江苏省南通市田家炳中学2019-2020学年度七年级下册期末数学试卷(PDF版)

合集下载

2019-2020学年江苏省南通市崇川区田家炳中学七年级下学期期末数学试卷 (解析版)

2019-2020学年江苏省南通市崇川区田家炳中学七年级下学期期末数学试卷 (解析版)

2019-2020学年江苏省南通市崇川区田家炳中学七年级第二学期期末数学试卷一、选择题(共10小题).1.(3分)在,,,,1.1010010001…,3.14中,无理数有()A.2个B.3个C.4个D.5个2.(3分)若x<y,则下列不等式中一定成立的是()A.x2<y2B.﹣3x<﹣3y C.>D.1﹣x>1﹣y 3.(3分)下列调查中适合全面调查的是()A.调查“华为P10”手机的待机时间B.了解初一(2)班45名同学对数学课程的喜爱程度C.调查我市中小学校午餐酸奶的质量D.了解南通市初三学生中考后毕业旅行计划4.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BCA=∠DCA C.∠BAC=∠DAC D.∠B=∠D=90°5.(3分)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.46.(3分)如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.AAS D.ASA7.(3分)对于任意实数m,点P(m﹣1,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)观察下表中的数据信息:x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256根据表中的信息判断,下列语句中正确的是()A.=1.53B.241的算术平方根比15.5小C.根据表中数据的变化趋势,可以推断出16.12将比256增大3.17D.只有3个正整数n满足15.7<<15.89.(3分)现有如图(1)的小长方形纸片若干块,已知小长方形的长为a,宽为b.用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm,则图(3)中阴影部分面积与整个图形的面积之比为()A.B.C.D.10.(3分)定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.以下结论:①[﹣1.21]=﹣2;②[a﹣1]=[a]﹣1;③当﹣1<x<1时,[1+x]+[1﹣x]的值是1;④2a<[2a]+1;⑤x=﹣1.75是方程4x﹣2[x]+3=0的唯一解,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共8小题).11.(3分)若一个多边形的内角和比外角和大180°,则这个多边形的边数为.12.(3分)在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=.13.(3分)某校在“数学小论文“评比活动中,共征集到论文100篇,对论文评比的分数(分数为整数)整理后,分组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文(分数大于或等于80分为优秀)有篇.14.(3分)如图,三角形纸片ABC中∠A=66°,∠B=73°,将纸片一角折叠,使点C 落在△ABC的内部C′处,若∠2=55°,则∠1=.15.(3分)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为.16.(3分)如图,在△ABC中,点D在边BC上,已知点E,F分别是AD,CE边上的中点,且△BEF的面积为6,则△ABC的面积等于.17.(3分)已知关于x,y的二元一次方程(m+1)x+(2m﹣1)y+2﹣m=0,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是.18.(3分)在△ABC中,AB=AC,∠ABC=∠ACB,CE是高,且∠ECA=36°,平面内有一异于点A,B,C,E的点D,若△ABC≌△CDA,则∠DAE的度数为.三、解答题(本大题共9小题,共96分,解题时一定要有必要的演算过程)19.(10分)(1)计算:|﹣2|+()2+﹣(2)解方程组:20.(7分)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.21.(8分)城东街道组织社区志愿者开展新型肺炎疫情排查与宣传教育志愿服务活动,为了了解各年龄段志愿者对本次志愿服务的参与程度,随机选取了100名志愿者进行了调查,并将收集到的数据制成了尚不完整的频数分布表,如下所示:组别年龄段频数(人数)频率第1组18≤x<2855%第2组28≤x<38a25%第3组38≤x<4835第4组48≤x<5820m第5组58≤x<681515%(1)请直接写出a=,m=.(2)现城东街道社区志愿者约有1200人,求第3组年龄段的志愿者人数约有多少?(3)如果这100名志愿者在街道社区所占的人口比例如扇形统计图所示,求该街道社区估计有多少人?22.(8分)已知a、b满足b=++4,求3b﹣2a的平方根.23.(10分)在平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0.(1)当a=1时,点P到x轴的距离为;(2)若点P落在x轴上,求点P的坐标;(3)当a≤4<b时,求m的最小整数值.24.(12分)为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A型和B型两种公交车共10辆,其中每台的价格,年均载客量如表:A型B型价格(万元/辆)a b年均载客量(万人/年/辆)60100若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元(1)求购买每辆A型公交车和每辆B型公交车分别多少万元?(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车年均载客总和不少于680万人次,有哪几种购车方案?请你设计一个方案,使得购车总费用最少.25.(12分)如图,△ABC的角平分线AE,BF交于O点.(1)若∠ACB=70°,则∠BOA=;(2)求证:点O在∠ACB的角平分线上.(3)若OE=OF,求∠ACB的度数.26.(13分)在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.27.(16分)如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在,,,,1.1010010001…,3.14中,无理数有()A.2个B.3个C.4个D.5个解:是分数,属于有理数;,是整数,属于有理数;3.14是有限小数,属于有理数;无理数有,,1.1010010001…共3个.故选:B.2.(3分)若x<y,则下列不等式中一定成立的是()A.x2<y2B.﹣3x<﹣3y C.>D.1﹣x>1﹣y解:A、当x=﹣3,y=1时,x<y,x2>y2,故A不符合题意;B、两边都乘﹣3,不等号的方向改变,故B不符合题意;C、两边都除以2,不等号的方向不变,故C不符合题意;D、两边都乘﹣1,不等号的方向改变,两边都加1,不等号的方向不变,故D符合题意;故选:D.3.(3分)下列调查中适合全面调查的是()A.调查“华为P10”手机的待机时间B.了解初一(2)班45名同学对数学课程的喜爱程度C.调查我市中小学校午餐酸奶的质量D.了解南通市初三学生中考后毕业旅行计划解:A.调查“华为P10”手机的待机时间,适合选择抽样调查,故本选项不符合题意;B.了解初一(2)班45名同学对数学课程的喜爱程度,适合普查,故本选项符合题意;C.调查我市中小学校午餐酸奶的质量,所费人力、物力和时间较多,适合选择抽样调查,故本选项不符合题意;D.了解南通市初三学生中考后毕业旅行计划,所费人力、物力和时间较多,适合选择抽样调查,故本选项不符合题意.本选项故选:B.4.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BCA=∠DCA C.∠BAC=∠DAC D.∠B=∠D=90°解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.5.(3分)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.6.(3分)如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.AAS D.ASA解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:A.7.(3分)对于任意实数m,点P(m﹣1,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限解:A、当点在第一象限时解得1<m<3,故选项不符合题意;B、当点在第二象限时,解得m<3,故选项不符合题意;C、当点在第三象限时,不等式组无解,故选项符合题意;D、当点在第四象限时,解得m>1,故选项不符合题意.故选:C.8.(3分)观察下表中的数据信息:x1515.115.215.315.415.515.615.715.815.916 x2225228.01231.04234.09237.16240.25243.36246.49249.64252.81256根据表中的信息判断,下列语句中正确的是()A.=1.53B.241的算术平方根比15.5小C.根据表中数据的变化趋势,可以推断出16.12将比256增大3.17D.只有3个正整数n满足15.7<<15.8解:A.根据表格中的信息知:=15.3,∴=1.53,故选项不正确;B.根据表格中的信息知:=15.5<,∴241的算术平方根比15.5大,故选项不正确;C.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.17,故选项不正确;D.根据表格中的信息知:15.72=246.49<n<15.82=249.64,∴正整数n=247或248或249,∴只有3个正整数n满足15.7<<15.8,故选项正确;故选:D.9.(3分)现有如图(1)的小长方形纸片若干块,已知小长方形的长为a,宽为b.用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm,则图(3)中阴影部分面积与整个图形的面积之比为()A.B.C.D.解:∵大长方形的宽为30cm,∴a+3b=30,根据图③可得3b=a,组成方程组,解得:,∵阴影面积为3(a﹣b)2,整个图形的面积为:4a(a+3b),∴阴影部分面积与整个图形的面积之比为==,故选:B.10.(3分)定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.以下结论:①[﹣1.21]=﹣2;②[a﹣1]=[a]﹣1;③当﹣1<x<1时,[1+x]+[1﹣x]的值是1;④2a<[2a]+1;⑤x=﹣1.75是方程4x﹣2[x]+3=0的唯一解,其中正确的有()A.1个B.2个C.3个D.4个解:①[﹣1.2]=﹣2,故①正确;②[a﹣1]=[a]﹣1,故②正确;③当﹣1<x<0时,[1+x]+[1﹣x]=0+1=1,当0≤x<1时,[1+x]+[1﹣x]=1+0=1,则当﹣1<x<1时,[1+x]+[1﹣x]的值是1,故③正确;④当a=1.5时,2a=3,2[a]+1=2+1=3,则2a=[2a]+1,故④错误;⑤当x=﹣2.25时,4x﹣2[x]+3=﹣9+6+3=0,∴x=﹣2.25是方程4x﹣2[x]+3=0的解,故⑤错误,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)若一个多边形的内角和比外角和大180°,则这个多边形的边数为五.解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=180°,解得n=5,故答案为:五.12.(3分)在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=8.解:∵MN∥y轴,∴点M(a﹣3,a+4)与点N(5,9)的横坐标相同,∴a﹣3=5,∴a=8.故答案为:8.13.(3分)某校在“数学小论文“评比活动中,共征集到论文100篇,对论文评比的分数(分数为整数)整理后,分组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文(分数大于或等于80分为优秀)有45篇.解:由题意可得,在这次评比中被评为优秀的论文(分数大于或等于80分为优秀)有:100×=45(篇),故答案为:45.14.(3分)如图,三角形纸片ABC中∠A=66°,∠B=73°,将纸片一角折叠,使点C落在△ABC的内部C′处,若∠2=55°,则∠1=27°.解:设折痕为EF,连接CC′.∵∠2=∠ECC′+∠EC′C,∠1=∠FCC′+∠FC′C,∠ECF=∠EC′F,∴∠1+∠2=2∠ECF,∵∠C=180°﹣66°﹣73°=41°,∴∠1=82°﹣55°=27°,故答案为27°.15.(3分)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为16.解:∵|a﹣c|+=0,又∵|a﹣c|≥0,≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,∴a=4,∴a=c=4,∴a+b+c=4+8+4=16,故答案为16.16.(3分)如图,在△ABC中,点D在边BC上,已知点E,F分别是AD,CE边上的中点,且△BEF的面积为6,则△ABC的面积等于24.解:∵由于E、F分别为AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为24.17.(3分)已知关于x,y的二元一次方程(m+1)x+(2m﹣1)y+2﹣m=0,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是.解:方程整理得:mx+x+2my﹣y+2﹣m=0,整理得:(2x+2y)m+x﹣y+2=0,由无论实数m取何值,此二元一次方程都有一个相同的解,得到2x+2y=0,x﹣y+2=0,解得:,故答案为:.18.(3分)在△ABC中,AB=AC,∠ABC=∠ACB,CE是高,且∠ECA=36°,平面内有一异于点A,B,C,E的点D,若△ABC≌△CDA,则∠DAE的度数为117°、27°、9°和81°.解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.三、解答题(本大题共9小题,共96分,解题时一定要有必要的演算过程)19.(10分)(1)计算:|﹣2|+()2+﹣(2)解方程组:解:(1)原式=﹣2+7﹣3﹣=2;(2),把①代入②得:8﹣y+5y=16,解得:y=2,把y=2代入①得:x=2,则方程组的解为.20.(7分)如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【解答】证明:∵AD∥BC ,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵在△ADF和△CBE中,∴△ADF≌△CBE(AAS),∴AD=BC.21.(8分)城东街道组织社区志愿者开展新型肺炎疫情排查与宣传教育志愿服务活动,为了了解各年龄段志愿者对本次志愿服务的参与程度,随机选取了100名志愿者进行了调查,并将收集到的数据制成了尚不完整的频数分布表,如下所示:组别年龄段频数(人数)频率第1组18≤x<2855%第2组28≤x<38a25%第3组38≤x<4835第4组48≤x<5820m第5组58≤x<681515%(1)请直接写出a=25,m=20%.(2)现城东街道社区志愿者约有1200人,求第3组年龄段的志愿者人数约有多少?(3)如果这100名志愿者在街道社区所占的人口比例如扇形统计图所示,求该街道社区估计有多少人?解:(1)∵被调查的总人数为5÷5%=100(人),∴a=100×25%=25,m=20÷100×100%=20%,故答案为:25,20%;(2)第3组年龄段的志愿者人数约有1200×=420(人);(3)该街道社区估计有100÷0.5%=20000(人).22.(8分)已知a、b满足b=++4,求3b﹣2a的平方根.解:∵和都有意义,∴a+2≥0且﹣2a﹣4≥0,解得:a=﹣2,故b=4,则3b﹣2a=16,故3b﹣2a的平方根是:±4.23.(10分)在平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0.(1)当a=1时,点P到x轴的距离为6;(2)若点P落在x轴上,求点P的坐标;(3)当a≤4<b时,求m的最小整数值.解:(1)∵a=1,∴2﹣3m+1=0,∴m=1,∴3b﹣2﹣16=0,∴b=6,∴P(1,6),∴点P到x轴的距离为6,故答案为6.(2)∵点P落在x轴上,∴b=0,∴﹣2m﹣16=0,∴m=﹣8,∴2a+24+1=0,∴a=,∴点P的坐标为:(,0);(3)由题意:,解得:﹣2<m≤3,∴m的最小整数值为﹣1.24.(12分)为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A型和B型两种公交车共10辆,其中每台的价格,年均载客量如表:A型B型价格(万元/辆)a b年均载客量(万人/年/辆)60100若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元(1)求购买每辆A型公交车和每辆B型公交车分别多少万元?(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车年均载客总和不少于680万人次,有哪几种购车方案?请你设计一个方案,使得购车总费用最少.解:(1)根据题意,得:,解得:,答:购买每辆A型公交车100万元,购买每辆B型公交车150万元;(2)设购买A型公交车x辆,则购买B型公交车(10﹣x)辆,根据题意得:,解得:6≤x≤8,∵x为正整数,∴x=6,7,8,∴有3种方案.方案1:购买A型公交车6辆,B型公交车4辆.方案2:购买A型公交车7辆,B型公交车3辆.方案3:购买A型公交车8辆,B型公交车2辆.设购车的总费用为W,则W=100x+150(10﹣x)=﹣50x+1500,∵W随x的增大而减小,∴当x=8时,W取得最小值,最小值为1100万元.25.(12分)如图,△ABC的角平分线AE,BF交于O点.(1)若∠ACB=70°,则∠BOA=125°;(2)求证:点O在∠ACB的角平分线上.(3)若OE=OF,求∠ACB的度数.解:(1)∵∠ACB=70°,∴∠ABC+∠BAC=180°﹣70°=110°,∵△ABC的角平分线AE,BF交于O点,∴,∴∠ABO+∠BAO=(∠ABC+∠ACB)=55°,∴∠AOB=180°﹣(∠ABO+∠BAO)=125°,故答案为:125°;(2)过O作OD⊥BC于D,OG⊥AB于G,OH⊥AC于H,∵AE平分∠BAC,BF平分∠ABC,∴OG=OH,OG=OD,∴OD=OH,∴点O在∠ACB的角平分线上.(3)连接OC,在Rt△OED与Rt△OFH中,∴Rt△OED≌Rt△OFH,(HL),∴∠EOD=∠FOH,∴∠DOH=∠EOF=180°﹣∠ACB,∵AE、BF是角平分线,∴∠AOB=90°+∠ACB,即90°+∠ACB=180°﹣∠ACB,∴∠ACB=60°;26.(13分)在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为2倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为22.5°<α<30°.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.解:(1)∵∠A=80°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=40°,∴∠A=2∠C,∴△ABC为2倍角三角形,故答案为:2;(2)∵最小内角为α,∴3倍角为3α,由题意可得:3α<90°,且180°﹣4α<90°,∴最小内角的取值范围是22.5°<α<30°.故答案为22.5°<α<30°.(3)∵AE平分∠BAO,AF平分∠AOG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∴∠E=×90°或×90°,∵AE平分∠BAO,OE平分∠BOQ,∴∠E=∠ABO,∴∠ABO=2∠E,∴∠ABO=45°或36°.27.(16分)如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:由(1)③可知,BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在x轴的正半轴上时,同法可得OA﹣OD=2AM.。

