增量式光电编码器的结构

合集下载

增量式编码器测速原理

增量式编码器测速原理

增量式编码器测速原理
增量式编码器测速原理是基于旋转的物体在一定时间内旋转的角度与时间的关系进行测速的一种方法。

增量式编码器是一种能够将物体旋转运动转化为电信号输出的装置。

增量式编码器由光电光栅和相应的信号处理电路组成。

光电光栅是由透明条和不透明条交替组成的,当物体旋转时,光栅会被遮挡或透射,产生光电信号。

这些光电信号经过信号处理电路处理,得到与物体旋转角度相关的电信号。

增量式编码器测速的基本原理是通过记录物体旋转的时间和角度来计算物体的线速度。

首先,通过检测信号处理电路中的脉冲数量来确定物体旋转的角度,这里每个脉冲对应一个透明条或不透明条的通过。

然后,根据测得的旋转角度和已知的时间间隔,计算出物体旋转的角速度。

最后,通过将角速度乘以物体的半径,可以得到物体的线速度。

增量式编码器的测速原理基于旋转角度与时间的关系,可以精确地测量物体的线速度。

它在工业自动化控制、机器人等领域广泛应用。

由于其测速精度高、测量范围大、抗干扰能力强等优点,成为一种重要的测速装置。

编码器内部PNPNPN详解说明有图示

编码器内部PNPNPN详解说明有图示

编码器输出信号类型一般情况下,从编码器的光电检测器件获取的信号电平较低,波形也不规则,不能直接用于控制、信号处理和远距离传输,所以在编码器内还需要对信号进行放大、整形等处理。

经过处理的输出信号一般近似于正弦波或矩形波,因为矩形波输出信号容易进行数字处理,所以在控制系统中应用比较广泛。

增量式光电编码器的信号输出有集电极开路输出、电压输出、线驱动输出和推挽式输出等多种信号形式。

1集电极开路输出集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。

根据使用的晶体管类型不同,可以分为NPN集电极开路输出(也称作漏型输出,当逻辑 1 时输出电压为0V,如图2-1所示)和PNP集电极开路输出(也称作源型输出,当逻辑 1 时,输出电压为电源电压,如图2-2所示)两种形式。

在编码器供电电压和信号接受装置的电压不一致的情况下可以使用这种类型的输出电路。

图2-1 NPN 集电极开路输出图2-2 PNP集电极开路输出对于PNP型的集电极开路输出的编码器信号,可以接入到漏型输入的模块中,具体的接线原理如图2-3所示。

注意:PNP型的集电极开路输出的编码器信号不能直接接入源型输入的模块中。

图2-3 PNP型输出的接线原理对于NPN型的集电极开路输出的编码器信号,可以接入到源型输入的模块中,具体的接线原理如图2-4所示。

注意:NPN型的集电极开路输出的编码器信号不能直接接入漏型输入的模块中。

图2-4 NPN型输出的接线原理2.2 电压输出型电压输出是在集电极开路输出电路的基础上,在电源和集电极之间接了一个上拉电阻,这样就使得集电极和电源之间能有了一个稳定的电压状态,如图2-5。

