最短路径问题(经典)
初二数学最短路径练习题及答案

初二数学最短路径练习题及答案导言:数学中的最短路径问题是指在网络图中寻找两个顶点之间路径长度最短的问题。
该问题在实际生活中应用广泛,比如在导航系统中为我们找到最短的路线。
对于初二学生而言,在学习最短路径问题时,题目练习是非常重要的。
本文将为初二数学学习者提供一些最短路径练习题及答案,帮助他们巩固知识和提高解题能力。
练习题一:某地有4个村庄A、B、C、D,它们之间的道路如下图所示。
要求从村庄A到村庄D,经过的道路距离最短,请你找出最短路径,并计算出最短路径的长度。
解答一:根据题目所给的道路图,我们可以使用最短路径算法来求解最短路径。
以下是求解过程:1. 首先,我们需要创建一个包含4个顶点的图,并初始化每条边的权值。
将A、B、C、D顶点分别标记为1、2、3、4。
村庄A到村庄B的距离为5,即A-5-B。
村庄A到村庄C的距离为3,即A-3-C。
村庄B到村庄C的距离为2,即B-2-C。
村庄B到村庄D的距离为6,即B-6-D。
村庄C到村庄D的距离为4,即C-4-D。
2. 接下来,我们使用迪杰斯特拉算法求解最短路径。
a) 首先,我们将起始顶点A的距离设置为0,其他顶点的距离设置为无穷大。
b) 然后,我们选择距离最短的顶点,并将其标记为已访问。
c) 然后,我们更新与该顶点相邻的顶点的距离。
如果经过当前顶点到达邻接顶点的距离比已记录的最短路径更短,就更新最短路径。
d) 重复上述步骤,直到找到最短路径为止。
3. 经过计算,最短路径为A-3-C-4-D,距离为7。
练习题二:某城市有6个地点,它们之间的交通图如下所示。
请你计算从地点A到地点F的最短路径,并给出最短路径的长度。
解答二:根据题目所给的交通图,我们可以使用最短路径算法来求解最短路径。
以下是求解过程:1. 首先,我们需要创建一个包含6个顶点的图,并初始化每条边的权值。
将地点A、B、C、D、E、F分别标记为1、2、3、4、5、6。
地点A到地点B的距离为4,即A-4-B。
专题—最短路径问题(含解答)