南通市2019-2020学年七年级第二学期期末复习检测数学试题含解析

南通市2019-2020学年七年级第二学期期末复习检测数学试题含解析

南通市2019-2020学年七年级第二学期期末复习检测数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题只有一个答案正确)1.如图,将一张正方形纸片沿箭头所示的方向依次折叠后得到一个三角形,再将三角形纸片减去一个小等腰直角三角形和一个半圆后展开,得到的图形为()A.B.C.D.【答案】D【解析】【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【详解】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形和半圆,则直角顶点处完好,即原正方形中间无损,且4个小正方形关于对角线对称可得答案为D.故选D.【点睛】本题考核知识点:轴对称.解题关键点:发挥空间想象能力,也可以动手做实验.2.如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()A.AB=A′B′B.BC∥B′C′C.直线l⊥BB′D.∠A′=120°【答案】B【解析】试题分析:因为正六边形ABCDEF关于直线l的轴对称图形是六边形A/B/C/D/E/F/,所以AB=A/B/,直线l⊥BB/,所以A、C正确,又六边形A/B/C/D/E/F/是正六边形,所以∠A/=120°,所以D正确,故选B.考点:轴对称的性质、正六边形的性质3.如图,一个质点在第一象限及x轴,y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第24秒时质点所在位置的坐标是()A.(0,5)B.(5,0)C.(0,4)D.(4,0)【答案】C【解析】【分析】应先判断出走到坐标轴上的点所用的时间以及相对应的坐标,可发现走完一个正方形所用的时间分别为3,5,7,9…,此时点在坐标轴上,进而得到规律.【详解】解:3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);故选:C.【点睛】此题主要考查坐标的规律探索,解题的关键是根据题意找到变化规律.4.一种细胞的直径约为0.000067米,将0.000067用科学记数法表示为()A.6.7×105B.6.7×106C.6.7×10-5D.6.7×10-6【答案】C【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000067=6.7×10-1.故选:C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.下列方程组中,属于二元一次方程组的有( )A .31x y x z +=⎧⎨+=⎩B .32x y y +=⎧⎨=⎩C .233x y x y +=⎧⎨-=⎩D .32x y xy +=⎧⎨=⎩【答案】B 【解析】 【分析】根据二元一次方程组的定义判断逐项分析即可,方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程. 【详解】A. 31x y x z +=⎧⎨+=⎩含有三个未知数,故不是二元一次方程组;B. 32x y y +=⎧⎨=⎩ 是二元一次方程组;C. 233x y x y +=⎧⎨-=⎩中含有2次项 ,故不是二元一次方程组;D. 32x y xy +=⎧⎨=⎩中含有2次项,故不是二元一次方程组;故选B. 【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键. 6.已知命题“关于的不等式351x x k+≤⎧⎨->⎩无解”,能说明这个命题是假.命题的一个反例可以是( ) A .1k =- B .1k = C . 1.2k = D .2k =【答案】A 【解析】 【分析】根据题中“命题“关于的不等式351x x k +≤⎧⎨->⎩无解”可知,本题考查命题的真假判断与一元一次不等式组的解法,通过解出原方程组的解,给定k 符合题意的范围,再进行选择判断. 【详解】解不等式351xx k+≤⎧⎨->⎩得x≤2,x > k+1因为方程无解,所以k+1≥2 ,即k≥1,但题意说命题为假命题,即k<1才符合题意,A.-1在k<1范围里,符合,B.1不在k<1范围里,不符合,C. 1.2不在k<1范围里,不符合,D. 2不在k<1范围里,不符合,故应选A.【点睛】本题解题关键:原方程组无解是假命题,即为原方程组有解.7.下列运算正确的是A.(-3a2b)(2ab2)=6a3b2B.(-2×102)×(-6×103)=1.2×105C.-2a2(12ab-b2)=-a3b-2a2b2D.(-ab2)3=-a3b6【答案】D【解析】【分析】根据整式的运算法则即可依次计算判断.【详解】A. (-3a2b)(2ab2)=-6a3b3,故错误;B. (-2×102)×(-6×103)=12×106=1.2×107,故错误;C. -2a2(12ab-b2)=-a3b+2a2b2,故错误;D. (-ab2)3=-a3b6,正确;故选D.【点睛】此题主要考查整式的运算,解题的关键是熟知幂的运算法则与单项式与多项式的乘法法则.8.不等式组5243xx+>⎧⎨-≥⎩的最小整数解是()A.﹣3 B.﹣2 C.0 D.1 【答案】B【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【详解】解:5243x x +⎧⎨-≥⎩>①②,解不等式①得:x >﹣3, 解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1, ∴不等式组的最小整数解是﹣2, 故选:B . 【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.9.下列因式分解结果正确的是( ) A .B .C .D .【答案】B 【解析】 【分析】首先提取公因式进而利用公式法分解因式得出即可. 【详解】 A. ,故此选项错误;B. ,此选项正确;C. ,故此选项错误;D. 无法分解因式,故此选项错误;故选:B. 【点睛】此题考查因式分解-提公因式法,因式分解-运用公式法,解题关键在于掌握因式分解的运算法则. 10.如图所示,AB CD ∥,则A ∠,E ∠,C ∠关系正确的是A .180A E C ∠+∠+∠=︒B .180C A E ∠-∠+∠=︒ C .180C E A ∠-∠+∠=︒D .C AE ∠=∠+∠【解析】 【分析】过E 点作EF ∥AB ,则EF ∥CD ,利用“两直线平行,同旁内角互补”进行整理计算即可得到答案. 【详解】解:如图,过E 点作EF ∥AB ,则EF ∥CD ,∴∠A+∠AEF=∠A+∠AEC+∠CEF=180°,∠C+∠AEC=180°, ∴C A AEC ∠=∠+∠. 故选D.【点睛】本题主要考查平行线的性质,解此题的关键在于作适当的辅助线,再利用平行线的性质进行证明. 二、填空题11.命题“如果0a b >>a b >_____________命题(填“真”或“假”).【答案】真 【解析】 【分析】根据二次根式的性质进行判断即可. 【详解】命题“如果a >b >0a b >故答案为:真. 【点睛】本题考查了命题与定理的知识,解题的关键是了解二次根式的性质,难度不大. 12.在3.14,31223,2,0.12,,373π,0.2020020002…(每相邻两个2之间依次增加一个0),34216,9有理数有__________________________,无理数有__________________________. 【答案】312243.14,,0.12,216,37933,2,,0.20200200023π【解析】【分析】分别根据实数的分类及有理数、无理数的概念进行解答根据有理数及无理数的概念可知,在这一组数中是有理数的有1223.14,,0.12,37,是无理数的,0.20200200023π.故答案为:(1)1223.14,,0.12,37;(2,0.20200200023π.【点睛】本题考查的是实数的分类及无理数、有理数的定义,比较简单.13.一个五边形有三个内角是直角,另两个内角都等于n°,则n=_____. 【答案】1. 【解析】多边形的内角和可以表示成(n ﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n ,列方程可求解. 解:依题意有3×90+2n=(5﹣2)•180, 解得n=1. 故答案为1.14.某校开展“未成年人普法”知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛的得分超过100分,他至少答对了_____题; 【答案】1 【解析】 【分析】根据竞赛得分=10×答对的题数-5×未答对(不答)的题数和本次竞赛得分要超过100分,列出不等式,再求解即可. 【详解】设要答对x 道,根据题意得: 10x-5×(20-x )>100, 10x-100+5x >100, 15x >200, 解得x >403, 则他至少要答对1道; 故答案为:1. 【点睛】此题考查了一元一次不等式的应用,读懂题意,找到关键描述语,找到所求得分的关系式是解决本题的关键.15.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:_____,使△AEH≌△CEB.【答案】AH=CB或EH=EB或AE=CE.【解析】【分析】根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.16.分解因式:9x2―4y2=_______________.【答案】(3x+2y)(3x-2y)【解析】分析:原式利用平方差公式分解即可.详解:原式=(3x+2y )(3x-2y ).故答案为(3x+2y )(3x-2y ).点睛:本题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解答本题的关键. 17.已知点A(﹣2,0),B(3,0),点C 在y 轴上,且S △ABC =10,则点C 坐标为_____. 【答案】(0,4)或(0,-4) 【解析】 设C(0,y), BC 12y=10, 5|y|12=10, y 4=±. C(0,4)或(0,-4). 故答案为(0,4)或(0,-4). 三、解答题18.解不等式(组):(1)()3511x x >+-; (2)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 【答案】(1)x<-2;(2)-9≤x<2. 【解析】 【分析】(1)根据去括号、移项、合并同类项、系数化为1的步骤求解即可;(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集. 【详解】(1)∵()3511x x >+-, ∴3x>5x+5-1, ∴3x-5x>5-1, ∴-2x>4, ∴x<-2;(2)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①②,解①得 x<2, 解②得 x≥-1,∴-1≤x<2.【点睛】本题考查了一元一次不等式的解法,以及一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.19.“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、 B、“欢乐跑”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组.(1)小明被分配到“半程马拉松”项目组的概率为________.(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:①请估算本次赛事参加“半程马拉松”人数的概率为_______.(精确到0.1)②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?【答案】120.7;2100【解析】分析:(1)结合题意,利用概率公式直接求解即可;(2)①,结合表格信息,根据用频率估计概率的知识可求解;②,结合①的结论,用总人数乘参加“迷你马拉松”人数的概率,即可完成解答.详解:(1)∵小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到两个项目组,∴小明被分配到“半程马拉松”项目组的概率为:12;故答案为12;(2)①由表格中数据可得:本次赛事参加“半程马拉松”人数的概率为:0.7;故答案为0.7;②参加“迷你马拉松”的人数是:3000×0.7=2100(人)点睛:此题主要考查了利用频率估计概率,正确理解频率与概率之间的关系是解题的关键.20.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对多少道题,成绩才能在60分以上?【答案】同学至少要答对12道题,成绩才能在60分以上.【解析】分析:找到关键描述语,进而找到所求的量的等量关系.得到不等式6x-2(15-x)>60,求解即可.详解:设这个同学要答对x道题,成绩才能在60分以上,则6x-2(15-x)>60,x>454,经检验:不等式的整数解符合题意.答:这个同学至少要答对12道题,成绩才能在60分以上.点睛:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出不等式关系式即可求解.21.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【答案】(1)证明见解析;(1)证明见解析;(3)45°【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(1)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-1∠1;然后由邻补角的定义、角平分线的定义推知∠QPK=11∠EPK=45°+∠1;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【详解】(1)解:如图1,∵∠1与∠1互补,∴∠1+∠1=180°.又∵∠1=∠AEF,∠1=∠CFE,∴∠AEF+∠CFE=180°,∴AB ∥CD ;(1)证明:如图1,由(1)知,AB ∥CD ,∴∠BEF+∠EFD=180°.又∵∠BEF 与∠EFD 的角平分线交于点P ,∴∠FEP+∠EFP=12(∠BEF+∠EFD )=90°, ∴∠EPF=90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)解:∠HPQ 的大小不发生变化,理由如下:如图3,∵∠1=∠1,∴∠3=1∠1.又∵GH ⊥EG ,∴∠4=90°-∠3=90°-1∠1.∴∠EPK=180°-∠4=90°+1∠1.∵PQ 平分∠EPK ,∴∠QPK=12∠EPK=45°+∠1. ∴∠HPQ=∠QPK-∠1=45°,∴∠HPQ 的大小不发生变化,一直是45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.22.如图,已知直线AB 和CD 相交于点O ,射线OE AB ⊥于点O ,射线OF CD ⊥于点O ,且25BOF ∠=︒.求BOC ∠与EOD ∠的度数.【答案】65BOC ∠=︒;25EOD ∠=︒.【解析】【分析】由OF CD ⊥,25BOF ∠=︒求解BOC ∠,由OE AB ⊥,25BOF ∠=︒求解EOF ∠,结合OF CD ⊥可得EOD ∠.【详解】解:OF CD ⊥,90COF ∴∠=︒,90FOD ∠=︒25BOF ∠=︒9065BOC BOF ∴∠=︒-∠=︒OE AB ⊥,90BOE .9065EOF BOF ∴∠=︒-∠=︒.OF CD ∴⊥9025EOD EOF ∴∠=︒-∠=︒.【点睛】本题考查的是垂直的定义,角的和差计算,掌握相关知识是解题的关键.23.解方程: (1) 5(x+8)-5=6(2x -7)(2) 421123x x -+-= 【答案】(1)x=11;(2)47x =【解析】【分析】 (1)方程去括号,移项合并,把x 的系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 的系数化为1,即可求出解.【详解】(1)5(x+8)-5=6(2x -7)42125405-=-+x x54042125+--=-x x777x -=-x 11=(2)3(4)2(21)6x x --+=12-3x-4x-2=6346122x x --=-+74x -=- 47x = 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数的数化为1,求出解. 24.如图,ABC ∆在直角坐标系中,(1)请写出ABC ∆各点的坐标.(2)直接写出ABC S ∆.(3)若把ABC ∆向上平移2个单位,再向右平移2个单位得'''A B C ∆,在图中画出'''A B C ∆,并写出'''A B C 、、的坐标.【答案】(1)(1,1)A --,(4,2)B ,()1,3C;(2)7ABC S ∆=;(3)画图见解析,(1,1)A ' (6,4)B ' (3,5)C '.【解析】 【分析】(1)结合图形写点A ,B ,C 的坐标; (2)过点A ,B ,C 分别画坐标轴的平行线,则△ABC 的面积等于长方形的面积减去三个三角形的面积;(3)分别画出点A ,B ,C 向上平移2个单位,再向右平移2个单位后的点A′,B′,C′即可.【详解】(1)()11A --,,()42B ,,()13C ,.(2)111452413357222ABC S ==∆⨯-⨯⨯-⨯⨯-⨯⨯.(3)如图所示,A′(1,1),B′(6,4),C′(3,5).【点睛】在直角坐标系中求三角形的面积时,①如果三角形有一边平行x 轴或y 轴,则以这边为底,求三角形的面积;②如果三角形的三边都不与坐标轴平行,则过三角形的三个顶点分别作坐标轴的平行线,那么三角形的面积等于所围成的长方形的面积减去三个三角形的面积.25.(1)解方程组或不等式组①解方程组()()()1523254345m n m n ⎧+=+⎪⎨+-+=⎪⎩ ②解不等式组()112241x x x -⎧-⎪⎨⎪-<+⎩①②把解集在数轴上表示出来,并写出不等式组的负整数解.(2)甲、乙两位同学一起解方程组51542ax y x by +=⎧⎨=-⎩①②,由于甲看错了方程①中的a ,得到的解为31x y =-⎧⎨=-⎩,乙看错了方程②中的b ,得到的解为54x y =⎧⎨=⎩,试计算的20192018110a b ⎛⎫+- ⎪⎝⎭值. 【答案】(1)①13383m n ⎧=-⎪⎪⎨⎪=-⎪⎩;②23x -<≤,负整数解为1-;(2)0. 【解析】【分析】(1)①先对方程组的两个等式进行移项化简,再用加减消元法去求解;②分别求出不等式组中两个的解,再求解集;(2)把31x y =-⎧⎨=-⎩代入②,把54x y =⎧⎨=⎩代入①,即可得到a ,b 的值,再进行计算即可得到答案. 【详解】(1)①解:原方程组可化为5921m n m n -=⎧⎨-=⎩①② ② - ①得:38n =- 83n =- 把83n =-代入②得:133m =- ∴原方程组的解是13383m n ⎧=-⎪⎪⎨⎪=-⎪⎩②解:解不等式①得:3x ≤解不等式②得:2x >-∴原不等式组的解集为:23x -<≤不等式组的解集在数轴上表示为:∴原不等式组的负整数解为:1-(2)解:把31x y =-⎧⎨=-⎩代入②得:()43210b b ⨯-=--=把54x y =⎧⎨=⎩代入①得:554151a a +⨯==- ∴()()2019201920182018111101010=110a b ⎛⎫⎛⎫+--+-⨯ ⎪ ⎪⎝⎭⎝⎭=+-=.【点睛】本题考查解二元一次方程组和一元一次不等式组,解题的关键是熟练掌握解二元一次方程组和一元一次不等式组的基本方法.。

