保材料能够耐用、稳定地运行,并具有所需的物理和化学性质。

工程材料及热处理复习资料

工程材料及热处理复习资料

一.名词解释题间隙固溶体:溶质原子分布于溶剂的晶格间隙中所形成的固溶体。

再结晶:金属发生重新形核和长大而不改变其晶格类型的结晶过程。

淬透性:钢淬火时获得马氏体的能力。

枝晶偏析:金属结晶后晶粒内部的成分不均匀现象。

时效强化:固溶处理后铝合金的强度和硬度随时间变化而发生显著提高的现象。

同素异构性:同一金属在不同温度下具有不同晶格类型的现象。

临界冷却速度:钢淬火时获得完全马氏体的最低冷却速度。

热硬性:指金属材料在高温下保持高硬度的能力。

二次硬化:淬火钢在回火时硬度提高的现象。

共晶转变:指具有一定成分的液态合金,在一定温度下,同时结晶出两种不同的固相的转变。

比重偏析:因初晶相与剩余液相比重不同而造成的成分偏析。

置换固溶体:溶质原子溶入溶质晶格并占据溶质晶格位置所形成的固溶体。

变质处理:在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。

晶体的各向异性:晶体在不同方向具有不同性能的现象。

固溶强化:因溶质原子溶入而使固溶体的强度和硬度升高的现象。

形变强化:随着塑性变形程度的增加,金属的强度、硬度提高,而塑性、韧性下降的现象。

残余奥氏体:指淬火后尚未转变,被迫保留下来的奥氏体。

调质处理:指淬火及高温回火的热处理工艺。

淬硬性:钢淬火时的硬化能力。

过冷奥氏体:将钢奥氏体化后冷却至A1温度之下尚未分解的奥氏体。

本质晶粒度:指奥氏体晶粒的长大倾向。

C曲线:过冷奥氏体的等温冷却转变曲线。

CCT曲线:过冷奥氏体的连续冷却转变曲线。

马氏体:含碳过饱和的α固溶体。

热塑性塑料:加热时软化融融,冷却又变硬,并可反复进行的塑料。

热固性塑料:首次加热时软化并发生交连反应形成网状结构,再加热时不软化的塑料。

回火稳定性:钢在回火时抵抗硬度下降的能力。

可逆回火脆性:又称第二类回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。

过冷度:金属的理论结晶温度与实际结晶温度之差。

金属材料及热处理基本知识

金属材料及热处理基本知识

金属材料及热处理基本知识金属材料及热处理基本知识一、金属材料的力学性能金属材料的力学性能是指金属材料在外力作用下所反映出来的性能。

金属常用的力学性能有:1.弹性金属材料在受到外力作用时发生变形,外力消除后其变形逐渐消失的性质称为弹性。

① 刚性是指材料或构件在外力作用下抵抗弹性变形的能力。

② 刚度:k=F/y2.塑性金属材料在受到外力作用时,产生显著的变形而不断裂的性能称为塑性。

① 伸长率δ② 断面收缩率ψ3.强度金属材料在外力作用下,抵抗变形和破坏的能力称为强度。

由于各种机器零件或构件因载荷作用形式和作用性质不同,金属材料所表现出的强度大小也不同。

金属材料的强度指标:(1)屈服强度σs在拉伸试验中,载荷不增加而试样仍能继续伸长时的应力称为屈服强度。

(2)抗拉强度σb材料在拉断前所能承受的最大应力称为抗拉强度。

(3)疲劳强度σ-1材料试样在疲劳试验过程中,在承受无数次(或给定次)对称循环应力作用仍不断裂的最大应力称为疲劳强度。

4.硬度金属表面抵抗硬物压入的能力称为硬度。

最常用的硬度指标:(1)布氏硬度HBS(HBW) 布氏硬度是使用一定直径的球体(淬火钢球或硬质合金球),以规定的试验力压入试样表面,经规定保持时间后卸除试验力,然后用测量表面压痕直径来计算硬度。