一般在编码器供电电压和信号接受装置的电压一致的情况下使用这种类型的输出电路。

图2-5 电压输出型2.3 推挽式输出推挽式输出方式由两个分别为PNP 型和NPN 型的三极管组成,如图2-6所示。

当其中一个三极管导通时,另外一个三极管则关断,两个输出晶体管交互进行动作。

光电编码器详解

光电编码器详解

光电编码器光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器;这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成;根据检测原理,编码器可分为光学式、磁式、感应式和电容式;根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种;绝对脉冲编码器:APC增量脉冲编码器:SPC1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器;这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成;光栅盘是在一定直径的圆板上等分地开通若干个长方形孔;由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速;此外,为判断旋转方向,码盘还可提供相位相差90°的脉冲信号;增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位;增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量;它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化速度的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息;一般来说,增量式光电编码器输出A、B两相互差90度角的脉冲信号即所谓的两组正交输出信号,从而可方便地判断出旋转方向;同时还有用作参考零位的Z相标志指示脉冲信号,码盘每旋转一周,只发出一个标志信号;标志脉冲通常用来指示机械位置或对积累量清零;增量式光电编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成;码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期;检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线;它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差电度角;当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差电度角的近似于正弦波的电信号,电信号经过转换电路的信号处理,可以得到被测轴的转角或速度信息;增量式光电编码器的优点是:原理构造简单、易于实现;机械平均寿命长,可达到几万小时以上;分辨率高;抗干扰能力较强,信号传输距离较长,可靠性较高;其缺点是它无法直接读出转动轴的绝对位置信息;1.1.2基本技术规格在增量式光电编码器的使用过程中,对于其技术规格通常会提出不同的要求,其中最关键的就是它的分辨率、精度、输出信号的稳定性、响应频率、信号输出形式;1分辨率光电编码器的分辨率是以编码器轴转动一周所产生的输出信号基本周期数来表示的,即脉冲数/转PPR;码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,编码器的分辨率就越高;在工业电气传动中,根据不同的应用对象,可选择分辨率通常在500~6000PPR的增量式光电编码器,最高可以达到几万PPR;交流伺服电机控制系统中通常选用分辨率为2500PPR的编码器;此外对光电转换信号进行逻辑处理,可以得到2倍频或4倍频的脉冲信号,从而进一步提高分辨率;2精度增量式光电编码器的精度与分辨率完全无关,这是两个不同的概念;精度是一种度量在所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力;精度通常用角度、角分或角秒来表示;编码器的精度与码盘透光缝隙的加工质量、码盘的机械旋转情况的制造精度因素有关,也与安装技术有关;3输出信号的稳定性编码器输出信号的稳定性是指在实际运行条件下,保持规定精度的能力;影响编码器输出信号稳定性的主要因素是温度对电子器件造成的漂移、外界加于编码器的变形力以及光源特性的变化;由于受到温度和电源变化的影响,编码器的电子电路不能保持规定的输出特性,在设计和使用中都要给予充分考虑;4响应频率编码器输出的响应频率取决于光电检测器件、电子处理线路的响应速度;当编码器高速旋转时,如果其分辨率很高,那么编码器输出的信号频率将会很高;如果光电检测器件和电子线路元器件的工作速度与之不能相适应,就有可能使输出波形严重畸变,甚至产生丢失脉冲的现象;这样输出信号就不能准确反映轴的位置信息;所以,每一种编码器在其分辨率一定的情况下,它的最高转速也是一定的,即它的响应频率是受限制的;5信号输出形式在大多数情况下,直接从编码器的光电检测器件获取的信号电平较低,波形也不规则,还不能适应于控制、信号处理和远距离传输的要求;所以,在编码器内还必须将此信号放大、整形;经过处理的输出信号一般近似于正弦波或矩形波;由于矩形波输出信号容易进行数字处理,所以这种输出信号在定位控制中得到广泛的应用;采用正弦波输出信号时基本消除了定位停止时的振荡现象,并且容易通过电子内插方法,以较低的成本得到较高的分辨率;增量式光电编码器的信号输出形式有:集电极开路输出Open Collector、电压输出Voltage Output、线驱动输出Line Driver、互补型输出Complemental Output和推挽式输出Totem Pole;集电极开路输出这种输出方式通过使用编码器输出侧的NPN晶体管,将晶体管的发射极引出端子连接至0V,断开集电极与+Vcc的端子并把集电极作为输出端;在编码器供电电压和信号接受装置的电压不一致的情况下,建议使用这种类型的输出电路;主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等;电压输出这种输出方式通过使用编码器输出侧的NPN晶体管,将晶体管的发射极引出端子连接至0V,集电极端子与+Vcc和负载电阻相连,并作为输出端;在编码器供电电压和信号接受装置的电压一致的情况下,建议使用这种类型的输出电路;主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等;线驱动输出这种输出方式将线驱动专用IC芯片26LS31用于编码器输出电路,由于它具有高速响应和良好的抗噪声性能,使得线驱动输出适宜长距离传输;输出电路如图1-5所示;主要应用领域有伺服电机、机器人、数控加工机械等;互补型输出这种输出方式由上下两个分别为PNP型和NPN型的三极管组成,当其中一个三极管导通时,另外一个三极管则关断;这种输出形式具有高输入阻抗和低输出阻抗,因此在低阻抗情况下它也可以提供大范围的电源;由于输入、输出信号相位相同且频率范围宽,因此它适合长距离传输;主要应用于电梯领域或专用领域;推挽式输出这种输出方式由上下两个NPN型的三极管组成,当其中一个三极管导通时,另外一个三极管则关断;电流通过输出侧的两个晶体管向两个方向流入,并始终输出电流;因此它阻抗低,而且不太受噪声和变形波的影响;主要应用领域有电梯、纺织机械、注油机、自动化设备、切割机械、印刷机械、包装机械和针织机械等;绝对式编码器旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置;这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道;解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置;在参考点以前,是不能保证位置的准确性的;为此,在工控中就有每次操作先找参考点,开机找零等方法;这样的方法对有些工控项目比较麻烦,甚至不允许开机找零开机后就要知道准确位置,于是就有了绝对编码器的出现;绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数;这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码;显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道;绝对式编码器是利用自然二进制或循环二进制葛莱码方式进行光电转换的;绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置;编码的设计可采用二进制码、循环码、二进制补码等;它的特点是:1.