★试卷3套汇总★江苏省南通市2020年初一下学期期末数学监测试题

★试卷3套汇总★江苏省南通市2020年初一下学期期末数学监测试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确) 1.如图,阴影部分的面积( )A .B .C .D .2.如图,,射线交于点,若,则的度数是( )A .B .C .D .3.若a ,b 均为正整数,且7a >,32b <,则+a b 的最小值是( ) A .3 B .4 C .5 D .64.下列各式中能用平方差公式进行计算的是( )A .(2)(2)a b a b --+B .(-2)(2)a b a b +C .(2-)(2)a b a b --D .()()-2-2+a b a b5.从河北省统计局获悉,2018年前三季度新能源发电量保持快速增长,其中垃圾焚烧发电量6.9亿千瓦时,同比增长59%,6.9亿用科学记数法表示为10n a ⨯万,则n 的值为 ( )A .9B .8C .5D .46.不等式组201x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( ) A . B .C .D . 7.将点P(3,﹣1)向左平移2个单位,向下平移3个单位后得到点Q ,则点Q 坐标为( )A .(1,﹣4)B .(1,2)C .(5,﹣4)D .(5,2)8.如图,已知点D 是∠ABC 的平分线上一点,点P 在BD 上,PA ⊥AB ,PC ⊥BC ,垂足分别为A ,C .下列结论错误的是( )A .AD=CPB .△ABP ≌△CBPC .△ABD ≌△CBD D .∠ADB=∠CDB .9.已知,都是实数,且,则下列不等式正确的是( ) A .B .C .D . 10.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数()x 在120200x ≤<范围内人数占抽查学生总人数的百分比为( )A .43%B .50%C .57%D .73%二、填空题题 11.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.12.命题“对顶角相等”的逆命题是_______.13.81的平方根是____.14.已如等腰ABC ∆的两边长a ,b 满足420a b -+-=,则第三边长c 的值为____15.请完成下面的解答过程完.如图,∠1=∠B ,∠C =110°,求∠3的度数.解:∵∠1=∠B∴AD ∥( )(内错角相等,两直线平行)∴∠C +∠2=180°,( )∵∠C =110°.∴∠2=( )°.∴∠3=∠2=70°.( )16.如图是一组密码的一部分,目前,已破译出“努力发挥”的真实意思是“今天考试”.小刚运用所学的“坐标”知识找到了破译的“钥匙”.他破译的“祝你成功”的真实意思是“_____“.17.在实数:3.141,59,364,1.010010001,4. 21,π,227中,无理数是_____. 三、解答题18.解方程组、不等式:(1)解方程组5212237x y x y +=⎧⎨+=⎩; (2)解不等式912311632x x x +---≤+. 19.(6分)解方程组(1);(2)20.(6分)在ABC ∆中,BD 是ABC ∠的角平分线,DE BC ∥,交AB 于点E ,60A ︒∠=,95BDC ︒∠=,求BDE ∆各内角的度数.21.(6分)如图,(1,0)A -,(1,4)C ,点B 在x 轴上,且3AB =.(1)求点B 的坐标,并画出ABC ∆;(2)求ABC ∆的面积;(3)在y 轴上是否存在点P ,使以,,A B P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由.22.(8分)尺规作图:已知三角形的两角及其夹边,求作这个三角形.已知:∠α,∠β,线段a.求作:△ABC,使得∠A=∠α,∠B=∠β,AB=a.(不要求写作法,保留作图痕迹即可.)23.(8分)命题证明:证明:平行于同一条直线的两条直线平行.已知:如图,___________________求证:b∥c证明:24.(10分)某学校要开展校园艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下两幅不完整的统计图.请根据图中信息,回答下列问题:(1)本次共调查了_________名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于_________度.(3)补全条形统计图(并标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数约有多少名?25.(10分)已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d参考答案一、选择题(每题只有一个答案正确)1.A【解析】【分析】阴影部分的面积即两个矩形的面积和.【详解】根据长方形面积计算公式:.故选A【点睛】注意大长方形的长的计算.熟练运用合并同类项的法则.2.B【解析】【分析】根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.【详解】∵AB∥CD,∴∠1+∠AFD=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°,故选:B.【点睛】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.3.B【解析】【分析】a 、b 的最小值,即可计算a+b 的最小值.【详解】23.∵a a 为正整数,∴a 的最小值为1.12.∵b b 为正整数,∴b 的最小值为1,∴a+b 的最小值为1+1=3.故选B .【点睛】本题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.4.C【解析】【分析】两数之和与两数差的积等于这两个数的平方差,据此作答即可.【详解】A. 不是两数之和与两数差的积,不能使用平方差公式;B. 不是两数之和与两数差的积,不能使用平方差公式;C. 是两数之和与两数差的积,能使用平方差公式;D. 是两数之和与两数差的积,不能使用平方差公式.故选C.【点睛】此题考查平方差公式,解题关键在于掌握运算公式.5.D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】根据科学记数法的定义: 6.9亿=69000万=46.910⨯万=10n a ⨯万∴n =4故选:D .【点睛】此题考查的是科学记数法,掌握计数单位和科学记数法的定义是解决此题的关键.6.B【解析】【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】()()20? 11? 2x x ⎧-<⎪⎨≥-⎪⎩解不等式(1)得:x<2解不等式(2)得:1x ≥-∴不等式组的解集为:1x 2-≤<故选:B【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.7.A【解析】【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:根据题意,3-2=1,-1-3=-4,∴点Q 的坐标是(1,-4).故答案为:A .【点睛】本题考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.8.A【解析】∵点D是∠ABC的平分线上一点,点P在BD上,PA⊥AB,PC⊥BC,垂足分别为A,C.∴PA=PC,∴△ABP≌△CBP ,△ABD≌△CBD ,∴∠ADB=∠CDB,故选A.9.C【解析】【分析】根据不等式的性质分别判断可得出正确选项.【详解】解:∵,∴,故A选项错误;∴,故B选项错误;∴,故C选项正确;∴,故D选项错误.故选:C【点睛】本题考查了不等式的性质,熟记不等式的三条基本性质并能灵活运用是关键.10.C【解析】分析:用120≤x<200范围内人数除以总人数即可.详解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为57100=57%.故选C.点睛:本题考查了频数分布直方图,把图分析透彻是解题的关键.二、填空题题11.8【解析】【分析】【详解】解:设边数为n,由题意得,180(n-2)=360⨯3解得n=8.所以这个多边形的边数是8.12.如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题.【详解】∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.13.±3【解析】【分析】【详解】∵,∴9的平方根是3±.故答案为±3.14.1【解析】【分析】根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】a-+=解:40∴a=1,b=2,(1)若2是腰长,则三角形的三边长为:2、2、1,不能组成三角形;(2)若2是底边长,则三角形的三边长为:2、1、1,能组成三角形,故第三边长为1,故答案为:1.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程式正确解答本题的关键.15.BC;两直线平行,同旁内角互补;70;对顶角相等.【解析】【分析】依据内错角相等,两直线平行,即可得到AD//BC,进而得出∠C+∠2=180°,依据∠C=110°即可得到∠2=70°,再依据对顶角相等可得∠3=∠2=70°.【详解】解:解:∵∠1=∠B∴AD∥/BC(内错角相等,两直线平行)∴∠C+∠2=180°,(两直线平行,同旁内角互补)∵∠C=110°.∴∠2=70°.∴∠3=∠2=70°(对顶角相等 )故答案为BC;两直线平行,同旁内角互补;70;对顶角相等.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键.16.正做数学【解析】【分析】首先利用已知点坐标得出变化得出祝你成功对应点坐标,进而得出真实意思.【详解】由题意可得:“努”的坐标为(4,4),对应“今”的坐标为:(3,2);“力”的坐标为(6,3),对应“天”的坐标为:(5,1);故“祝你成功”对应点坐标分别为:(5,4),(6,8),(8,4),(3,6),则对应真实坐标为:(4,2),(5,6),(7,2),(2,4),故真实意思是:正做数学.故答案为:正做数学.【点睛】此题主要考查了坐标确定位置,正确得出坐标的变化规律是解题关键.17.π【解析】【分析】3.141是有限小数,是有理数;59是有理数;1.010010001是有限小数,是有理数,4. 21是无限循环小数,是有理数;π是无理数;227是分数,是有理数. 【详解】 解:在实数:3.141,59,1.010010001,4. 21,π,227中,无理数是:π. 故答案为π.【点睛】本题考查了无理数的定义,注意无理数必须满足:①无限②不循环这两个条件.三、解答题18.(1)21x y =⎧⎨=⎩;(2)1x ≥. 【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集.【详解】解:(1)5212237x y x y +=⎧⎨+=⎩①②①×3-②×2得:11x=22解得:x=2把x=2代入②得:y=1∴方程组的解为:21x y =⎧⎨=⎩; (2)去分母得,()()92126331x x x +--≤+-,去括号,得924693x x x +-+≤+-,移项,得496329x x x +-≤-+-,合并同类项,得44x -≤-,系数化为1,得1x ≥.【点睛】此题考查了解一元一次不等式,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.19.(1)原方程组的解为;(2)原方程组的解为【解析】【分析】(1)方程组利用加减消元法求出解即可;(2) 程组利用加减消元法求出解即可.【详解】解:(1)①﹣②得:n=2把n=2代入①得:3m+2×2=7∴m=1∴原方程组的解为.(2)解:①×3+②得:23x=46∴x=2把x=2代入①得:12+3y=﹣3∴y=﹣5∴原方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 20.35︒,35︒,110︒【解析】【分析】先根据三角形外角性质计算出∠ABD的度数,再根据角平分线的定义得到∠CBD=∠ABD,然后利用平行线的性质由DE∥BC得∠EDB=∠CBD,最后根据三角形内角和定理计算∠BED的度数.【详解】解:∵60A ︒∠=,95BDC ︒∠=,1BDC A ∠=∠+∠∴1956035BDC A ︒︒︒∠=∠-∠=-=,∵BD 平分ABC ∠,∴2135︒∠=∠=,又∵ED BC ∥,∴3235︒∠=∠=,∴180131803535110BED ︒︒︒︒︒∠=-∠-∠=--=,∴BDE ∆各内角的度数分别是35︒,35︒,110︒.【点睛】本题考查了平行线性质、三角形内角和定理及外角性质,熟知相关性质是解题的关键.21. (1)B 点的坐标为(2,0),(4,0)-,画图见解析;(2) 6;(3)P 点的坐标为20(0,)3或20(0,)3- 【解析】【分析】(1)分点B 在点A 的左边和右边两种情况解答;(2)利用三角形的面积公式列式计算即可得解;(3)利用三角形的面积公式列式求出点P 到x 轴的距离,然后分两种情况写出点P 的坐标即可.【详解】(1)点B 在点A 的右边时,-1+3=2,点B 在点A 的左边时,-1-3=-4,所以,B 的坐标为(2,0)或(-4,0),如图所示:(2)△ABC 的面积=12×3×4=6; (3)设点P 到x 轴的距离为h ,则12×3h=10,解得h=203,点P在y轴正半轴时,P(0,203),点P在y轴负半轴时,P(0,-203),综上所述,点P的坐标为(0,203)或(0,-203).