使用淬火钢球作硬度试验得到的硬度用HBS表示;使用硬质合金球作硬度试验得到的硬度用HBW表示。

(2)洛氏硬度HRC 洛氏硬度C标尺试验采用120°金刚石圆锥体加1471N总试验力测量的硬度值。

5.冲击韧性金属材料抵抗冲击载荷而不破坏的能力称为冲击韧性,其大小用冲击韧度αK表示。

二、钢的分类、用途与牌号(一)钢的分类1.按是否特意加入合金元素分类:(1)碳素钢不含有特意加入合金元素的钢,称为碳素钢。

(2)合金钢在碳素钢的基础上,为改善钢的性能,在冶炼时有目的地加入一种或数种合金元素的钢,称为合金钢。

2.按含碳量分类(1)低碳钢C ≤ 0.25%;(2)中碳钢 0.25%< C < 0.60%;(3)高碳钢C ≥ 0.60%;3.按质量分类(1)普通钢S ≤ 0.050%,P ≤ 0.045%(2)优质钢S ≤ 0.035%,P ≤ 0.035%(3)高级优质钢S ≤ 0.025%,P ≤ 0.025%4.按合金元素总量分类(1)低合金钢合金元素总含量< 5%(2)中合金钢合金元素总含量 5%~ 10%(3)高合金钢合金元素总含量>10%5.按用途分类(1)结构钢主要用于制造各种机械零件和工程构件的钢。

金属材料和热处理基本概念及基础知识-热处理工艺

金属材料和热处理基本概念及基础知识-热处理工艺

淬透性一般可用淬火临界直径、截面硬度分布曲 线和端淬硬度分布曲线等表示。由于钢中化学成分的 波动,表示钢淬透性硬度曲线有一个波动范围,被称 为淬透性带。 钢材的淬透性与淬硬性是两个完全不同的概念。 淬火硬度高的不一定淬透性好,而硬度低的钢材也可 能具有高的淬透性。 一般机械制造行业大多以心部获得50% 马氏体为 淬火临界直径标准,对于重要机加及军工行业则以心 部获得90 %马氏体作为临界直径标准,以保证零件整 个截面都获得较高力学性能。
2.加热与保温时间
五、钢的回火与回火工艺
将淬火钢重新加热到A1以下某一温度,保温后冷 却到室温的热处理工艺称回火。
1、回火的目的
• ⑴ 降低淬火钢的脆性,消除或减少淬火钢的内应力。 • ⑵ 提高钢的塑性和韧性,获得所要求的性能。
• ⑶ 稳定工件尺寸,降低硬度,便于切削加工。


第四节 钢的表面淬火
将钢加热到临界点以上(某些退火也可在临界点以下) 保温一定时间,随炉缓慢冷却,以获得接近平衡状态组织的 热处理工艺。主要用于铸、锻、焊件毛坯的热处理。
• 1、退火的目的 • 1)降低钢件硬度,便于切削加工。 • 2)消除工件内应力,稳定尺寸。
• 3)细化晶粒,改善组织,提高钢的机械性能。 • 4)为最终热处理做好组织准备。



一、钢的渗碳 渗碳是将钢件加热到奥氏体状态下,于富碳介质 中长时间加热,使碳原子渗入表层,增加钢件表层的 含碳量,然后通过淬火获得高硬度的马氏体组织,达 到提高强度、耐磨性及疲劳强度的目的。 渗碳一般用含碳0.1~0.25%的低碳钢。 渗碳—淬火+低温回火
1、渗碳方法
⑴ 气体渗碳(煤油、苯、甲醇+丙酮) 渗碳介质的分解—吸收—扩散三个基本过程。 主要应控制好加热温度(930 º C)和保温时间。 温度越高,渗速越大,扩散层越厚,但晶粒越大,使 钢变脆。保温时间取决于渗层厚度,但时间越长,扩 散速度减慢。钢件渗碳几小时到几十小时,可得到 0.5~2mm的渗碳层深度。 ⑵ 固体渗碳 ⑶ 液体渗碳