可以直接读出角度坐标的绝对值;2.没有累积误差;3.电源切除后位置信息不会丢失;但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种;绝对型旋转光电编码器,因其每一个位置绝对唯一、抗干扰、无需掉电记忆,已经越来越广泛地应用于各种工业系统中的角度、长度测量和定位控制;绝对编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线;;;;;;编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码格雷码,这就称为n位绝对编码器;这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响;绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置;这样,编码器的抗干扰特性、数据的可靠性大大提高了;由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中;绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或总线型输出,德国生产的绝对型编码器串行输出最常用的是SSI同步串行输出;旋转单圈绝对式编码器,以转动中测量光码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码器只能用于旋转范围360度以内的测量,称为单圈绝对式编码器;如果要测量旋转超过360度范围,就要用到多圈绝对式编码器;编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘或多组齿轮,多组码盘,在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆;多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度;多圈式绝对编码器在长度定位方面的优势明显,已经越来越多地应用于工控定位中;绝对值旋转编码器的机械安装有高速端安装、低速端安装、辅助机械装置安装等多种形式;绝对值编码器信号输出有并行输出、串行输出、总线型输出、变送一体型输出1.并行输出:绝对值编码器输出的是多位数码格雷码或纯二进制码,并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的绝对编码器,一般就直接以此形式输出数码,可直接进入PLC或上位机的I/O接口,输出即时,连接简单;但是并行输出有如下问题:1;必须是格雷码,因为是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码;2;所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断;3;传输距离不能远,一般在一两米,对于复杂环境,最好有隔离;4;对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率;2.串行SSI输出:串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422TTL、RS485等;由于绝对值编码器好的厂家都是在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出;串行输出连接线少,传输距离远,对于编码器的保护和可靠性就大大提高了;一般高位数的绝对编码器都是用串行输出的;3.现场总线型输出现场总线型编码器是多个编码器各以一对信号线连接在一起,通过设定地址,用通讯方式传输信号,信号的接收设备只需一个接口,就可以读多个编码器信号;总线型编码器信号遵循RS485的物理格式,其信号的编排方式称为通讯规约,目前全世界有多个通讯规约,各有优点,还未统一,编码器常用的通讯规约有如下几种:PROFIBUS-DP; CAN;DeviceNet;Interbus等总线型编码器可以节省连接线缆、接收设备接口,传输距离远,在多个编码器集中控制的情况下还可以大大节省成本4.变送一体型输出有的绝对编码器,其信号已经在编码器内换算后直接变送输出,其有模拟量4—20mA输出、RS485数字输出、14位并行输出;三.连接绝对编码器的电气二次设备:连接绝对值编码器的设备可以是可编程控制器PLC、上位机,也可以是专用显示信号转换仪表,由仪表再输出信号给PLC或上位机;1.直接进入PLC或上位机:编码器如果是并行输出的,可以直接连接PLC或上位机的输入输出接点I/O,其信号数学格式应该是格雷码;编码器有多少位就要占用PLC的多少位接点,如果是24伏推挽式输出,高电平有效为1,低电平为0;如果是集电极开路NPN输出,则连接的接点也必须是NPN型的,其低电平有效,低电平为1;2.编码器如果是串行输出的,由于通讯协议的限制,后接电气设备必须有对应的接口;例如SSI串行,可连接西门子的S7-300系列的PLC,有SM338等专用模块,或S7-400的FM451等模块,对于其他品牌的PLC,往往没有专用模块或有模块也很贵;3.编码器如是总线型输出,接受设备需配专用的总线模块,例如PROFIBUS-DP;但是,如选择总线型输出编码器,在编码器与接收设备PLC中间,就无法加入其他显示仪表,如需现场显示,就要从PLC再转出信号给与信号匹配的显示仪表;有些协议自定义的RS485输出信号进PLC的RS485接口,需PLC具有智能编程功能;4.连接专用显示转换仪表:针对较多使用的SSI串行输出编码器,我公司提供专用的显示、信号转换仪表,由仪表进行内部解码、计算、显示、信号转换输出,再连接PLC或上位机;其优点如下:a.现场可以有直观的显示,直接在仪表上设置参数;b.专用程序读码解码、容错、内部计算,可以大大减少各个项目的编程工作量,提高稳定和可靠性;信号输出是由内部数字量直接计算,快速、准确;c.信号输出有多种形式,灵活方便,后面可连接各种PLC或上位机,通用性强;我公司各类连接SSI编码器的仪表一览表:GPMV0814、GPMV1016三位一体型GPMV0814绝对多圈编码器,其光电码盘读码解码、显示设定、信号转换三位一体,输出4—20mA模拟量、并行数字量RS485通讯可同时输出,连接各类PLC和上位机;一般的应用,可选同时两组输出型,一组信号连接PLC,另一组连接显示仪表,如需要增加开关输出,可从显示仪表设定输出;混合式绝对值编码器混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息;光电编码器是一种角度角速度检测装置,它将输入给轴的角度量,利用光电转换原理转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点;它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中;。