【点睛】本题考查了坐标与图形性质,主要利用了三角形的面积,难点在于要分情况讨论.22.见解析.【解析】【分析】先作∠EAM=∠α,再截取AB=a,然后作∠ABC=∠β交AE于C,则△ABC满足条件.【详解】解:如图,△ABC即为所求.【点睛】此题考查作图—复杂作图,解题关键在于掌握作图法则.23.见解析【解析】【分析】写出已知,求证,利用平行线的判定定理证明即可.【详解】已知:如图,直线a、b、c中,a∥b,a∥c.求证:b∥c.证明:∵a∥b,∴∠1=∠2,∵a//c,∴∠1=∠1,∴∠2=∠1,(等量代换)∴b//c,(同位角相等,两直线平行)【点睛】考查平行线的判定和性质,解题的关键是熟练掌握基本知识,得到∠2=∠1.24.(1)1;(2)2;(3)图略;(4)2000名学生中最喜爱小品的人数约有640名.【解析】【分析】(1)从两个统计图中可得喜欢“相声”的人数为14人,占调查人数的28%,可求出调查人数;(2)用360°乘以样本中“歌曲”所占的比即可;(3)计算出喜欢“舞蹈”人数,再补全条形统计图;(4)样本估计总体,用总人数2000乘以样本中“小品”所占的比.【详解】(1)14÷28%=1(名).故答案为:1.(2)360°1050⨯=2°.故答案为:2.(3)1﹣10﹣16﹣14=10(名),补全条形统计图如图所示:(4)20001650⨯=640(名).答:该校2000名学生中最喜爱小品的人数约有640名.【点睛】本题考查了条形统计图、扇形统计图的制作方法和统计图中各个数据之间的关系,正确识别统计图是解答问题的前提.25.0.【解析】试题分析:利用已知倒数,相反数关系代入求值. 试题解析:由题意得a b=1,c+d=0,所以1=-1+1=0.故答案为0.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.小亮每天从家去学校上学行走的路程为900m ,某天他从家上学时以每分钟30m 的速度行走了一半的路程,为了不迟到,他加快了速度,以每分钟45m 的速度走完剩下的路程,则小亮距离学校的路程(m)与他行走的时间(min)之间的函数图象表示正确的是( )A .B .C .D .2.已知2a b +=,则224a b b -+的值( ).A .2B .3C .6D .43.如果a <b ,那么下列不等式成立的是( ) A .-3a >-3b B .a -3>b -3 C .1133a b > D .a -b >0 4.晓东根据某市公交车阶梯票价,得出乘坐路程m (单位:公里)和票价n (单位:元)之间的关系如下表: 乘坐路程m0 010x <≤ 1015x <≤ 1520x <≤ 以此类推,每增加5 公里增加1元票价n 0 2 3 4 我们定义公交车的平均单价为w m=,当7,10,13m =时,平均单价依次为1w ,2w ,3w ,则1w ,2w ,3w 的大小关系是( )A .123w w w >>B .312w w w >>C .231w w w >>D .132w w w >>5.已知x a y b =⎧⎨=⎩是方程组23327x y x y +=⎧⎨-=⎩的解,则5a b -的值是( ) A .10 B .-10 C .14 D .216.已知点P (2﹣4m ,m ﹣4)在第三象限,且满足横、纵坐标均为整数的点P 有( )A .1个B .2个C .3个D .4个7.在﹣32,0,1四个数中,是无理数的是( )A .﹣3B 2C .0D .18.如果两条平行线与第三条直线相交,那么一组同旁内角的平分线互相( )A .重合B .平行C .垂直D .相交但不垂直9.如图,点A 表示的实数是( )A .-2B .2C .1-2D .2-110.如图,O 为直线 AB 上一点,OE 平分∠BOC ,OD ⊥OE 于点 O ,若∠BOC=80°,则∠AOD 的度数是( )A .70°B .50°C .40°D .35°二、填空题题 11.在平面直角坐标系中,点(-2,-3)到y 轴的距离为________.12.计算:()2021-+-=___________.13.化简:(1221121x x x x x ++÷=--+)_____. 14.如图,五边形ABCDE 中,BCD ∠、EDC ∠的外角分别是FCD ∠、GDC ∠,CP 、DP 分别平分FCD ∠和GDC ∠且相交于点P ,若140A ∠=︒,120B ∠=︒,90E ∠=︒,则P ∠=__________︒.15.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需_____元.16.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.17.若2|5|(21)0x x y -+-+=,则y = .三、解答题18.如图,已知:在四边形ABFC 中,=90的垂直平分线EF 交BC 于点D,交AB 于点E,且CF=AE(1)试探究,四边形BECF是什么特殊的四边形;(2)当的大小满足什么条件时,四边形BECF 是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)19.(6分)解方程组和不等式组(1)解方程组{34165-633x y x y +==;(2)解不等式组{5323-142x xx +≥<,并把解集表示在数轴上.20.(6分)(1)化简:(3x+2)(3x-2)-5x (x-1)-(2x-1)2(2)解不等式组()x 5x 2x 3x 15+⎧⎪⎨⎪--≤⎩>,,并在数轴上表示出它的解集.21.(6分)根据提示,完成推理:已知,AC ⊥AB ,EF ⊥BC ,AD ⊥BC ,∠1=∠2,请问AC ⊥DG 吗?请写出推理过程解:AC ⊥DG .理由如下:∵EF ⊥BC ,AD ⊥BC ,∴AD ∥EF ,∴∠2=∠1.……请完成以上推理过程.22.(8分)如图,直线AB ∥CD ,直线l 与直线AB ,CD 相交于点E ,F ,点P 是射线EA 上的一个动点(不包括端点E ),将△EPF 沿PF 折叠,使顶点E 落在点Q 处.⑴若∠PEF =48°,点Q 恰好落在其中的一条平行线上,则∠EFP 的度数为 . ⑵若∠PEF =75°,∠CFQ =∠PFC ,求∠EFP 的度数.23.(8分)一个正多边形中,一个内角的度数是它相邻的一个外角的度数的3倍.(1)求这个多边形的每一个外角的度数;(2)求这个多边形的边数.24.(10分)(1)计算:;(2)因式分解:.25.(10分)如图,点C、D是半圆弧上的两个动点,在运动过程中保持∠COD=90°(1)如图1,OE平分∠AOC,OF平分∠BOD,写出∠EOF的度数;(2)如图2,已知∠AOC的度数为x,OE平分∠AOD,OF平分∠BOC,①直接写出∠AOD的度数,∠BOC的度数;②求出∠EOF的度数.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据行程,按照路程的一半分段,先慢后快,图象先平后陡.【详解】小亮距离学校的路程(米)应随他行走的时间t(分)的增大而减小,因而选项A.B一定错误;他从家去上学时以每分30米的速度行走了450米,所用时间应是15分钟,因而选项C错误;行走了450米,为了不迟到,他加快了速度,后面一段图象陡一些,选项D正确.故选:D.【点睛】考查函数的图象,解决问题的关键是理解函数图象反应的是哪两个变量之间的关系以及因变量是随着自变量的增大如何变化的.2.D【解析】分析:将代数式224a b b -+变形为()()4a b a b b +-+的形式,再将2a b +=代入计算即可.详解:∵2a b +=,∴224()()42()42()4a b b a b a b b a b b a b -+=+-+=-+=+=.故选D.点睛:能够将代数式224a b b -+变形为()()4a b a b b +-+的形式是解答本题的关键.3.A【解析】【分析】【详解】解:根据不等式的基本性质1可得,选项B 、D 错误;根据不等式的基本性质1,2可得,选项C 错误;根据不等式的基本性质3可得,选项A 正确.故选A .【点睛】本题考查不等式的基本性质.4.D【解析】【分析】根据题意,按计费规则计算即可.【详解】 解:由题意1232237100.28570.20.208133w w w =≈===≈,,, 所以132w w w >>,故选D .【点睛】本题为实际应用问题,考查了函数图象的意义以阅读图表能力,解答关键需要理解计费规则.5.A【解析】【分析】把x=a,y=b,代入方程组2x+y=33x-2y=7⎧⎨⎩,两式相加即可得出答案.【详解】把x=a,y=b代入方程组2x+y=33x-2y=7⎧⎨⎩,得:23 327 a ba b+=⎧⎨-=⎩两式相加得:5a−b=7+3=10.故选A【点睛】此题考查二元一次方程组的解,解答本题的关键在于x=a,y=b,代入方程组,化简可得答案6.C【解析】【分析】【详解】已知点P(2﹣4m,m﹣4)在第三象限,即可得2-4m<0,m-4<0,解得<m<4,因为点P为整数,所以满足横、纵坐标均为整数的点P有3个,分别为1、2、3,故选C.7.B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:﹣3,0,1是有理数,2是无理数,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.8.C【解析】分析:根据两条直线平行,则同旁内角互补和角平分线的定义进行分析.详解:如图所示,∵AB∥CD,∴∠BGH+∠DHG=180°.又MG、MH分别平分∠BGH和∠DHG,∴∠1=12∠BGH,∠2=12∠DHG,∴∠1+∠2=90°.故选:C.点睛:此题综合运用了平行线的性质和角平分线定义.注意:同旁内角的角平分线互相垂直;内错角的角平分线互相平行;同位角的角平分线互相平行.9.C【解析】【分析】首先根据勾股定理计算出BC的长,进而得到AC的长,再根据C点表示1,可得A点表示的数.【详解】解:BC=2211=2,则2,∵C点表示1,∴A点表示的数为:-2-1)2,故选C.【点睛】本题考查实数与数轴,勾股定理,正确的识别图形是解题的关键.10.B【解析】分析:由OE 是∠BOC 的平分线得∠COE=40°,由OD ⊥OE 得∠DOC=50°,从而可求出∠AOD 的度数. 详解:∵OE 是∠BOC 的平分线,∠BOC=80°,∴∠COE=12∠BOC=12×80°=40°, ∵OD ⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC 是∠AOB 的平分线则∠AOC=∠BOC=12∠AOB 或∠AOB=2∠AOC=2∠BOC . 二、填空题题11.1【解析】分析:根据点到y 轴的距离是点的横坐标的绝对值,可得答案.详解:点(﹣1,﹣3)到y 轴的距离为|﹣1|=1.故答案为:1.点睛:本题考查了点的坐标,点到y 轴的距离是点的横坐标的绝对值,点到x 轴的距离是点的纵坐标的绝对值.12.2【解析】【分析】根据0221,(1)1-=-=易求出这个算式的结果.【详解】 ()2021-+-=112+=故答案为:2【点睛】本题考查的是零次幂和负整数指数幂的计算,易错点是负整数的负整数指数幂的结果的符号.13.11x x -+. 【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果.【详解】(1+1x 1-)÷22x x x 2x 1+-+ =22x x 2x 1x 1x x-+⨯-+ =()2x x 1x 1x x 1-⨯-+ =x 1x 1-+, 故答案为x 1x 1-+. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.14.1【解析】【分析】根据多边形的内角和定理:()2180-︒n ,可得出∠BCD 、∠EDC 的和,从而得出相邻两外角和,然后根据角平分线及三角形内角和定理即可得出答案.【详解】解:多边形的内角和定理可得五边形ABCDE 的内角和为:()52180-︒=540°,∴∠BCD+∠EDC=540°-140°-120°-90°=190°,∴∠FCD+∠GDC=360°-190°=170°又∵CP 和DP 分别是∠BCD 、∠EDC 的外角平分线, ∴()170851122PCD PDC FCD GDC ∠+∠=∠+∠=⨯︒=︒, 根据三角形内角和定理可得:∠CPD=180°-85°=1°.故答案为:1.【点睛】本题主要考查了多边形内角和定理、角平分线的性质、三角形内角和定理,熟悉相关性质是解题的关键.15.12【解析】【分析】本题中因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元,所以买4支圆珠笔、4本日记本需4×3=12元.【详解】解:因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元.所以买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元, 所以买4支圆珠笔、4本日记本需4×3=12元.答:买4支圆珠笔、4本日记本需12元.故答案为12.【点睛】此题可说是一道发散性的题目,既可利用方程组解决问题,也可通过适当的推理来解决问题. 16.70°【解析】【分析】【详解】连接AB .∵C 岛在A 岛的北偏东45°方向,在B 岛的北偏25°方向,∴∠CAB+∠ABC=180°-(45°+25°)=110°,∵三角形内角和是180°,∴∠ACB=180°-(∠CAB+∠ABC )=180°-110°=70°.17.3;【解析】试题分析:2|5|(21)0x x y -+-+=,两个非负数相加等于零,则只有两个非负数都等于零时才成立,所以易知:x-5=0且x-2y+1=0,解得x=5,把x=5代入x-2y+1=0求出y=3.考点:实数运算及二元一次方程组点评:本题难度较低,主要考查学生对实数运算及二元一次方程组知识点的掌握。