热处理基本知识和材料选用讲解

热处理基本知识和材料选用讲解

热处理基本知识和材料选用(叶芝青)改善钢的性能,有两个主要途径:一是调整钢的化学成分,加入合金 元素,即合金化的办法;另一是对钢实施热处理。

这两者之间有着极为密 切,相辅相成的关系,这里只介绍“钢的热处理”一、 钢的热处理的一般概念热处理是一种重要的金属加工工艺,在机械制造工业中已被广泛应 用。

钢经过正确的热处理,可提高使用性能,改善工艺性能,达到充分发 挥材料性能潜力,提高产品质量,延长使用寿命,提高经济效益的目的 据初步统计,在机床制造中,约60%~70%零件要经过热处理;在汽车、 拖拉机制造中需要热处理的零件多达70%~80%至于减速器齿轮箱的齿 轮和工模具及滚动轴承,则要100%进行热处理。

总之,重要的零件都必 须进行适当的热处理才能使用。

所谓钢的热处理是指将钢在固态下 进行加热、保温和冷却三个基本过程, 以改变钢的内部组织结构,从而获得 所需性能的一种加工工艺。

为简明表 明表示热处理的基本工艺过程,通常 用温度-时间坐标绘出热处理工艺曲线, 如图1所示,曲线①表示钢件在加热 升温阶段,曲线②表示钢件加热到规 定温度后处于保温阶段,曲线③表示钢件保温结束后进行淬火冷却。

钢热处理的最基本类型可根据加热和冷却方法不同,大致分类如下: 热处理可以是机械零件加工制造工艺中的一个中间工序,如改善锻、 轧、铸毛坯组织的退火或正火,齿轮箱体消除焊接应力退火和降低工件硬 度改善切削加工性能的退火等。

也可以是使机械零件性能达到规定技术指 标的最终工序,如经淬火加普通热处理- 退火正火淬火 回火表面淬火- 火焰加热感应加热表面热处理--渗碳惟学热处理- -渗氮_碳氮共渗控制气氛热处理其他热处理--真空热处理 —形变热处理热处理类型-图1热处理工艺曲线示意图高温回火,使机械零件获得极为良好综合力学性能,例如渗碳齿轮的整个加工工序是:锻造-退火-粗加工-探伤-正火-精加工-渗碳、淬火、回火-喷丸-(磨齿)。

由此可见,热处理同其他工艺过程密切,在机械零件加工制造过程中具有十分重要的地位和作用。

金属材料及热处理基础知识.ppt

金属材料及热处理基础知识.ppt
硬质合金 HBW 450- 600 用于测量淬火钢
2 .洛氏硬度
以顶角为120度的金刚石圆锥体或直径1.588mm的淬火 钢球作为压头,以一定的压力使其压入材料表面,测量压痕 深度来确定其硬度,即为洛氏硬度。被测材料硬度,可直接 在硬度计刻盘读出。
洛氏硬度常用的有三种,分别以HRA、HRB、HRC来表示。 洛氏硬度符号、试验条件和应用表
下贝氏体:无方向性的针状铁素体上弥散分布着细小颗粒的 渗碳体
7、魏氏组织
魏氏组织是在比较大的过冷度下形成的。奥氏体过冷到这 一温度区内,便会形成魏氏组织。魏氏组织铁索体是以切变机 理形成的其生长往往都是由晶界网状铁索体分枝,许多铁赢体 片平行地向晶粒内部长大。铁素体片之间的奥氏体随后变成珠 光体。魏氏组织会降低钢的塑性和韧性,尤其是冲击韧性。
3.维氏硬度 测定维氏硬度的原理基本上和布氏硬度相同,区别在于压头
采用锥面夹角为136度的金刚石正四棱锥体,压痕是四方锥形。 维氏硬度值用HV表示。
压痕面
4. 里氏硬度
原理:当材料被一个冲击体撞击时,较硬材料使冲击体产生 的反弹速度大于较软者。
5. 硬度与强度值的对应关系 由于硬度值综合反映了材料在局部范围内对塑性变形等 的抵抗能力,故它与强度值也有一定关系。 工程上:
冷却速度对晶粒大小的影响
快速冷却,形核点多,晶粒细小 冷却速度慢,均匀长大,晶粒粗大
1.2.2 铁碳合金的基本组织 铁 碳含量>2%--弱而脆
铁碳合金
铁素体—碳熔于α铁或δ铁中的固溶体 F
钢 奥氏体—碳熔于γ铁中的固溶体 A 强而韧 碳含量 0.02%-2%
渗碳体—铁碳金属化合物含碳6.67% Fe3C
许用应力 o
n
安全系数