增量式编码器工作原理

增量式编码器工作原理

增量式编码器工作原理
增量式编码器是一种测量旋转和线性位置的装置。

它通过计算旋转或移动的数量和方向来确定位置。

增量式编码器通常由光电传感器和编码盘组成。

工作原理如下:
1. 编码盘:编码盘是一个具有固定凹槽或光透射面的圆盘,可以旋转或移动。

光电传感器会感知到编码盘上的光信号。

2. 光电传感器:光电传感器通常包含一个发光二极管(LED)和一个光敏二极管。

LED会发射出光束,该光束会被编码盘
上的凹槽或光透射面所阻挡,从而产生光信号。

3. 光信号:当编码盘旋转或移动时,光信号会随之变化。

如果编码盘上有凹槽,当凹槽经过光电传感器时,光信号会被阻挡,从而产生一个电信号脉冲。

反之,如果编码盘上是光透射面,光信号会被光电传感器接收到。

4. 信号计数:接收到的光信号脉冲会由计算器进行计数。

根据脉冲数量和方向(正向或反向),计算器可以确定位置的变化。

增量式编码器通过连续地测量光信号脉冲的数量和方向来跟踪位置变化。

通过轮询计数器的数值,可以确定旋转或线性移动的位置。

基于增量式编码器的位置控制系统可以实现高精度的位置反馈和运动控制。

增量式编码器的工作原理

增量式编码器的工作原理

增量式编码器的工作原理增量式编码器的工作原理如图1所示。

它由主码盘、鉴向盘、光学系统和光电变换器组成。

在图形的主码盘(光电盘)周边上刻有节距相等的辐射状窄缝,形成均匀分布的透明区和不透明区。

鉴向盘与主码盘平行,并刻有a、b两组透明检测窄缝,它们彼此错开1/4节距,以使A、B两个光电变换器的输出信号在相位上相差90°。

工作时,鉴向盘静止不动,主码盘与转轴一起转动,光源发出的光投射到主码盘与鉴向盘上。

当主码盘上的不透明区正好与鉴向盘上的透明窄缝对齐时,光线被全部遮住,光电变换器输出电压为最小;当主码盘上的透明区正好与鉴向盘上的透明窄缝对齐时,光线全部通过,光电变换器输出电压为最大。