2019-2020学年江苏省南通市初一下期末监测数学试题含解析

2019-2020学年江苏省南通市初一下期末监测数学试题含解析

2019-2020学年江苏省南通市初一下期末监测数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题只有一个答案正确)1.已知二元一次方程x+7y=5,用含x 的代数式表示y ,正确的是A .57x +B .57x -C .57y +D .57y -【答案】B【解析】【分析】先把x 从左边移到右边,然后把y 的系数化为1即可.【详解】∵x+7y=5,∴7y=5-x,∴y=57x -. 故选B.【点睛】本题考查了等式的基本性质,等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.2.已知点()()32,,5M N a ,,当,M N 两点间的距离最短时,a 的值为( ) A .0B .2-C .3D .5【答案】C【解析】【分析】当MN 垂直x 轴时MN 最小,此时x 坐标相等.【详解】解:当MN 垂直x 轴时MN 最小 又∵()()32,,5M N a ,∴a=3故选:C【点睛】本题考查了垂线段最小,解题的关键是理解题意后得出当MN 垂直x 轴时MN 最小.3.下列计算正确的是( )A 5=±B 9=-C 2=-D =【答案】C【解析】【分析】根据平方根和立方根概念和性质,二次根式的加法,可以得到答案.【详解】5,所以A 9=,所以B 2=-,所以C 项正确;因为=D 项错误.【点睛】本题考查平方根和立方根,解题的关键是熟练掌握平方根和立方根的概念和性质.42、0、、227、﹣1.7322π、、0.1010010001…中无理数的个数有( )A .1个B .2个C .3个D .4个 【答案】D【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】-2、0、、227、-1.7322π、0.1010010001…是无理数, 故选D .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.若关于x 的不等式组5300x x m -≥⎧⎨-≥⎩有实数解,则实数m 的取值范围( )A.53 m≥B.53m<C.53m>D.53m≤【答案】D【解析】【分析】根据不等式组有解的条件,需要两个不等式的解集有公共部分.【详解】解:530xx m-≥⎧⎨-≥⎩解得53xx m⎧≤⎪⎨⎪≥⎩,据题意得53m≤.故选:D.【点睛】本题考查由不等式组的解集求参数,掌握不等式组有解的条件是解答关键.6.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇,已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.【答案】C【解析】【分析】作PP'垂直于河岸L,使PP′等于河宽,连接QP′,与河岸L相交于N,作NM⊥L,根据平行线的判定与性质,易证得此时PM+NQ最短.【详解】解:如图,作PP'垂直于河岸L ,使PP′等于河宽,连接QP′,与河岸L 相交于N ,作NM ⊥L ,则MN ∥PP′且MN =PP′,于是四边形PMNP′为平行四边形,故PM =NP′.根据“两点之间线段最短”,QP′最短,即PM+NQ最短.观察选项,选项C 符合题意.故选C .【点睛】本题主要考查最短路径问题,解此题的关键在于熟练掌握其知识点.7.若点(3,2)M m m --在第二象限,则m 的取值范围是( )A .23m <<B .2m <C .3m >D .2m >【答案】C【解析】【分析】根据点在第二象限的特征,即可得到不等式,解不等式即可得到答案.【详解】解:∵点(3,2)M m m --在第二象限,∴横坐标为小于0,纵坐标大于0, ∴3020m m -<⎧⎨->⎩, 即:32m m >⎧⎨>⎩, ∴解集为:3m >,故选C .【点睛】本题主要考查了直角坐标轴中第二象限的点的特征和解不等式组,掌握第二象限的点的特征是解题的关键.8.如图,直线l 1∥l 2,则∠α=( )A.150°B.140°C.130°D.120°【答案】D【解析】试题分析:∵L1∥L2,首先根据平行线的性质可得∴∠1=∠3=110°,再根据角之间的和差关系可得∴∠2=110°﹣50°=60°,∵∠2+∠α=180°,∴∠α=120°,故选D.考点:平行线的性质.9.如图,O为直线AB上一点,设∠1=x°,∠2=y°,且∠1的度数比∠2的度数的2倍多10°,则可列方程组为()A.B.C.D.【答案】C【解析】【分析】由图知,∠1与∠2是邻补角的关系,则根据邻补角的性质可列出第一个式子;再根据题干中叙述的∠1与∠2的大小关系可列出第二个式子,综合以上即可得出所求方程组.【详解】∠1和∠2是邻补角,根据邻补角互补,可得:x+y=180;根据∠1的度数比∠2的2倍多10°可得:x-2y=10,联立可得方程组:.故选:C【点睛】此题考查二元一次方程组的实际应用,找准x、y之间的关系是解题关键.10.若m >n ,下列不等式一定成立的是( )A .m ﹣2<n -2B .2m >2nC .22m n ->D .m 2>n 2【答案】B【解析】【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 左边减2,右边减2,不等号方向不变,故A 错误;B. 两边都乘以2,不等号的方向不变,故B 正确;C. 左边除以−2,右边除以2,故C 错误;D. 两边乘以不同的数,故D 错误;故选B.【点睛】此题考查不等式的性质,解题关键在于掌握其性质定理.二、填空题11.下面是一个运算程序图,若需要经过两次运算才能输出结果y ,则输入的x 的取值范围是_____.【答案】4≤x <11 .【解析】【分析】根据运算流程结合需要经过两次运算可得出关于x 的一元一次不等式组,解不等式组即可得出结论.【详解】根据题意得:31323(31)132x x <-⎧⎨--≥⎩解得4≤x <11 .【点睛】本题考查的知识点是一元一次不等式组的应用,解题的关键是熟练的掌握一元一次不等式组的应用. 12.生活中,将一个宽度相等的纸条按图所示折叠一下, 如果∠1=140º,那么∠2=_____.【答案】110°【解析】【分析】如图,因为AB ∥CD ,所以∠BEM=∠1(两直线平行,内错角相等);根据折叠的性质可知∠3=∠4,可以求得∠4的度数;再根据两直线平行,同旁内角互补,即可求得∠2的度数.【详解】∵AB ∥CD ,∴∠BEM=∠1=140°,∠2+∠4=180°, ∵∠3=∠4,∴∠4=12∠BEM=70°, ∴∠2=180°−70°=110°.故答案为:110°【点睛】此题考查翻折变换(折叠问题),平行线的性质,解题关键在于根据折叠的性质得到∠3=∠413.如图,已知直线//a b ,直线c 与a 、b 相交,2115∠=︒,那么1∠=________度.【答案】65【解析】【分析】利用平行线的性质及邻补角互补即可求出.【详解】∵a ∥b ,∴∠1=∠3,∵∠2=115°,∴∠3=180°-115°=1°(邻补角定义),∴∠1=∠3=1°.故答案为:1.【点睛】本题应用的知识点为:“两直线平行,同位角相等”和邻补角定义.14.定义:对于实数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.75=,[]55=,[]4π-=-,如果241x +⎡⎤⎢⎥⎦=-⎣,那么x 的取值范围是________ 【答案】97x -<<-【解析】【分析】根据已知得出不等式组,求出不等式组的解集,再得出答案即可.【详解】解:根据题意, ∵241x +⎡⎤⎢⎥⎦=-⎣ ∴1432x +-≤<-, 解得:97x -<<-;故答案为:97x -<<-.【点睛】本题考查了解一元一次不等式组,能根据已知得出不等式组是解此题的关键.15.若点(1,)A m 在x 轴上,则点(1,5)B m m --位于第_________象限.【答案】三【解析】直接利用x轴上点的坐标性质得出m的值,进而得出B点坐标,再判断所在象限.【详解】解:∵点A(1,m)在x轴上,∴m=0,∴m-1=-1,m-5=-5,故B(-1,-5),在第三象限.【点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.16.Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若AB=5,DC=2,则△ABD的面积为____.【答案】1.【解析】【分析】作DE⊥AB于E,根据角平分线的性质求出DE=DC=2,再根据三角形的面积公式计算即可.【详解】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=12×AB×DE=12×1×2=1,故答案为:1.【点睛】本题考查的是角平分线的性质和三角形面积计算公式,掌握角平分线的性质是解题的关键.17.对于三个数a、b、c中,我们给出符号来表示其中最大(小)的数,规定min{,,}a b c表示这三个数中最小的数,max{,,}a b c表示这三个数中最大的数.(注:取英文单词minimum(最少的),maximum(最多的)前三个字母);例如:min{1,2,3}1-=-,max{1,2,3}3-=;{}(1)min 1,2,1a a a ≤-⎧-=⎨-⎩,若max{2,1,2}2x x x +=,则x 的取值范围为__________.【答案】x≥1.【解析】【分析】根据新定义列出关于x 的不等式组,解之可得.【详解】∵max{2,x+1,2x}=2x ,∴2221x x x ≥≥+⎧⎨⎩, 解得:x≥1.故答案为:x≥1.【点睛】本题主要考查新定义下解不等式组和一元一次方程的能力,根据新定义列出不等式组和一元一次方程是根本,由已知等式找到x 的两个分界点以准确分类讨论是解题的关键.三、解答题18.对于一个图形,通过两种不同的方法计算它们的面积,可以得到一个数学等式,例如图1可以得到(1)类似图1的数学等式,写出图2表示的数学等式;(2)若10a b c ++=, 35ab ac bc ++=,用上面得到的数学等式乘222a b c ++的值;(3)小明同学用图3中的x 张边长为a 的正方形,y 张边长为b 的正方形,z 张边长为a 、b 的长方形拼出一个面积为()()7 94a b a b ++的长方形,求()x y z ++的值.【答案】(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)30;(3)1.【解析】【分析】(1)整体计算正方形的面积和分部分求和,二者相等;(2)依据a 2+b 2+c 2=(a+b+c )2-2ab-2ac-2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(a+7b )(9a+4b )=9a 2+67ab+28b 2,可得x ,y ,z 的值,从而得解.【详解】解:(1)∵图2中正方形的面积有两种算法:①(a+b+c)2;②a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∴图2表示的数学等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2-2ab-2ac-2bc=102-2×35=30;(3)由题可知,所拼图形的面积为:xa2+yb2+zab,∵(a+7b)(9a+4b)=9a2+4ab+63ab+28b2=9a2+67ab+28b2,∴x=9,y=28,z=67,∴x+y+z=9+28+67=1.【点睛】本题属于整式乘法公式的几何表示及其相关应用,属于基础题目,难度不大.解题的关键是熟练掌握图形的面积计算方法.19.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2= .(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=14AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小(简单描述点M 的画法),并求出最小值的平方.【答案】(1)36 (2)17【解析】试题分析:(1)由直角三角形两直角边的平方和等于斜边的平方变形计算得出;(2)试题解析:(1)BC2=AB2-AC2=100-64=36,(2)如图所示:作点P关于AC的对称点P’,连接P’D交AC于点M,则点M即为所求,此时有MP+MD 最小值,即为P’D的长度.过点P’作P’E CD于点E,∵正方形ABCD的边长为4,点P为AD边上的一点,AP=14 AD∴P’E=4,DE=A P’=AP=1∴DP’2=DE2+P’E2=16+1=17.20.解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.【答案】(1)(x﹣y)(3a+1b)(3a﹣1b);(1)m=2,n=9,(x+3)1.【解析】【分析】(1)用提取公因式和平方差公式进行因式分解即可解答;(1)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a1(x﹣y)﹣4b1(x﹣y)=(x﹣y)(9a1﹣4b1)=(x﹣y)(3a+1b)(3a﹣1b);(1)∵(x+1)(x+4)=x1+2x+8,甲看错了n,∴m=2.∵(x+1)(x+9)=x1+10x+9,乙看错了m,∴n=9,∴x1+mx+n=x1+2x+9=(x+3)1.【点睛】本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.21.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少? 【答案】小赵的设计符合要求.按他的设计养鸡场的面积是143米2. 【解析】 【分析】根据小王的设计可以设宽为x 米,长为(x +5)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小王的设计,根据小赵的设计可以设宽为y 米,长为(y +2)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小赵的设计,从而可以作出判断. 【详解】解:根据小王的设计可以设宽为x 米,长为(x +5)米, 根据题意得2x +(x +5)=35 解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的. 根据小赵的设计可以设宽为y 米,长为(y +2)米, 根据题意得2y +(y +2)=35 解得y=11.因此小王设计的长为y +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). 【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.如图,已知,A AGE D DGC ∠=∠∠=∠.(1)试说明://AB CD ;(2)若21180∠+∠=,且230BEC B ∠=∠+,求B 的度数. 【答案】(1)见解析;(2)50B ∠=. 【解析】 【分析】(1)欲证明AB ∥CD ,只需推知∠A=∠D 即可;(2)利用平行线的判定定理推知CE ∥FB ,然后由平行线的性质推知180CEB B ∠+∠=,根据已知条件230BEC B ∠=∠+,即可解答.【详解】解:(1)因为,A AGE D DGC ∠=∠∠=∠, 又因为AGE DGC ∠=∠, 所以A D ∠=∠, 所以//AB CD ;(2)因为12180∠+∠=, 又因为2180CGD ∠+∠=, 所以1CGD ∠=∠, 所以//CE FB , 所以180CEB B ∠+∠=. 又因为230BEC B ∠=∠+, 所以230180B B ∠++∠=, 所以50B ∠=. 【点睛】此题考查平行线的判定与性质,解题关键在于掌握平行线的判定定理求解即可.23.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对多少道题,成绩才能在60分以上? 【答案】同学至少要答对12道题,成绩才能在60分以上. 【解析】分析:找到关键描述语,进而找到所求的量的等量关系.得到不等式6x-2(15-x )>60,求解即可. 详解:设这个同学要答对x 道题,成绩才能在60分以上, 则6x-2(15-x )>60, x >454, 经检验:不等式的整数解符合题意.答:这个同学至少要答对12道题,成绩才能在60分以上.点睛:本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出不等式关系式即可求解.24.某校组织了全校1500名学生参加传统文化知识网络竞赛.赛后随机抽取了其中200名学生的成绩作为样本进行整理,并制作了如下不完整的频数分布表和频数分布直方图.成绩(分)频数(人)频率50≤x<60 10 0.0560≤x<70 20 n70≤x<80 m 0.1580≤x<90 80 0.4090≤x<100 60 0.30请根据图表提供的信息,解答下列各题:(1)表中m=,n=,请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段80≤x<90对应扇形的圆心角的度数是;(3)若成绩在80分以上(包括80分)为合格,则参加这次竞赛的1500名学生中成绩合格的大约有多少名?【答案】(1)m=30、n=0.1,补全图形如下见解析;(2)144°;(3)参加这次竞赛的1500名学生中成绩合格的大约有1050人.【解析】【分析】(1)由0.15×200求得m,由20÷200求得n;再根据求得的数据补全直方图;(2)用360°×0.40即可得到答案;(3)用成绩80分以上的频率(0.40+0.30)乘以总人数即可得到答案.【详解】(1)m=0.15×200=30、n=20÷200=0.1,补全图形如下:故答案为30、0.1;(2)分数段80≤x <90对应扇形的圆心角的度数是360°×0.40=144°, 故答案为144°;(3)参加这次竞赛的1500名学生中成绩合格的大约有1500×(0.40+0.30)=1050人. 【点睛】本题考查频数分布直方图以及样本估计总体,解题的关键是读懂频数分布直方图.25.有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S 1.(1)试探究该正方形的面积S 与S 1的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由; (2)再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S 2. ①试比较S 1,S 2的大小;②当m 为正整数时,若某个图形的面积介于S 1,S 2之间(不包括S 1,S 2)且面积为整数,这样的整数值有且只有16个,求m 的值.【答案】(1)解:S 与S 1的差是是一个常数,S 与S 1的差是1;(2)①当-2m+1﹥0,即-1﹤m ﹤12时,1s ﹥2s ;当-2m+1﹤0,即m ﹥12时,1s ﹤2s ;当-2m+1= 0,即m =12时,1s = 2s ;②m= 1. 【解析】 【分析】(1)根据完全平方公式和多项式乘以多项式,计算即可得到答案.(2)①先计算S 1,S 2,则有1221s s m -=-+,再分情况讨论,即可得到答案. ②根据题意列不等式16<21m -≤17,即可得到答案. 【详解】(1)解:S 与S 1的差是是一个常数,∵()22369s m m m =+=++,()()()()2131314268s m m m m m m =+++-=++=++∴()()22169681s s m m m m -=++-++=,∴S 与S 1的差是1. (2)∵()()()()2131314268s m m m m m m =+++-=++=++()()()()2234327187s m m m m m m =+++-=++=++∴()()2212688721s s m m m m m -=++-++=-+,∴当-2m+1﹥0,即-1﹤m ﹤12时,1s ﹥2s ; 当-2m+1﹤0,即m ﹥12时,1s ﹤2s ;当-2m+1= 0,即m =12时,1s = 2s ; ②由①得,S 1﹣S 2=-2m+1,∴12s s 21m -=-+,∵m 为正整数,∴2121m m -+=-,∵一个图形的面积介于S 1,S 2之间(不包括S 1,S 2)且面积为整数,整数值有且只有16个,∴16<21m -≤17,∴172<m ≤1,∵m 为正整数,∴m= 1. 【点睛】本题考查完全平方公式和不等式,解题的关键是熟练掌握完全平方公式和不等式.。