金属材料及热处理的基本知识

金属材料及热处理的基本知识

金属材料及热处理的基本知识金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。

其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。

钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。

另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。

在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。

早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。

白口铸铁的柔化处理就是制造农具的重要工艺。

公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。

中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。

随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。

三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。

这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。

中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。

但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。

1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技术:上将
财富:财神
冬季 积分:21109 经验: (lylsg555)13929 声望:5199 时
长:136230 [个人资料] [给他留言] [帖子合集]
[举 报] [回 复] [引用 并回 复] [维 护]
1. 工业纯铁的结晶过程(图中合金①) 1—2点:匀晶反应形成δ铁素体 2—3点:不发生组织转变 3—4点:开始从δ铁素体中析出奥氏体,4点 后全部转化为奥氏体 4—5点:不发生组织转变 5—6点:开始从奥氏体中析出铁素体,6点后 全部转化为铁素体 6—7点:不发生组织转变 7点以后:开始从铁素体中析出三次渗碳体
顶角上各有一个与相邻晶胞共有的原子外,在6个面的中心也各有一个 共有的原子。属于这种晶格的金属有:γ-Fe,Ni,A1,Cu,Pb,Au, Rh等。
3.3 铁碳合金相图
3.3.1 铁碳合金的组元和相 一、基本概念 铁碳合金:碳钢和铸铁的统称,都是以铁和碳为基本组元的合金 碳 钢:含碳量为0.0218%~2.11%的铁碳合金 铸 铁:含碳量大于2.11%的铁碳合金 铁碳合金相图:研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、 组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。 注:由于含碳量大于Fe3C的含碳量(6.69%)时,合金太脆,无实用 价值,因此所讨论的铁碳合金相图实际上是Fe-Fe3C 二、组元 1.纯铁 纯铁指的是室温下的α-Fe,强度、硬度低,塑性、韧性好。 2.碳
亚共析钢(0.0218%--0.77%C):指室温下 的平衡组织为铁素体与珠光体的铁碳合金, 有熟铁之称; 共析钢(0.77%C):指室温下的平衡组织为 珠光体的铁碳合金,即碳素工具钢中的T8 钢; 过共析钢(0.77%C-- 2.11%C):指室温下 的平衡组织为珠光体与二次渗碳体的铁碳合 金。 3.白口铸铁( 2.11% -- 6.69%C) 指液态结晶时都有共晶反应且室温下的平衡 组织中皆含有变态莱氏体的一类铁碳合金, 其断口白亮而得名,俗称生铁。 亚共晶白口铸铁 共晶白口铸铁 过共晶白口铸铁 二、结合下图,分析7种典型铁碳合金的结晶 过程及其组织变化