主码盘每转过一个刻线周期,光电变换器将输出一个近似的正弦波电压,且光电变换器A、B的输出电压相位差为90°。

图1 增量式编码器工作原理图2 光电编码器的输出波形光电编码器的光源最常用的是自身有聚光效果的发光二极管。

当光电码盘随工作轴一起转动时,光线透过光电码盘和光栏板狭缝,形成忽明忽暗的光信号。

光敏元件把此光信号转换成电脉冲信号,通过信号处理电路后,向数控系统输出脉冲信号,也可由数码管直接显示位移量。

光电编码器的测量准确度与码盘圆周上的狭缝条纹数n有关,能分辨的角度α为:α=360°/n(1)分辨率=1/n(2)例如:码盘边缘的透光槽数为 1 024个,则能分辨的最小角度α=360°/1 024=0.352°。

为了判断码盘旋转的方向,必须在光栏板上设置两个狭缝,其距离是码盘上的两个狭缝距离的(m+1/4)倍,m为正整数,并设置了两组对应的光敏元件,如图1中的A、B光敏元件,有时也称为cos、sin 元件。

当检测对象旋转时,同轴或关联安装的光电编码器便会输出A、B两路相位相差90°的数字脉冲信号。

光电编码器的输出波形如图2所示。

为了得到码盘转动的绝对位置,还须设置一个基准点,如图1中的“零位标志槽”。

数控机床电气控制第六章

数控机床电气控制第六章

第六章 检测装置
6.5 光栅 6.5.1 光栅结构与工作原理 无论是长光栅或圆光栅,主要由标尺光栅和光栅读数头两部分组成。通常,标尺光栅固定在机床活动部 件(如工作台或丝杠)上,光栅读数头安装在机床的固定部件(如机床底座)上,两者由于工作台的移动而 雨相对移动。在光栅读数头中,有一个指示光栅,它可以随光栅读数头在标尺光栅上移动,因此,在光栅安 装时,必须严格保证标尺光栅和指示光栅的平行度要求以及二者之间的间隙(通常取 0.05mm 或 0.lmm)要 求。 1 结构 (1)光栅尺 标尺光栅和指示光栅,统称光栅尺,采用真空镀膜方法光刻上均匀密集线纹的透明玻璃板或长条形金属 镜面。对于长光栅,这些线纹相互平行、距离相等,该间距被称为栅距。对于圆光栅,这些线纹是等栅距角 的向心条纹。栅距和栅距角是决定光栅光学性质的基本参数。常见的长光栅的线纹密度为每毫米 25 条、50 条、 条、 条、 条。 100 125 250 对于圆光栅, 如果直径为 70mm, 一周内的刻线 100~768 条; 如果直径为 110mrn, 一周内的刻线 600~1024 条。但是对于同一光栅元件,其标尺光栅和指示光栅的线纹密度必须相同。
Hale Waihona Puke 第六章 检测装置图 6-3 绝对式光电编码器的结构图 由于绝对式光电编码器转过的圈数由 RAM 保存,所以断电后机床的位置即使断电或断电后又移动过也 能够正常工作。
第六章 检测装置
6.3 感应同步器 6.3.1 感应同步器结构与工作原理 1.结构特点 直线式感应同步器由定尺和滑尺组成,相当于一个展开式的多极旋转变压器,其结构如图 6-4 所示。定 尺和滑尺的基板由与机床线胀系数相近的钢板制成,钢板上用绝缘粘接剂贴有钢箔,利用照相腐蚀的办法做 成图示的印刷线路绕组。感应同步器定尺绕组是一个单向均匀的连续绕组;滑尺有两个绕组,其位置相距绕 组节距(2 )的 1/4,分别称为正弦绕组和余弦绕组。定尺和滑尺绕组的节距相等,均为 2 ,这是衡量感 应同步器精度的主要参数,工艺上要保证其节距的精度。一块标准型感应同步器定尺长度为 250mm,节距 为 2mm,其绝对精度可达 2.5 m,分辨率为 0.25 m。