专题—最短路径问题一.选择题(共7小题)1.如图所示,四边形OABC为正方形,边长为3,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(1,0),P是OB上的一动点,则“求PD+PA和的最小值”要用到的数理依据是()A.“两点之间,线段最短”B.“轴对称的性质”C.“两点之间,线段最短”以及“轴对称的性质”D.以上答案都不正确解:∵四边形OABC为正方形,∴A、C两点关于直线OB对称(轴对称的性质),∴连接CD,则CD即为PD+PA和的最小值(两点之间,线段最短),∴用到的数理依据是“两点之间,线段最短”以及“轴对称的性质”.故选:C.2.点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得|PA﹣PB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OP•OQ=()A.5B.4C.3D.2解:连接AB并延长交x轴于点P,由三角形的三边关系可知,点P即为x轴上使得|PA﹣PB|的值最大的点,∵点B是矩形ACPD的中心,∴点P即为AB延长线上的点,此时P(3,0)即OP=3;作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值,∵A′(﹣1,2),B(2,1),设过A′B的直线为:y=kx+b,则,解得,∴Q(0,),即OQ=,∴OP•OQ=3×=5.故选:A.3.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40°B.100°C.140°D.50°解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠APO+∠BPO=100°.故选:B.4.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.5.如图,点P是∠AOB内的一点,且OP=5,且∠AOB=30°,点M、N分别是射线OA、OB上的动点,则△PMN周长的最小值为()A.5B.6C.8D.10解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=5.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=5,故选:A.6.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B 的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短就行,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选:D.二.填空题(共9小题)7.如图所示,点A在直线a外,点B在直线a上,在直线a上找一点P,使AP+BP 最小的点P有1个,其位置是B点.解:由题意得使AP+BP最小的点P有1个,其位置是B点,故答案为:1,B点.8.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N为OB上一动点,当PM+PN最小,∠PMO=45°.解:∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M与点M′关于OC对称,OC平分∠AOB,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.9.四边形ABCD中,∠BAD=136°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为88度.解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD 分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB,∠A″=∠NAD,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=136°,∴∠A′+∠A″=180°﹣∠BAD=44°∴∠AMN+∠ANM=2×44°=88°.故答案为:8810.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是2.解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA 交于点Q,与OB交于点R,此时△PQR的周长最小.从图上可看出△PQR的周长就是P1P2的长,∵∠AOB=30°,∴∠P1OP2=60°.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=2.∴△PQR周长的最小值是2.即PQ+QR+RP的最小值是2故答案为:2.11.已知:在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是CD和BC上的点.求作:点M、N,使△AMN的周长最小.作法:如图2,(1)延长AD,在AD的延长线上截取DA´=DA;(2)延长AB,在AB的延长线上截取BA″=BA;(3)连接A′A″,分别交CD、BC于点M、N.则点M、N即为所求作的点.请回答:这种作法的依据是①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.解:根据线段垂直平分线的性质和两点之间线段最短作图;故答案为:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短12.如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为100°.解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°13.如图,△ABC中,∠A=15°,AB是定长.点D,E分别在AB,AC上运动,连结BE,ED.若BE+ED的最小值是2,则AB的长是4.解;作点B关于AC的对称点B',过B作BF⊥AB',∵点B关于AC的对称点B',∴∠B'AE=∠CAB=15°,∵BF⊥AB',∵BF即为BE+ED的最小值,即BF=2,∴AB=4,故答案为:414.如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若△PQR周长最小,则最小周长是12解:设∠PO A=θ,则∠POB=30°﹣θ,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.∵OA是PE的垂直平分线,∴EQ=QP;同理,OB是PF的垂直平分线,∴FR=RP,∴△PQR的周长=EF.∵OE=OF=OP=12,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,∴△EOF是正三角形,∴EF=12,即在保持OP=12的条件下△PQR的最小周长为12.故答案为:12三.解答题(共9小题)15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B两村供水.若铺设水管的工程费用为每千米1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.解:连接AB,作AF⊥BD于点F,则BF=BD﹣AE=0.5km,∴AF=1.2,作A关于直线L的对称点A′,连接A′B到L交于点C,则C点为水厂所在地,如图,过B作BD⊥L于D,作A′G⊥BD于点G,∵BG=BD+DG=3.5,A′G=AF=1.2,CD=2÷3.5×1.2=,EC=1.2﹣=,∴AC+BC=A′C+BC=A′B=3.7km,∴总费用为3.7×1.8=6.66万元.16.如图,一个人从C点骑马出发到D点,但他必须先到河岸边l1的P1点去让马饮水,然后再到河岸边l2的P2点去,再次让马饮水,最后骑马到D点,他应如何选择饮水点P1,P2.才能使所走的路程CP1+P1P2+P2D最短?解:如图,作点C关于l1的对称点C′,点D关于l2的对称点D′,连接C′D′,交于l1,l2于点P1,点P2,连接CP1,P1P2,P2D,所以路程CP1+P1P2+P2D最短.17.八(二)班举行元旦文艺晚会,桌子摆成两条直线(如图中所示的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的小花先拿桔子再拿糖果,然后送给D处的小红,最后回到C处.请你帮助她设计一条行走路线,使其所走的总路程最短(尺规作图,并写出作法,不需说明理由)解:如图所示,小花所走的行走路线为:CM﹣MN﹣ND,所走的总路程最短.18.尺规作图:(1)如图①,江边A,B两个村庄准备集资建造一个自来水厂,请你确定一个厂址,使得从自来水厂到A,B两村所用的水管最短.(2)如图②,P是∠A0B内部一点,试在角的两边上各找一个点E,F,使△PEF 的周长最小.解:(1)如图①,过A点关于江边的对称点C,再连接CB,BC与江边的交点Q 即为自来水厂厂址;(2)如图②,作点P关于OA对称的点M,作点P关于OB对称的点N,连接MN,与OA交于点E,与OB交于点F,此时△PEF的周长最小.19.如图,为了做好2013年沈阳全运会起降的交通安全工作,某交警执勤小队从A处出发,先到公路l1上设卡检查,再到公路l2上设卡检查,最后再到B 地执行任务,他们应如何走才能使总路程最短?【解答】解:如图所示,交警小队沿A→C→D→B走才能使总路程最短.20.如图所示,A、B为公路l同旁的两个村庄,在l上找一点P.(1)当P到A、B等距离时,P在何处?(2)当P到两村距离之和最小时,P在何处?解:(1)因为点P到两个村庄A,B的距离相等,所以P应建在AB的垂直平分线和l的交点处,理由是到线段两个端点距离相等的点在线段的垂直平分线上,如图1:,(2)作点A关于直线l的对称点,连接A′B交直线于点P,点P就是设置的点,如图2:21.如图,A、B两城市之间有一条国道,国道的宽为a,现要在国道上修建一座垂直于国道的立交桥,使通过A、B两城市路程最近,请你设计建桥的位置,并说明理论依据.解:如图,过点B作BC垂直国道,且使BC等于国道宽a,连接AC交国道边缘与M,作MN∥BC即可.理由:两点之间线段最短.22.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)解:如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于M,作MN⊥GH,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故NB=MB′.根据“两点之间线段最短”,AB′最短,即AM+BN最短.故桥建立在MN处符合题意.23.如图,平面上有直线a及直线a外的三点A、B、P.(1)过点P画一条直线m,使得m∥a;(2)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与岸垂直),使得从村庄A经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.解:(1)如图1所示,(2)如图2,作AA'垂直于河岸a,使AA′等于河宽,连接BA′,与另一条河岸相交于M,作MN⊥直线a,则MN∥AA′且MN=AA′,于是MNAA′为平行四边形,故MA′=NA.根据“两点之间线段最短”,BA′最短,即AN+BM最短.故桥建立在M、N处符合题意.。
最短路径经典练习题