3.3.2 铁碳合金相图的分析 1.铁碳合金相图由三个相图组成:包晶相图、共晶相图和共析相图; 2.相图中有五个单相区:液相L、高温铁素体δ、铁素体 α、奥氏体 γ、 渗碳体 Fe3C;
3.相图中有三条水平线: HJB水平线(1495℃):包晶线,发生包晶反应,反应产物为奥氏体。 L0.53+δ0.09←→γ0.17 ECF水平线(1148℃):共晶线,发生共晶反应,反应产物为奥氏体 和渗碳体的机械混合物,称为莱氏体,用“Le”表示。 L 4.3←→γ2.11+ Fe3C PSK水平线(727℃):共析线,发生共析反应,反应产物为铁素体和 渗碳体的机械混合物,称为珠光体,用“P”表示。共析线又称为A1线 γ0.77←→F0.0218+ Fe3C 4.图中的特性点 A点:纯铁的熔点
碳是非金属元素,自然界存在的游离的碳有金刚石和石墨,它们是同素 异构体。
3.碳在铁碳合金中的存在形式有三种: C与Fe形成金属化合物,即渗碳体; C以游离态的石墨存在于合金中。 C溶于Fe的不同晶格中形成固溶体; A. 铁素体:C溶于α-Fe中所形成的间隙固溶体,体心立方晶格,用符 号“F”或“α”表示,铁素体是一种强度和硬度低,而塑性和韧性好的相, 铁素体在室温下可稳定存在。 B. 奥氏体:C溶于γ-Fe中所形成的间隙固溶体,面心立方晶格,用符 号“A”或“γ”表示,奥氏体强度低、塑性好,钢材的热加工都在奥氏体相 区进行,奥氏体在高温下可稳定存在。 C. C与Fe形成金属化合物:即渗碳体Fe3C,Fe与C组成的金属化合 物,Fe与C组成的金属化合物,含碳量为6.69%。以“Fe3C”或“Cm”符号 表示,渗碳体的熔点为1227℃,硬度很高(HB=800)而脆,塑性几乎等 于零。渗碳体在钢和铸铁中,一般呈片状、网状或球状存在。它的形状 和分布对钢的性能影响很大,是铁碳合金的重要强化相。碳在a-Fe中溶 解度很低,所以常温下碳以渗碳体或石墨的形式存在。
塑性变形而应力不会增加的现象。 屈服强度:B点所对应的应力称为屈服强度,用σs表示。屈服强度反映 材料抵抗永久变形的能力,是最重要的零件设计指标之一。 2.2 晶体结构的基本概念 2.2.1 晶体与非晶体 固体物质按原子在空间的排列方式可分为晶体与非晶体。 晶体:原子在空间呈规则排列的固体物质;如正常状态下的金属、食 盐、单晶硅。 非晶体:原子在空间呈无序排列的固体物质;如普通玻璃、石蜡、松香 的等。晶体和非晶体在一定条件下可以互相转化。 2.2.2 晶格 如果把组成晶体的原子看作是刚性球体,那么晶体就是由这些刚性球体 按一定规律周期性堆垛而成,如下图所示。为研究方便,假设将刚性球 体缩为处于球心的点,称为结点。由结点所形成的阵列 称为空间点 阵。用假想的直线将这些结点连接起来所形成的三维空间格架称为晶 格。晶格直观地表示了晶体中原子的排列规律。
工业纯铁结晶过程的基本反应:匀晶反应十 固溶体转变反应+二次析出反应
工业纯铁的室温组织:F十Fe3CⅢ 纯铁的结晶过程中的组织变化过程
技术:上将
财富:财神
冬季 积分:21109 经验: (lylsg555)13929 声望:5199 时
长:136230 [个人资料] [给他留言] [帖子合集]
[举 报] [回 复] [引用 并回 复] [维 护]
2. 共析钢的结晶过程(图中合金②)
1—2点:匀晶反应形成奥氏体 2—3点:不发生组织转变 3点以后:发生共析转变,反应结束后全部转 化为珠光体 3′点后继续冷却:从珠光体的铁素体中析出
少量的三次渗碳体 共析钢结晶过程的基本反应:匀晶反应十共 析反应 共析钢室温组织:100%的珠光体P
共析钢结晶过程中的组织变化
体心立方晶格 晶格常数:a=b=c,故只用a即可表示; 晶胞原子数:2,每个顶点的原子为八个晶胞所共有; 原子半径:体对角线上原子间距的一半; 配位数:8; 致密度:0.68。