光电编码器基础学习知识原理与维修

高精度的光电编码器的结构及原理2009年06月12日星期五8:48本文主要介绍高精度的光电编码器的内部结构、工作原理与位置检测的方法。

一、光电编码器的介绍:光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的。

根据光电编码器的工作原理可以将光电编码器分为绝对式光电编码器与增量式光电编码器,下面我就这两种光电编码器的结构与工作原理做介绍。

(一)、绝对式光电编码器绝对式光电编码器如图所示,他是通过读取编码盘上的二进制的编码信息来表示绝对位置信息的。

编码盘是按照一定的编码形式制成的圆盘。

图1是二进制的编码盘,图中空白部分是透光的,用“0”来表示;涂黑的部分是不透光的,用“1”来表示。

通常将组成编码的圈称为码道,每个码道表示二进制数的一位,其中最外侧的是最低位,最里侧的是最高位。

如果编码盘有4个码道,则由里向外的码道分别表示为二进制的23、22、21和20,4位二进制可形成16个二进制数,因此就将圆盘划分16个扇区,每个扇区对应一个4位二进制数,如0000、0001、 (1111)a) b)按照码盘上形成的码道配置相应的光电传感器,包括光源、透镜、码盘、光敏二极管和驱动电子线路。

当码盘转到一定的角度时,扇区中透光的码道对应的光敏二极管导通,输出低电平“0”,遮光的码道对应的光敏二极管不导通,输出高电平“1”,这样形成与编码方式一致的高、低电平输出,从而获得扇区的位置脚。

(二)、增量式光电编码器Increamental Optical-electrical Encoder增量式光电编码器是码盘随位置的变化输出一系列的脉冲信号,然后根据位置变化的方向用计数器对脉冲进行加/减计数,以此达到位置检测的目的。

它是由光源、透镜、主光栅码盘、鉴向盘、光敏元件和电子线路组成。

增量式光电编码器的工作原理是是由旋转轴转动带动在径向有均匀窄缝的主光栅码盘旋转,在主光栅码盘的上面有与其平行的鉴向盘,在鉴向盘上有两条彼此错开90o相位的窄缝,并分别有光敏二极管接收主光栅码盘透过来的信号。

增量编码器工作原理

增量编码器工作原理
增量编码器是一种用于测量旋转或线性位移的传感器。

它基于光电、电磁或机械原理,并将测量到的运动转换为电信号。

以下是增量编码器的工作原理:
1. 光电编码器:光电编码器通过感光器和光源之间的光脉冲来测量运动。

其中,光源和感光器通常配对安装在编码盘的内外圆上。

光线透过编码盘的透明槽或光栅,当感光器检测到光线时,就会产生一个电信号。

通过计算电信号的数量和方向变化,可以得出编码器的位置和速度。

2. 电磁编码器:电磁编码器使用磁场和传感器来测量运动。

一般来说,电磁编码器包括一个定子和一个转子。

定子上安装有线圈,通过电流来生成磁场。

转子上安装有磁性材料,当转子转动时,磁场与感应线圈之间的磁通量发生变化,从而在线圈中产生感应电动势。

通过测量感应电动势的变化,就可以推断出转子的旋转位置和速度。

3. 机械编码器:机械编码器根据机械接触来测量运动。

它通常由编码盘和接触式传感器组成。

编码盘上通常有一个或多个凸起,接触式传感器通过接触这些凸起来检测运动。

传感器会将接触凸起的位置转换为电信号。

然后,通过测量电信号的变化来确定编码器的位置和速度。

无论是光电、电磁还是机械编码器,它们都将运动转换为电信号,可以通过读取这些信号来确定位置和速度。

这使得增量编
码器在许多应用中被广泛使用,如机械制造、自动化控制和位置反馈系统中。

编码器内部PNP NPN详解说明书 有图示

编码器输出信号类型一般情况下,从编码器的光电检测器件获取的信号电平较低,波形也不规则,不能直接用于控制、信号处理和远距离传输,所以在编码器内还需要对信号进行放大、整形等处理。