江苏省南通市崇川区南通田家炳中学2019-2020学年七年级下学期期末数学试题(解析版)

江苏省南通市崇川区南通田家炳中学2019-2020学年七年级下学期期末数学试题(解析版)

2019-2020学年江苏省南通市崇川区田家炳中学七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. 在,,,,1.1010010001…,3.14中,无理数有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】根据无理数的定义:无限不循环小数叫无理数逐一判断即可.【详解】解:是分数,属于有理数;,是整数,属于有理数;3.14是有限小数,属于有理数;,,1.1010010001…是无理数,共3个.故选:B.【点睛】本题考查了无理数的定义,属于基础题型,熟知概念是关键.2. 若x<y,则下列不等式中一定成立的是( )A. x2<y2B. -3x<-3yC. >D. 1-x>1-y【答案】D【解析】【分析】利用不等式的基本性质逐一判断即可得到答案.【详解】解:不能两边平方,所以并不一定成立,故A错误,>所以B错误,∴--x y33,所以C错误,∴-->所以D正确.x y11,故选D.【点睛】本题考查的是不等式的基本性质,掌握不等式的基本性质是解题的关键.3. 下列调查中适合全面调查的是()A. 调查“华为P10”手机的待机时间B. 了解初一(2)班45名同学对数学课程的喜爱程度C. 调查我市中小学校午餐酸奶的质量D. 了解南通市初三学生中考后毕业旅行计划【答案】B 【解析】 【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似即可得出结论.【详解】解:A .调查“华为P10”手机的待机时间,适合选择抽样调查,故本选项不符合题意; B .了解初一(2)班45名同学对数学课程的喜爱程度,适合普查,故本选项符合题意;C .调查我市中小学校午餐酸奶的质量,所费人力、物力和时间较多,适合选择抽样调查,故本选项不符合题意;D .了解南通市初三学生中考后毕业旅行计划,所费人力、物力和时间较多,适合选择抽样调查,故本选项不符合题意. 故选:B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A. CB CD =B.C.D. 90B D ∠=∠=︒【答案】C 【解析】 【分析】由图形可知AC=AC ,结合全等三角形的判定方法逐项判断即可. 【详解】解:在△ABC和△ADC中∵AB=AD ,AC=AC ,A 、添加CB CD =,根据,能判定ABC ADC ∆∆≌,故A 选项不符合题意; B 、添加,根据能判定ABC ADC ∆∆≌,故B 选项不符合题意; C .添加时,不能判定ABC ADC ∆∆≌,故C 选项符合题意;D 、添加90B D ∠=∠=︒,根据,能判定ABC ADC ∆∆≌,故D 选项不符合题意; 故选:C .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS 、SAS 、ASA 、AAS 和HL .5. 有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:从4条线段里任取3条线段组合,可有4种情况,根据两边之和大于第三边,两边之差小于第三边,看哪种情况不符合三角形三边关系,舍去即可:四条木棒的所有组合:3cm,6cm,8cm和3cm,6cm,9cm和3cm,8cm,9cm和6cm,8cm,9cm;只有3cm,6cm,9cm不能组成三角形.故选C.6. 用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )A. SASB. AASC. ASAD. SSS【答案】D【解析】【分析】根据三角形全等的判定与性质即可得出答案.【详解】解:根据作法可知:OC=O′C′,OD=O′D′,DC=D′C′∴△OCD≌△O′C′D′(SSS)∴∠COD=∠C′O′D′∴∠AOB=∠A′O′B′故选D.【点睛】本题考查的是三角形全等,属于基础题型,需要熟练掌握三角形全等的判定与性质.7. 对于任意实数m,点P(m﹣1,9﹣3m)不可能...在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】分点P的横坐标是正数和负数两种情况讨论求解.【详解】①,即时,有可能大于0,也有可能小于0,所以,点P(m﹣1,9﹣3m)在第一或第四象限;②,即时,点P(m﹣1,9﹣3m)可以在第二象限,综上所述,点P不可能在第三象限.故选C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 观察下表中的数据信息:根据表中的信息判断,下列语句中正确的是()A. =1.53B. 241的算术平方根比15.5小C. 根据表中数据的变化趋势,可以推断出16.12将比256增大3.17D. 只有3个正整数n满足15.7<<15.8【答案】D【解析】【分析】根据表格中的信息可知x2和其对应的算术平方根的值,然后根据算术平方根的概念依次判断各选项即可.【详解】解:A.根据表格中的信息知:=15.3,∴=1.53,故本选项不正确;B.根据表格中的信息知:=15.5<,∴241的算术平方根比15.5大,故本选项不正确;C.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.17,故本选项不正确;D.根据表格中的信息知:15.72=246.49<n<15.82=249.64,∴正整数n=247或248或249,∴只有3个正整数n满足15.7<<15.8,故本选项正确;故选:D.【点睛】本题考查了算术平方根的相关知识,正确读懂表格信息、熟练掌握算术平方根的概念是解题的关键.9. 现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( ) A. B.C.D.【答案】B 【解析】 【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比. 【详解】解:根据题意、结合图形可得: , 解得:,∴阴影部分面积223()310300=-=⨯=a b , 整个图形的面积,∴阴影部分面积与整个图形的面积之比, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.10. 定义:[x]表示不大于x 的最大整数,例如:[2.3]=2,[1]=1.以下结论:①[﹣1.21]=﹣2;②[a ﹣1]=[a]﹣1;③当﹣1<x <1时,[1+x]+[1﹣x]的值是1;④2a <[2a]+1;⑤x =﹣1.75是方程4x ﹣2[x]+3=0的唯一解,其中正确的有( ) A. 1个 B. 2个C. 3个D. 4个【答案】C 【解析】 分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.【详解】解:①[﹣1.2]=﹣2,故①正确;②[a﹣1]=[a]﹣1,故②正确;③当﹣1<x<0时,[1+x]+[1﹣x]=0+1=1,当0≤x<1时,[1+x]+[1﹣x]=1+0=1,则当﹣1<x<1时,[1+x]+[1﹣x]的值是1,故③正确;④当a=1.5时,2a=3,2[a]+1=2+1=3,则2a=[2a]+1,故④错误;⑤当x=﹣2.25时,4x﹣2[x]+3=﹣9+6+3=0,∴x=﹣2.25是方程4x﹣2[x]+3=0的解,故⑤错误,故选:C.【点睛】此题考查的是定义新运算,掌握新定义是解决此题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11. 若一个多边形的内角和比外角和大180°,则这个多边形的边数为_____.【答案】五【解析】【分析】设该多边形的边数为n,则其内角和为(n﹣2)•180°,外角和为360°,根据题意列方程求解即可.【详解】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=180°,解得n=5,故答案为:五.【点睛】本题考查多边形的内角和与外角和,掌握多边形的内角和公式以及多边形的外角和是解题的关键.12. 在平面直角坐标系中,点M(a-3,a+4),点N(5,9),若MN∥y轴,则a=____.【答案】8【解析】【分析】根据MN∥y轴可得M、N两点的横坐标相等,列出方程即可求得a的值【详解】解:∵MN∥y轴,∴M、N两点的横坐标相等,a-3=5,解得:a=8,故答案为:8.【点睛】本题考查坐标点的特征,与y轴平行的直线上面的点横坐标相等.13. 某校在“数学小论文“评比活动中,共征集到论文100篇,对论文评比的分数(分数为整数)整理后,分组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文(分数大于或等于80分为优秀)有______篇.【答案】45【解析】【分析】根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.【详解】∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文100篇,∴第一个方格的篇数是:×100=5(篇);第二个方格的篇数是:×100=15(篇);第三个方格的篇数是:×100=35(篇);第四个方格的篇数是:×100=30(篇);第五个方格的篇数是:×100=15(篇);∴这次评比中被评为优秀的论文有:30+15=45(篇);故答案为45.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.14. 如图,三角形纸片ABC中∠A=66°,∠B=73°,将纸片一角折叠,使点C落在△ABC的内部C′处,若∠2=55°,则∠1=_____.【答案】27°【解析】【分析】设折痕为EF,连接CC′,如图,根据三角形的外角性质和折叠的性质可得∠1+∠2=2∠C,根据三角形的内角和定理可得∠C的度数,进一步即可求出答案.【详解】解:设折痕为EF,连接CC′,如图.∵∠2=∠ECC′+∠EC′C,∠1=∠FCC′+∠FC′C,∠ECF=∠EC′F,∴∠1+∠2=∠ECC′+∠EC′C+∠FCC′+∠FC′C=∠ECF+∠EC′F= 2∠ECF,∵∠ECF=180°﹣66°﹣73°=41°,∴∠1=82°﹣55°=27°,故答案为:27°.【点睛】本题考查了折叠的性质、三角形的内角和定理以及三角形的外角性质,属于常考题型,得出∠1+∠2=2∠C是解本题的关键.15. 已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a 个单位长度,其扫过的面积为24,那么a+b+c的值为_____.【答案】16【解析】分析】利用非负数的性质可求出b的值,a=c,进而可得PQ的长,再根据平移的性质和平行四边形的面积公式即可求出a,进一步即可求出答案.【详解】解:∵|a﹣c|+=0,又∵|a﹣c|≥0,≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,a⨯=,解得a=4,∴624∴a=c=4,∴a+b+c=4+8+4=16.故答案为:16.【点睛】本题考查了非负数的性质、图形与坐标以及平移的性质等知识,正确理解题意、熟练掌握上述知识是解题的关键.16. 如图,在△ABC中,点D在边BC上,已知点E,F分别是AD,CE边上的中点,且△BEF的面积为6,则△ABC的面积等于_____.【答案】24【解析】【分析】由E、F分别为AD、CE中点可得BE、CE、BF分别为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【详解】解:∵由于E、F分别为AD、CE的中点,∴S△ABE=S△DBE,S△DCE=S△AEC,S△BEF=S△BCF,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为:24.【点睛】本题考查了三角形中线的性质,属于常考题型,熟知三角形的中线将相应的三角形分成面积相等的两部分是解题的关键.17. 已知关于,的二元一次方程,无论实数取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.【答案】【解析】【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m(x+2y-1)+x-y+2=0,因为无论实数m取何值,此二元一次方程都有一个相同的解,所以,解得:.故答案为:.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.18. 在△ABC中,AB=AC,∠ABC=∠ACB,CE是高,且∠ECA=36°,平面内有一异于点A,B,C,E的点D,若△ABC≌△CDA,则∠DAE的度数为_____.【答案】117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.【点睛】本题考查了全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.三、解答题(本大题共9小题,共96分,解题时一定要有必要的演算过程)19. (1)计算:|﹣2|+()2+﹣(2)解方程组:【答案】(1)2;(2)【解析】【分析】(1)原式前三项分别根据实数的绝对值、算术平方根的性质以及立方根的定义计算,再合并即可;(2)利用代入消元法解答即可.【详解】解:(1)原式=;(2),把①代入②得:8﹣y+5y=16,解得:y=2,把y=2代入①得:3x=8-2,解得:x=2,所以方程组的解为.【点睛】本题考查了实数的混合运算和二元一次方程组的解法,属于基础题型,熟练掌握基本知识是解题的关键.20. 如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.【答案】证明见解析.【解析】【分析】因为AE=CF,所以AE+EF=CF+EF,即AF=CE,因为AD∥BC,所以∠A=∠C,再有∠B=∠D,根据“AAS”即得△AFD≌△BEC,于是AD=CB.【详解】解:AE=CF,AE+EF=CF+EF,即AF=CE,AD∥BC,∠A=∠C,在△AFD与△BEC中△AFD≌△BEC,∴AD=CB.【点睛】本题考查的是平行线的性质、全等三角形的判定与性质.21. 城东街道组织社区志愿者开展新型肺炎疫情排查与宣传教育志愿服务活动,为了了解各年龄段志愿者对本次志愿服务的参与程度,随机选取了100名志愿者进行了调查,并将收集到的数据制成了尚不完整的频数分布表,如下所示:组别年龄段频数(人数)频率第1组18≤x<28 5 5% 第2组28≤x<38 a 25% 第3组38≤x<48 35(1)请直接写出a=,m=.(2)现城东街道社区志愿者约有1200人,求第3组年龄段的志愿者人数约有多少?(3)如果这100名志愿者在街道社区所占的人口比例如扇形统计图所示,求该街道社区估计有多少人?【答案】(1)25,20%;(2)420人;(3)20000人【解析】【分析】(1)先有第1组的频数与频率求出样本容量,再根据频数=总数×频率求解可得;(2)用总人数乘以样本中第3组人数所占比例即可得;(3)用被调查的总人数除以其所占百分比可得社区总人数.【详解】解:(1)∵被调查的总人数为5÷5%=100(人),∴a=100×25%=25,m=20÷100×100%=20%,故答案为:25,20%;(2)第3组年龄段的志愿者人数约有1200×=420(人)答:第3组年龄段的志愿者人数约有420人;(3)该街道社区估计有100÷0.5%=20000(人)答:该街道社区估计有20000人.【点睛】此题考查的是频数分布表和扇形统计图,结合频数分布表和扇形统计图得出有用信息是解决此题的关键.22. 已知a、b满足b=+4,求3b﹣2a的平方根.【答案】±4【解析】【分析】直接利用二次根式有意义的条件得出a的值,进而得出b的值,代入即可得出答案.【详解】解:∵和都有意义,∴a+2≥0且﹣2a﹣4≥0,解得:a=﹣2,则3b﹣2a=16,故3b﹣2a的平方根是:±4.【点睛】此题考查的是求式子的平方根,掌握二次根式有意义的条件求出a和b的值是解决此题的关键.23. 在平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0.(1)当a=1时,点P到x轴的距离为;(2)若点P落在x轴上,求点P的坐标;(3)当a≤4<b时,求m的最小整数值.【答案】(1)6;(2);(3)﹣1【解析】【分析】(1)先求出m的值,然后即可求出b的值,求出点P坐标即可解决问题;(2)根据坐标轴上点的特征,可知b=0,据此可得m的值,进而得出a的值;(3)构建不等式组,求出m取值范围即可解决问题.【详解】解:(1)∵a=1,∴2﹣3m+1=0,∴m=1,∴3b﹣2﹣16=0,∴b=6,∴P(1,6),∴点P到x轴的距离为6,故答案为6.(2)∵点P落在x轴上,∴b=0,∴﹣2m﹣16=0,∴m=﹣8,∴2a+24+1=0,∴a=,∴点P的坐标为:;(3)∵2a﹣3m+1=0,3b﹣2m﹣16=0∵a≤4<b∴,解得:﹣2<m≤3,∴m的最小整数值为﹣1.【点睛】本题考查了代数式的值,点到坐标轴的距离,点在坐标轴上的特点以及解不等式组,理解和掌握点到坐标轴的距离和点在坐标轴上的特点,会解不等式组是解决本题的关键,点到x轴的距离是纵坐标的绝对值,这个是易错点,把转化成不等式组是解决本题的难点.24. 为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A型和B型两种公交车共10辆,其中每台的价格,年均载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元(1)求购买每辆A型公交车和每辆B型公交车分别多少万元?(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车年均载客总和不少于680万人次,有哪几种购车方案?请你设计一个方案,使得购车总费用最少.【答案】(1)购买每辆A型公交车100万元,购买每辆B型公交车150万元;(2)购买A型公交车8辆时,购车的总费用最小,为1100万元.【解析】【分析】(1)根据“购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元”列方程组求解可得;(2)设购买A型公交车x辆,则购买B型公交车(10-x)辆,根据“总费用不超过1200万元、年均载客总和不少于680万人次”求得x的范围,设购车的总费用为W,列出W关于x的函数解析式,利用一次函数的性质求解可得.【详解】(1)根据题意,得:解得:答:购买每辆A型公交车100万元,购买每辆B型公交车150万元;(2)设购买A型公交车x辆,则购买B型公交车(10−x)辆,根据题意得:解得:设购车的总费用为W,则W=100x+150(10−x)=−50x+1500,∵W随x的增大而减小,∴当x=8时,W取得最小值,最小值为1100万元.【点睛】考查二元一次方程组,一元一次不等式组以及一次函数的应用,读懂题意,找到题目中的等量关系或者不等关系是解题的关键.25. 如图,△ABC的角平分线AE,BF交于O点.(1)若∠ACB=70°,则∠BOA=;(2)求证:点O在∠ACB的角平分线上.(3)若OE=OF,求∠ACB的度数.【答案】(1)125°;(2)见解析;(3)∠ACB=60°【解析】分析】(1)根据三角形的内角和定理可求出∠ABC+∠BAC,根据角平分线的定义可求出∠ABO+∠BAO,再根据三角形的内角和定理即可求得结果;(2)过O作OD⊥BC于D,OG⊥AB于G,OH⊥AC于H,如图,根据角平分线的性质可得OG=OH,OG=OD,进而可得OD=OH,再根据角平分线的判定即得结论;(3)连接OC,根据HL可证Rt△OED≌Rt△OFH,可得∠EOD=∠FOH,进而可得∠DOH=∠EOF=180°﹣∠ACB,而由(1)的结论可得∠AOB=90°+∠ACB,进一步即可求出结果.【详解】解:(1)∵∠ACB=70°,∴∠ABC+∠BAC=180°﹣70°=110°,∵△ABC的角平分线AE,BF交于O点,∴11,22BAO BAC ABO ABC ∠=∠∠=∠,∴∠ABO+∠BAO=(∠ABC+∠ACB)=55°,∴∠AOB=180°﹣(∠ABO+∠BAO)=125°,故答案为:125°;(2)过O作OD⊥BC于D,OG⊥AB于G,OH⊥AC于H,如图,∵AE平分∠BAC,BF平分∠ABC,∴OG=OH,OG=OD,∴OD=OH,∴点O在∠ACB的角平分线上;(3)连接OC,在Rt△OED与Rt△OFH中,∵OE=OF,OD=OH,∴Rt△OED≌Rt△OFH(HL),∴∠EOD=∠FOH,∴∠DOH=∠EOF=180°﹣∠ACB,∵AE、BF是△ABC的角平分线,∴由(1)的结论可得∠AOB=90°+∠ACB,即90°+∠ACB=180°﹣∠ACB,∴∠ACB=60°.【点睛】本题考查了角平分线的判定和性质、三角形的内角和定理以及直角三角形全等的判定和性质等知识,正确添加辅助线、熟练掌握上述知识是解题的关键.26. 在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC 为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B 在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.【答案】(1)2;(2)22.5°<α<30°;(3)45°或36°【解析】【分析】(1)由∠A=80°,∠B=60°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)首先证明∠EAF=90°,分两种情形分别求出即可.【详解】解:(1)∵∠A=80°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=40°,∴∠A=2∠C,∴△ABC为2倍角三角形,故答案为:2;(2)∵最小内角为α,∴3倍角为3α,由题意可得:3α<90°,且180°﹣4α<90°,∴最小内角的取值范围是22.5°<α<30°.故答案为22.5°<α<30°.(3)∵AE平分∠BAO,AF平分∠AOG,∴∠EAB=∠EAO,∠OAF=∠FAG,∴∠EAF=∠EAO+∠OAF=(∠BAO+∠OAG)=90°,∵△EAF是4倍角三角形,∴∠E=×90°或×90°,∵AE平分∠BAO,OE平分∠BOQ,∴∠E=∠ABO,∴∠ABO=2∠E,∴∠ABO=45°或36°.【点睛】本题考查了三角形的内角和定理,余角的意义,不等式组的解法和应用等知识,读懂新定义n倍角三角形的意义和分类讨论是解题的基础和关键.27. 如图,A点的坐标为(0,3),B点的坐标为(﹣3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90°得线段AE,使得AE⊥AD,且AE=AD,连接BE交y轴于点M.(1)如图,当点D在线段OB的延长线上时,①若D点的坐标为(﹣5,0),求点E的坐标.②求证:M为BE的中点.③探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由).【答案】(1)①E(3,﹣2)②见解析;③,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.:。