(2)面心立方晶格(f.c.c):Face-Centered Cubic Lattice 面心立方晶格的晶胞如下图所示,也是一个立方体。除在立方体的8个
二、 塑性:是指材料受力破坏前承受最大塑性变形的能力,指标为伸 长率和断面收缩率。 伸长率:为试样拉断后,标距部分的残余伸长与原始标距之比的百分 率。δ=(l1-l0) /l0*100%,l0为原长, l1为断裂后长度。 断面收缩率:为试样断裂后,横截面积最大缩减量与原始横截面积之比 的百分率。φ=(F0-F1)/ F0 *100%,F0为试件原始截面积, F1为断口 处的截面积。 屈服现象:应力超过B点后,材料将发生塑性变形。在BC段,材料发生
弹性极限:在应力-应变曲线中,OA段为弹性变形阶段,此时卸掉载 荷,试样恢复到原来尺寸。A点多对应的应力为材料承受最大弹性变形 的应力称为弹性极限,用σp表示。 比例极限:其中OA′部分为一斜直线,应力与应变呈比例关系,A′点所 对应的应力为保持这种比例关系的最大应力称为比例极限,用σe表示。 由于大多数材料的A点和A′点几乎重合在一起,一般不做区分。 弹性模量E:在弹性形变范围内,应力与应变的比值。弹性模量是材料 最稳定的性质之一,它的大小主要取决于材料的本性,除随温度升高而 逐渐降低外, 其他强化材料的手段如热处理、冷热加工、合金化等对 弹性模量的影响很小。 刚度:材料受力时抵抗弹性变形的能力,可以通过增加横截面积或改变 截面形状的方法来提高零件的刚度。
C点:共晶点 D点: Fe3C的熔点 E点:γ-Fe中的最大溶碳量 G点:α-Fe→γ-Fe的同素异构转变点 J点:包晶点 N点:γ-Fe→α-Fe的同素异构转变点 S点:共析点 5.图中的特性线 ABCD-液相线 AHJECF-固相线 GS、GP为 α-Fe固溶体转变线 HN、JN为奥氏体A固溶体转变线 ES线为碳在奥氏体A中的固溶线,随着温度下降,C的溶解度下降,当 含碳量超过0.77%的铁碳合金自1148℃冷却到727℃时,会从奥氏体中 析出渗碳体,称为二次渗碳体,标记为Fe3CⅡ。ES线又称为Acm线。 PQ线为碳在α-Fe中的固溶线,随着温度下降,C的溶解度下降,铁碳 合金自727℃向室温冷却时,会从铁素体中析出渗碳体,称为三次渗碳 体。标记为Fe3CⅢ,但因为析出量极少,在含碳量高的合金中不予以 考虑。
CD线是从液体中结晶出渗碳体的开始温度线,从液体中结晶出的渗碳 体称为一次渗碳体,标记为Fe3CⅠ。 铁碳合金:碳钢和铸铁的统称,都是以铁和碳为基本组元的合金
技术:上将
财富:财神
冬季 积分:21109 经验: (lylsg555)13929 声望:5199 时
长:136230 [个人资料] [给他留言] [帖子合集]
[举 报] [回 复] [引用 并回 复] [维 护]
3.3.3 典型铁碳合金的平衡结晶过程 一、铁碳合金的分类 1.工业纯铁(<0.0218%C) 室温下的平衡组织几乎全部为铁素体的铁碳 合金,工业上很少使用 2.钢(0.0218%--2.11%C) 高温组织为单相奥氏体,易于变形。根据室 温组织的不同分为三类
1.1.2 强度与塑性
一、 强度:材料在外力作用下抵抗变形和破坏的能力。根据加载方式 的不同,强度指标有许多种,其中以拉伸试验测得的屈服强度和抗拉强 度两个指标应用最多。 1. 屈服强度 屈服现象:应力超过B点后,材料将发生塑性变形。在BC段,材料发生 塑性变形而应力不会增加的现象。 屈服强度:B点所对应的应力称为屈服强度,用σs表示。屈服强度反映 材料抵抗永久变形的能力,是最重要的零件设计指标之一。 2. 抗拉强度 颈缩现象:CD段为均匀ห้องสมุดไป่ตู้形阶段。在这一阶段,应力随应变增加而增 加,产生应变强化。变形超过D点后,试样开始发生局部塑性变形,即 出现颈缩。 抗拉强度:随应变增加,应力明显下降,并迅速在E点断裂。D点所对 应的应力为材料断裂前所承受的最大应力,称为抗拉强度,用σb表示。 抗拉强度反映材料抵抗断裂破坏的能力,也是零件设计和材料评价的重 要指标。
相关文档
最新文档