最短路径经典练习题一、基础理论题1. 请简述迪杰斯特拉(Dijkstra)算法的基本原理。
2. 什么是贝尔曼福特(BellmanFord)算法?它适用于哪些类型的图?3. 请解释A搜索算法中启发式函数的作用。
4. 如何判断一个图中是否存在负权环?5. 简述弗洛伊德(Floyd)算法的基本步骤。
二、单选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 初始化距离表B. 选择当前距离最小的顶点C. 更新相邻顶点的距离D. 重复步骤B和C,直到所有顶点都被访问A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 弗洛伊德算法D. A搜索算法A. 启发式函数B. 起始节点C. 目标节点D. 图的规模三、多选题A. 迪杰斯特拉算法B. 贝尔曼福特算法C. 深度优先搜索算法D. 广度优先搜索算法A. 初始化距离矩阵B. 更新距离矩阵C. 查找负权环D. 输出最短路径A. 图的存储结构B. 顶点的数量C. 边的数量D. 起始顶点四、计算题A (3)>B (2)> D\ | ^ \ | | \(2)\ | (1)/C \|(4)A (1)>B (2)> D\ ^ |\(2)\ | (3)/C \ |(1)A (2)>B (3)> D\ | ^\(3)\ | (1)/C \ |(2)五、应用题1. 假设你是一名地图软件的开发者,请简述如何利用最短路径算法为用户提供导航服务。
2. 在一个网络游戏中,玩家需要从起点到达终点,途中会遇到各种障碍。
请设计一种算法,帮助玩家找到最佳路径。
六、判断题1. 迪杰斯特拉算法只能用于无向图的最短路径问题。
()2. 贝尔曼福特算法可以检测图中是否存在负权环。
()3. 在A搜索算法中,如果启发式函数h(n)始终为0,则算法退化为Dijkstra算法。
()4. 弗洛伊德算法的时间复杂度与图中顶点的数量无关。
()七、填空题1. 迪杰斯特拉算法中,用来存储顶点到源点最短距离的数组称为______。
第21讲 最短路径问题