经过处理的输出信号一般近似于正弦波或矩形波,因为矩形波输出信号容易进行数字处理,所以在控制系统中应用比较广泛。

增量式光电编码器的信号输出有集电极开路输出、电压输出、线驱动输出和推挽式输出等多种信号形式。

1集电极开路输出集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。

根据使用的晶体管类型不同,可以分为NPN集电极开路输出(也称作漏型输出,当逻辑1时输出电压为0V,如图2-1所示)和PNP集电极开路输出(也称作源型输出,当逻辑1时,输出电压为电源电压,如图2-2所示)两种形式。

在编码器供电电压和信号接受装置的电压不一致的情况下可以使用这种类型的输出电路。

图2-1 NPN集电极开路输出图2-2 PNP集电极开路输出对于PNP型的集电极开路输出的编码器信号,可以接入到漏型输入的模块中,具体的接线原理如图2-3所示。

注意:PNP型的集电极开路输出的编码器信号不能直接接入源型输入的模块中。

图2-3 PNP型输出的接线原理对于NPN型的集电极开路输出的编码器信号,可以接入到源型输入的模块中,具体的接线原理如图2-4所示。

注意:NPN型的集电极开路输出的编码器信号不能直接接入漏型输入的模块中。

图2-4 NPN型输出的接线原理2.2电压输出型电压输出是在集电极开路输出电路的基础上,在电源和集电极之间接了一个上拉电阻,这样就使得集电极和电源之间能有了一个稳定的电压状态,如图2-5。

一般在编码器供电电压和信号接受装置的电压一致的情况下使用这种类型的输出电路。

图2-5电压输出型2.3推挽式输出推挽式输出方式由两个分别为PNP型和NPN型的三极管组成,如图2-6所示。

当其中一个三极管导通时,另外一个三极管则关断,两个输出晶体管交互进行动作。

增量式编码器的工作原理

增量式编码器的工作原理
增量式编码器是一种测量物理量如位移、角度和速度等的电子设备。

它基于旋转或运动的原理,并通过输出特定数量的脉冲或波形来表示被测量的物理量。

增量式编码器由两部分组成:码盘和光电传感器。

码盘可以是光栅码盘或磁性码盘。

光电传感器通常使用光电二极管和光电三极管。

当编码器旋转或移动时,码盘上的光透过可变的光透过率将被光电传感器检测到。

这样的变化会导致光电传感器生成一系列的电信号脉冲或波形。

增量式编码器通过检测脉冲数或波形周期来确定被测量物理量的变化量。

每个脉冲或波形变化代表一个固定的位移或角度变化。

通过计数脉冲数量,可以精确测量被测量物理量的变化。

此外,增量式编码器还可以提供一个方向信号,通过检测脉冲的顺序来确定物体是顺时针旋转还是逆时针旋转。

总结起来,增量式编码器通过将物理量转化为电信号脉冲或波形,并通过计数脉冲数量来测量变化量。

它是一种常用的测量设备,广泛应用于工业控制、机器人技术和自动化领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

增量式光电编码器的结构
增量式编码器是指随转轴旋转的码盘给出一系列脉冲,然后根据旋转方向用计数器对这些脉冲进行加减计数,以此来表示转过的角位移量。

增量式光电编码器结构示意图如图1所示。

图1增量式光电码盘结构示意图
光电码盘与转轴连在一起。

码盘可用玻璃材料制成,表面镀上一层不透光的金属铬,然后在边缘制成向心的透光狭缝。

透光狭缝在码盘圆周上等分,数量从几百条到几千条不等。

这样,整个码盘圆周上就被
等分成n个透光的槽。

增量式光电码盘也可用不锈钢薄板制成,然后在圆周边缘切割出均匀分布的透光槽。

相关文档
最新文档