(3份试卷汇总)2019-2020学年南通市名校初一下学期期末数学质量检测试题

(3份试卷汇总)2019-2020学年南通市名校初一下学期期末数学质量检测试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.用科学记数法表示数0.000301正确的是( ) A .630110-⨯B .430.110-⨯C .43.0110-⨯D .30.30110-⨯2.若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( ) A .﹣3B .3C .5D .73.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是( )A .SASB .SSSC .AASD .ASA4.若方程组31331x y a x y a +=+⎧⎨+=-⎩,的解满足x-y=-2,则a 的值为( )A .-1B .1C .-2D .不能确定5.如图,,垂足分别为和分别平分。

连接。

下列结论:①;②;③;④。

其中结论正确的个数是( )A .1个B .2个C .3个D .4个6.如图①是长方形纸片(AD ∥BC ),将纸片沿EF 折叠成图②,直线ED 交BC 于点H ,再沿HF 折叠成图③,若图①中∠DEF=280,则图③中的∠CFE 的度数为( )A .840B .960C .1120D .12407.下列运算正确的是( ) A .-a 2·3a 3=-3a 6B .(-12a 3b)2=14a 5b 28.某粒子的直径为0. 000 006 15米,这个数用科学记数法表示为( ) A .B .C .D .9.下列语句:①不相交的两条直线叫平行线;②在同一平面内,两条直线的位置关系只有两种:相交和平行; ③如果线段AB 和线段CD 不相交,那么直线AB 和直线CD 平行; ④如果两条直线都和第三条直线平行,那么这两条直线平行; ⑤过一点有且只有一条直线与已知直线平行. 正确的个数是( ) A .1 B .2 C .3 D .410.如图是测量嘉琪跳远成绩的示意图,直线l 是起跳线,以下线段的长度能作为嘉琪跳远成绩的是( )A .BPB .CPC .APD .AO二、填空题题11.肥皂泡的泡壁厚度大约是0.0007毫米,换算成以米为单位,用科学记数法应表示为_____米. 12.已知关于x 的一元一次不等式10ax ->的解集是3x >,则a 的值是______.13.甲、乙两人同时在计算机上输入一份书稿,4h 后,甲因另有任务,由乙再单独输入5h 完成.已知甲输入2h 的稿件,乙需输入3h ,则甲单独输入完这份稿需要的时间是______.14.若方程组23352x y k x y k +=⎧⎨+=+⎩中,x 的值与y 的值的和为12,则k 的值等于__________.15.若4x y +=,2xy =,则22xy +=__________.16.关于x 、y 的方程组1353x y mx y m +=-⎧⎨-=+⎩中,m 的值与方程组中的解中x 的值相等,则m =_______.17.若21x y =⎧⎨=是关于x ,y 的方程kx ﹣y =3的解,则k 的值是_____.(1)若∠B=86°,求∠DCG的度数;(2)AD与BC是什么位置关系?并说明理由;(3)若∠DAB=α,∠DGC=β,直接写出当αβ、满足什么数量关系时,AE∥DG?19.(6分)如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB DE=,AB∥DE,A D∠=∠.(1)求证:ABC∆≌DEF∆;(2)若10BE m=,3BF m=,求FC的长度.20.(6分)已知:如图,BE FC=,A D∠=∠,B F∠=∠.求证:ABC DFE∆≅∆.21.(6分)李师傅要为某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的15多12,请你帮李师傅求出这个正多边形的一个内角的度数和它的边数.22.(8分)某大学计划为新生配备如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30 cm,由以上信息能求出CB的长度吗?请你说明理由.23.(8分)先化简,再求值:222412()4422aa a a a a--÷-+--,其中a是方程2310x x++=的根.24.(10分)解不等式组()1215321xxx⎧--≤⎪⎨-<+,并求出它的整数解充分摇匀后,随机摸出一球.(1)分别求摸出红球和摸出黄球的概率(2)为了使摸出两种球的概率相同,再放进去8 个同样的红球或黄球,那么这8 个球中红球和黄球的数量分别是多少?参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n-,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000301=4⨯,3.0110-故选:C.【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.2.C【解析】【分析】将x=2代入ax4+bx2+5使其值为5,可得16a+8b的值,在将x=﹣2代入ax4+bx2+5,可求得ax4+bx2+7.【详解】解:当x=2时,代数式ax4+bx2+5的值是3,即:16a+4b+5=3,可得16a+4b=-2,当x=﹣2时,代数式ax4+bx2+7=16a+4b+7=-2+7=5,故选C.【点睛】【解析】 【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS 可得到三角形全等. 【详解】由作法易得OD =O′D′,OC =O′C′,CD =C′D′,依据SSS 可判定△COD ≌△C'O'D', 故选:B . 【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理. 4.A 【解析】 【分析】将方程组两方程相减表示出x-y,代入x-y=-2中计算即可求出a 的值 【详解】313{31x y a x y a +=++=-①②-②得:2x-2y=4a,即x-y=2a 代入x-y=-2,得:2a=-2 解得:a=-1 故选A 【点睛】此题考查了二元一次方程组的解,解题关键在于表示出x-y 5.C 【解析】 【分析】 由题意易证,由角平分线的性质可知,故,根据平行线性质可得.若,则,题中没有条件可以证明,由此可知①②③④的正误.【详解】 解:(平行于同一直线的两直线平行),①正确; 和分别平分,,综上正确的有①②④.故选:C【点睛】本题考查了平行线的判定和性质,灵活应用平行线的判定和性质是解题的关键.6.B【解析】【分析】根据两直线平行,内错角相等,所以∠DEF=∠EFB=28°,根据平角的定义求出∠EFC的度数=152°,最后求出∠CFE=152°-28°=124°【详解】因为AD∥BC,所以∠DEF=∠EFB=28°。