第21讲 最短路径问题一、方法剖析与提炼引例:如图,A 、B 是笔直公路l 同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m ,两村庄之间的距离为d(已知d 2=400000m 2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小,则最小距离为___________m 。
【解答】1000。
【解析】如图,作点B 关于公路l 的对称点B′,连接AB′交公路于点C ,CA+CB最短距离就是AB′的长度。
根据勾股定理可以求得AB′=1000m 。
【解法】同侧的两点,通过轴对称变换成异侧,利用两点之间线段最短确定最小距离。
【解释】通过生活中的实际例子,让学生感受最短路径来源于生活,并引出求最短路径常用的方法,利用轴对称变换找对称点及两点之间线段最短(即饮马问题)。
学习时可作如下归纳:(1)在初中范围内和边的不等量有关的知识有哪些,引出两点之间线段最短,三角形两边之和大于第三边;(2)在此图中哪种变换方式比较适合将马路同侧的两条线段变换到异侧,并且保持线段长度不变,旨在复习轴对称、平移、旋转等变换特点;(3)在移动变换中,有没有可能将两条线段置于共线的情形,即最短路径。
例1:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,求DN+MN 的最小值。
【解答】连结BD 交AC 于点O ,根据正方形的对称性可知,B 点即为D 的对称点。
连结BM 交AC 于点N ,则BM 的值为DN+MN 的最小值。
所以BM=10。
【解析】如图,点B 即为点D 关于AC 的对称点,连接BM ,BM 的长度即为DN+MN的最小距离。
在Rt△BCM 中,根据勾股定理可求得BM=10。
【解法】此题 DN ,MN 这两条线段中,M ,D 两点固定,只有N 一个点是移动的,故只需确定点N ,使得距离之和最短即可。
【解释】此例从最基本的图形出发,让学生易于接受,敢于探索。
学生依据正方形自身拥有的轴对称性找到对称点,将同侧两条线段利用翻折变成异侧的两条线段,利用两点之间线段最短找到最短路径。
10个节点最短路径算法题

10个节点最短路径算法题最短路径算法是图论中的一种重要算法,用于计算两个节点之间的最短路径。
在以下内容中,将介绍并讨论10个与最短路径算法相关的题目,并给出相关参考内容,以加深对该算法的理解。
1. Dijkstra算法题目:给定一个加权有向图和一个源节点,请找出从源节点到每个其他节点的最短路径。
参考内容:《算法导论》(Introduction to Algorithms)一书中第24章,提供了关于Dijkstra算法原理和实现的详细解释。
2. Bellman-Ford算法题目:给定一个加权有向图和一个源节点,请找出从源节点到每个其他节点的最短路径,其中图中可能存在负权边。
参考内容:《算法导论》第24章,提供了Bellman-Ford算法的详细解释和实现。
3. Floyd-Warshall算法题目:给定一个有向图,请找出任意两个节点之间的最短路径。
参考内容:《算法导论》第25章,提供了Floyd-Warshall算法的详细解释和实现。
4. A*算法题目:给定一个加权有向图、一个源节点和一个目标节点,请找出从源节点到目标节点的最短路径。
参考内容:《人工智能:一种现代方法》(ArtificialIntelligence: A Modern Approach)一书中第3章,提供了A*算法的详细解释和实现。
5. Johnson算法题目:给定一个加权有向图,请找出任意两个节点之间的最短路径,其中图中可能存在负权边。
参考内容:《算法导论》第25章,提供了Johnson算法的详细解释和实现。
6. SPFA算法题目:给定一个加权有向图和一个源节点,请找出从源节点到每个其他节点的最短路径。
参考内容:各种算法教材、博客文章和论文中提供了SPFA算法的详细解释和实现,如《算法导论》第24章。
7. Yen's算法题目:给定一个加权有向图、一个源节点和一个目标节点,请找出从源节点到目标节点的K条最短路径。
参考内容:论文《Finding the K Shortest Loopless Paths in a Network》中提供了Yen's算法的详细解释和实现。
最短路径问题例题与讲解

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。
最短路径问题(经典)

最短路径问题(珍藏版)
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】
全国初中数学资料群群号:101216960。
(完整版)初中数学[最短路径问题]典型题型及解题技巧
![(完整版)初中数学[最短路径问题]典型题型及解题技巧](https://img.taocdn.com/s3/m/078676f277a20029bd64783e0912a21614797f76.png)
(完整版)初中数学[最短路径问题]典型题型及解题技巧初中数学[最短路径问题]典型题型及解题技巧最短路径问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。
这对于我们解决此类问题有事半功倍的作用。
理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。
教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。
考的较多的还是“饮马问题”。
知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
一、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。
解:连接AB,线段AB与直线L的交点P ,就是所求。
(根据:两点之间线段最短.)二、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A 关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C 就是所求的点.三、一点在两相交直线内部例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.解:分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短路径问题
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】。