★试卷3套汇总★南通市2020年初一下学期期末数学复习检测试题

★试卷3套汇总★南通市2020年初一下学期期末数学复习检测试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,阴影部分的面积()A.B.C.D.2.在下列各数中:3,3.1415926,32, -5,38,39,0.5757757775…(相邻两个5之间的7的个数逐次加1),无理数的个数().A.1B.2C.3D.43.如果a<b,那么下列不等式成立的是()A.-3a>-3b B.a-3>b-3 C.1133a b>D.a-b >04.下列调查中,调查方式选择合理的是()A.为了了解全国中学生的视力情况,选择全面调查B.为了了解一批袋装食品是否含有防腐剂,选择全面调查C.为了检测某城市的空气质量,选择抽样调查D.为了检测乘坐飞机的旅客是否携带违禁物品,选择抽样调查5.在一个()3n n>边形的n个外角中,钝角最多有()A.2个B.3个C.4个D.5个6.16的绝对值是( )A.﹣6 B.6 C.﹣16D.167.不等式组103412xxx->⎧⎪⎨-≤-⎪⎩的解集在数轴上应表示为( )A.B.C.D.8.下列四个实数中是无理数的是()A .πB .1.414C .0D .139.下列调查中,适宜采用普查方式的是( )A .调查热播电视剧《人民的名义》的收视率B .调查重庆市民对皮影表演艺术的喜爱程度C .调查某社区居民对重庆万达文旅城的知晓率D .调查我国首艘货运飞船“天舟一号”的零部件质量 10.如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是A .1月至2月B .2月至3月C .3月至4月D .4月至5月 二、填空题题11.如图,将长方形绕点逆时针旋转,得到长方形,交于点,则______.12.若11x y =⎧⎨=-⎩是方程2kx y -=的一组解,则k =__________. 13.若,则______.14.如图是七年级(1)班学生参加课外活动人数的扇形统计图,如果参加科普类的人数是10人,那么参加其它活动的人数是_____人.15.计算:33()a =_____________.16.如图,△ABC 中,AB =AC ,∠A =40°,DE 垂直平分AC 交AB 于E ,则∠BCE =_____17.若+x x-有意义,则+1x=___________.三、解答题18.农村中学启动“全国亿万青少年学生体育运动”以来,掀起了青少年参加阳光体育运动的热潮,要求青少年学生每天体育锻炼的时间不少于 1 小时。

2020学年南通市初一下学期期末数学复习检测试题

2020学年南通市初一下学期期末数学复习检测试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O42.某班对道德与法治,历史,地理三门程的选考情况进行调研,数据如下:科目道德与法治历史地理选考人数(人)19 13 18其中道德与法治,历史两门课程都选了的有3人,历史,地理两门课程都选了的有4人,该班至多有多少学生()A.41 B.42 C.43 D.443.不等式组104xx x+≥⎧⎨->⎩的所有整数解的和是()A.0B.1C.2D.34.如图,直线AB、CD相交与点E,DF∥AB.若∠D=70°,则∠CEB等于()A.70°B.80°C.90°D.110°5.在装有4个红球和5个黑球的袋子里,摸出一个黑球是一个()A.可能事件B.不可能事件C.随机事件D.必然事件6.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52︒,现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏西52︒B.南偏东52︒C.西偏北52︒D.北偏西38︒7.下列各实数为无理数的是()A4B.13C.﹣0.1 D58.直角坐标系中,点P 的坐标为(a+5,a﹣5),则P 点关于原点的对称点P′不可能在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限9.下列各数中,界于5和6之间的数是( )A .B .C .D .10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案A .5种B .4种C .3种D .2种二、填空题题11.如图,直线y kx b =+与直线y mx n =+分别与x 轴交于点(-1,0)、(3,0),则不等式()()0kx b mx n ++> 的解集为_____________.12.已知坐标平面内一动点P(1,2),先沿x 轴的正方向平移3个单位,再沿y 轴的负半轴方向平移3个单位后停止,此时P 的坐标是______13.将一副直角三角板如图放置(顶点A 重合),使AE ∥BC ,则∠EFC 的度数为____.14.如图,在△ABC 中,已知D ,E ,F 分别为边BC ,AD ,CE 的中点,且28ABC Scm =,则阴影部分的面积为_______ cm 2.15.若关于x 的一元一次不等式组121x x a +≤⎧⎨-≥⎩有解,则a 的取值范围是_____. 16.若实数x 、y 满足方程组x 2y 52x y 7+=⎧+=⎨⎩,则代数式2x+2y-4的值是______.17.如果点P (a ,2)在第二象限,那么点Q (﹣3,a ﹣1)在第____象限. 三、解答题18.(1)解分式方程:3433x x x -=--; (2)解二元一次方程组234311x y x y +=⎧⎨-=⎩19.(6分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A ,B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A ,B 两种饮料共100瓶,问A ,B 两种饮料各生产了多少别瓶?20.(6分)如图,已知AB CD ∥,180B D ∠+∠=︒,求证:BC DE ∥.21.(6分)记()R x 表示正数x 四舍五入后的结果,例如(2.7)3,(7.11)7(9)9R R R === (1) ()R π =_ , (3)R =(2)若1132R x ⎛⎫-= ⎪⎝⎭,则x 的取值范围是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
A.
5
1
B.
6
1
C.
7
1
D.
8
10.定义:【 x 】表示不大于 x 的最大整数,例如:【 2.3 】=2,【 1 】=1.以下结论:
①【-1.2 】=-2;②【 a-1 】=【 a 】-1;③当-1< x <1 时,【 1+x 】+【 1
-x 】的值是 1; ④2a <【 2a 】+1;⑤x=-1.75 是方程 4x-2【 x 】+3=0 的唯一解. 其
A. 23.409 = 153
B. 241 的算术平方根比 15.5 小 C. 根据表中数据的 变化趋势,可以推断出 16.12将比 256 增大 3.17
D. 只有 3 个正整数 n 满足 15.7 < n < 15.8
9.现有如图(1)的小长方形纸片若干块,已知小长方形的长为 a,宽为 b.用 3 个如图(2) 的全等图形和 8 个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为 30cm,则图(3)中阴影部分面积与整个图形的面积之比为( ▲ )
25. (本题共 12 分)如图,△ABC 的角平分线 AE,BF 交于 O 点. (1)若∠ACB=70°,则∠BOA = ▲ °; (2)求证:点 O在∠ACB的角平分线上. (3) 若 OE=OF,求∠ACB 的度数.
初一数学 第 5 页 共 6 页
26.(本题共 13 分)在△ABC 中,若存在一个内角角度是另外一个内角角度的 n 倍(n 为大 于 1 的正整数),则称△ABC 为 n 倍角三角形.例如,在△ABC 中,∠A=80°,∠B=75°, ∠C=25°,可知 ∠B =3∠C ,所以△ABC 为 3 倍角三角形. (1)在△ABC 中,∠A=80°,∠B=60°,则△ABC 为 ▲ _倍角三角形; (2)若锐角三角形 MNP 是 3 倍角三角形,且最小内角为 α,请直接写出 α 的取值范围为 ▲ . (3)如图,直线 MN 与直线 PQ 垂直相交于点 O,点 A 在射线 OP 上运动(点 A 不与点 O 重 合),点 B 在射线 OM 上运动(点 B 不与点 O 重合).延长 BA 至 G,已知∠BAO、∠OAG 的角平分线与∠BOQ 的角平分线所在的直线分别相交于 E、F ,若△AEF 为 4 倍角三角形, 求∠ABO 的度数.
命题人:张 蕾 审题人:刘海英
答案
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)
1
2
3
4
5
6
7
8
9
10
B
D
B
B
C
A
C
D
B
C
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)
11. 5
12. 8
13. 45
14. 27°
15. 16
16. 24
x = −1
17.
y
=
1
依据的是( ▲ )
A. SSS
B. SAS
C. AAS
7. 对于任意实数 m,点 P(m﹣1,9﹣3m)不.可.能.在( ▲ )
D. ASA
A.第一象限
B.第二象限
C.第三象限
D.第四象限
初一数学 第 1 页 共 6 页
8. 观察下表中的数据信息:
根据表中的信息判断,下列语句中正确的是 ( ▲ )
的面积为 6,则△ABC 的面积等于 ▲ .
17. 已知关于 x,y 的二元一次方程 (m +1) x + (2m﹣1) y + 2﹣m = 0 ,无论实数 m 取何值,此
二元一次方程都有一个相同的解,则这个相同的解是 ▲ . 18. 在△ABC 中,AB=AC,∠ABC=∠ACB,CE 是高,且∠ECA=36°,平面内有一异于
初一数学 第 4 页 共 6 页
24.(本题共 12 分)为降低空气污染,南通飞鹤公交公司决定全部更换节能环保的燃气公交 车.计划购买 A 型和 B 型两种公交车共 10 辆,其中每台的价格及年载客量如下表:
A型 B型
价格(万元/辆)
a
b
年载客量(万人/年) 60
100
若购买 A 型公交车 1 辆,B 型公交车 2 辆,共需 400 万元;若购买 A 型公交车 2 辆,B 型公 交车 1 辆,共需 350 万元. (1)求 a,b 的值; (2)如果该公司购买 A 型和 B 型公交车的总费用不超过 1200 万元,且确保这 10 辆公交车 在该线路的年载客量之和不少于 680 万人次,则该公交公司共有几种购买方案?
13.某校在“数学小论文”评比活动中共征集到论文 100 篇,对论文评比分数(分数为整数) 整
理后,分组画出频数分布直方图(如图),已知从左到右 5 个
小长方形的高的比为 1:3:7:6:3,则在这次评比中被评
为优秀的论文(分数大于或等于 80 分为优秀)有 ▲ 篇.
初一数学 第 2 页 共 6 页
OE = OF OM = ON ,
∴Rt△OEM≌Rt△OFN,(HL), ∴∠EOM=∠FON, ∴∠MON=∠EOF=180°-∠C, ∵AE、BF 是角平分线,
答:该街道社区估计有 20000 人。
a + 2 ≥ 0 22. 解:由题意: − 2a − 4 ≥ 0
∴a=-2 ∴b=4 ∴3b-2a=16 ∴3b-2a 的平方根为±4.
23. (1)6 (2)点 P 落在 x 轴上,所以 b=0,代入 3b-2m-16=0,求得 m=-8
将 m=-8 代入 2a-3m+1=0,得 a= − 25 ,所以点 P 的坐标为 − 25 ,0
14.如图,三角形纸片 ABC 中∠A=66°,∠B=73°,将纸片一角折叠,使点 C 落在△ABC 的内部 C’处,若∠2=55°,则∠1= ▲ .
15. 已知点 P 的坐标为(a,b)(a>0),点 Q 的坐标为(c,2),且|a-c|+ b − 8 =0,
将线段 PQ 向右平移 a 个单位长度,其扫过的面积为 24,那么 a+b+c 的值为 ▲ . 16. 如图,在△ABC 中,点 D 在边 BC 上,已知点 E,F 分别是 AD,CE 边上的中点,且△BEF
(3)如果这 100 名志愿者在街道社区所占的人口比例如扇形统计图所示,求该街道社区估计
有多少人?
22.(本题共 8 分)已知 a、b 满足 b = a + 2 + − 2a − 4 + 4 ,求 3b-2a 的平方根.
23.(本题共 10 分)在平面直角坐标系 xOy 中,有点 P(a,b),实数 a,b,m 满足以下 两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0 (1)当 a=1 时,点 P 到 x 轴的距离为 ▲ ; (2)若点 P 落在 x 轴上,求点 P 的坐标; (3)当 a≤4<b 时,求 m 的最小整数值.
组别
年龄段
频数(人数) 百分比
第1组
18 ≤ x<28
5
5%
第2组
28 ≤ x<38
a
25%
第3组
38 ≤ x<48
35
第4组
48 ≤ x<58
20
m
第5组
58 ≤ x<68
15
15%
(1)请直接写出 a = ▲ , m = ▲ .
(2)现城东街道社区志愿者约有 1200 人,求第 3 组年龄段的志愿者人数约有多少?
A.x2<y2
B.-3x<-3y
C. x > y 22
D.1-x>1-y
3. 下列调查中适合全面调查的是( ▲ ) A.调查“华为 P10”手机的待机时间
B.了解初一(2)班 45 名同学对数学课程的喜爱程度
C.调查我市中小学校午餐酸奶的质量
D.了解南通市初三学生中考后毕业旅行计划
4. 如图,已知 AB=AD,则添加下列一个条件后,仍无法判定△ABC≌△ADC 的是( ▲ )
A. CB=CD
B. ∠BCA=∠DCA
C. ∠BAC=∠DAC
D. ∠B=∠D=90°
5. 有3cm, 6cm, 8cm, 9cm的四条线段, 任选其中的三条线段组成一个三角形, 则最多能
组成三角形的个数为( ▲ )
A. 1
B. 2
C. 3
D. 4
第 4 题图
第 6 题图
6. 如图,是用直尺和圆规作一个角等于己知角的方法,即作∠A’O’B’ =∠AOB.这种作法
20.(本题共 7 分) 如图,已知:在△AFD 和△CEB 中,点 A,E,F,C 在同一直线上,AE=CF,∠B=∠D,
AD∥BC.求证:AD=BC.
初一数学 第 3 页 共 6 页
21. (本题共 8 分) 城东街道组织社区志愿者开展新型肺炎疫情排查与宣传教育志愿服务活动,为了了解各
年龄段志愿者对本次志愿服务的参与程度,随机选取了 100 名志愿者进行了调查,并将收集 到的数据制成了尚不完整的频数分布表,如下所示:
2
2
(3)
由题意:
a b
= =
3m −1 ≤ 4 2
2m +16 > 3
4
,解得

2
<
m

3
所以 m 的最小整数解为 −1。
24. 解:(1)由题意得: a + 2b = 400 , 2a + b = 350
解这个方程组得: a = 100 . b = 150
答:a,b 的值分别为 100,150. (2)设购买 A 型公交车 x 辆,购买 B 型公交车(10﹣x)辆,
①若 D 点的坐标为(-5,0),求点 E 的坐标. ②求证:M 为 BE 的中点.
相关文档
最新文档