分数应用题的分类
分数应用题的六种类型整理

精选课件
1
1、看清分率(几分之几或百分之几)。 2、找准单位“1”的量。 3、确定单位“1”是已知还是未知?
4、列算式。
单位“1”的量×分率=分率对应量 (分率对应量÷分率=单位“1”的量)
精选课件
2
下面各题中应把哪个量看作单位“1”?
(1)男生人数是全班人数的
3 5
。 全班人数
(2)苹果重量比桔子多
5 7
的重量。桔子的重量
(3)已修的长度占这条路的
4 7
。这条路的长度
(4)一种电视机打九折出售。 原价
精选课件
3
第一类 求一个数是另一个数的几(百) 分之几(除法计算)
1、甲是乙的几分之几。 甲÷乙
2、乙是甲的几分之几。 乙÷甲
用字母表示:
求A是B的几(百)分之几。A÷B
精选课件
4
例1 果园里有梨树50棵,桃树30棵 1、梨树是桃树的几分之几? 50÷30 2、桃树是梨树的几分之几? 30÷50 3、桃树是梨树与桃树的和的几分之几?
30÷(50+30)
精选课件
5
第二类 求一个数比另一个数多(少)几(百) 分之几(除法计算)
1、求一个数比另一个数多百分之几。
①(一个数-另一个数)÷另一个数 ②(大数-小数)÷小数
用字母表示:
已知 A的n是B,求A. m
①除法
B n m
②解方程 设 A为 x n xB m
精选课件
13
例1 果园里有桃树30棵,
桃树是梨树的
3 5
1、求梨树多少棵?
算式为:(
30÷
3 5
)
2、桃树和梨树一共多少棵?
分数应用题的分类-整理版

分数应用题的分类根据分数应用题的特点,可以把分数应用题分成三大类:一、求一个数是另一个数的几分之几(或百分之几、),1:求一个数是另一个数的几分之几?例:六年级<1>有男生30人,女生24人,女生是男生的几分之几?2:求一个数比另一个数多几分之几(或百分之几)。
3:求一个数比另一个数少几分之几(或百分之几)此类题型特点:分率未知,求分率,用除法计算。
二:求一个数的几分之几(或百分之几、)是多少。
1、求一个数的几分之几(或百分之几、)是多少。
例、小明看一本60页的故事书,第一天看了这本书的32,第一天看的多少页?特点:单位“1”的量已知,用乘法计算。
解题方法:单位“1”的量×所求数量的对应分率 = 所求数量方法是: 单位“1”的量×(1+几分之几)=(1+几分之几)对应量3、求比一个数少几分之几的数是多少。
例、某校六年级有女生120人,男生比女生少51,男生有多少人? 特点:单位“1”的量已知,用乘法计算。
“少”是减法方法是: 单位“1”的量×(1-几分之几)=(1-几分之几)对应量三、已知一个数的几分之几是多少,求这个数。
1: 已知一个数的几分之几是多少,求这个数。
例、六年级<1>班有女生24人,相当于男生人数的51,男生有多少人? 特点:单位“1”的量未知,用除法计算。
解题方法:已知数量÷已知数量的对应分率 = 单位“1”的量2、已知比一个数多几分之几的数是多少,求这个数。
例、六年级<1>有男生30人,比女生多51,女生有多少人? 特点:单位“1”的量未知,用除法计算,“多”是加法。
解题方法:已知数量÷(1+已知数量的对应分率) = 单位“1”的量3、已知比一个数少几分之几的数是多少,求这个数。
例、六年级<1>有女生24人,比男生人数少51,男生有多少人? 特点:单位“1”的量未知,用除法计算,“少”是减法。
六年级数学上册总复习分数应用题六种类型

六年级数学上册总复习分数应用题六种类型一、分数的相等与同分母计算分数的相等可以通过化简分数进行判断,而同分母计算则需要统一分母后进行加减运算。
下面是一些应用题的例子:例题1:小明有5/6的水果,他分给小红1/4,小明自己剩下多少水果?解析:小明分给小红的水果是5/6 * 1/4 = 5/24,小明自己剩下的水果是5/6 - 5/24 = 15/24 = 5/8。
例题2:小华有7/8的糖果,他分给小李3/4,小华自己剩下多少糖果?解析:小华分给小李的糖果是7/8 * 3/4 = 21/32,小华自己剩下的糖果是7/8 - 21/32 = 11/32。
二、分数的大小比较分数的大小比较可以通过将分数转化为相同分母后,比较分子的大小进行判断。
下面是一些应用题的例子:例题1:比较3/4和2/3的大小。
解析:将分数转化为相同分母,得到3/4和2/3,分母相同,比较分子大小,3>2,因此3/4>2/3。
例题2:比较5/6和7/8的大小。
解析:将分数转化为相同分母,得到10/12和7/8,分母相同,比较分子大小,10>7,因此5/6>7/8。
三、分数的加减运算分数的加减运算需要先统一分母,然后按照分子之和(或差)除以相同分母的规则进行计算。
下面是一些应用题的例子:例题1:计算3/4 + 5/6。
解析:将两个分数的分母统一为12,得到9/12和10/12,然后相加得到19/12。
例题2:计算2/3 - 1/4。
解析:将两个分数的分母统一为12,得到8/12和3/12,然后相减得到5/12。
四、分数的乘除运算分数的乘除运算通过分子相乘或相除,以及分母相乘或相除来进行。
下面是一些应用题的例子:例题1:计算2/3 × 3/4。
解析:分子相乘得到6,分母相乘得到12,因此2/3 * 3/4 = 6/12 =1/2。
例题2:计算5/6 ÷ 2/5。
解析:分子相除得到25,分母相除得到12,因此5/6 ÷2/5 = 25/12。
分数除法应用题分类

分数除法应用题一、同步知识梳理1、求一个数的几分之几是多少 .用一个数×几分之几,也就是 :单位“1”的量 ×分率=分率对应量2、求一个数是另一个数的几分之几.用一个数÷另一个数,也就是:对应量÷单位“1”的量=对应分率3、已知一个数的几分之几是多少,求这个数.用一个数÷几分之几,也就是:对应量÷对应分率=单位“1”的量二、同步题型分析题型1:稍复杂的分数除法应用题例1、(1)希望小学四年级的人数比三年级多,四年级是三年级的几分之几?(2)希望小学四年级有学生 286 人,是三年级,三年级有多少人?(3)希望小学四年级有学生286人,比三年级多,三年级有学生多少人?例2、(1)一种节能灯,现在每盏的成本比原来降低了。
现在每盏的成本是原来的几分之几?(2)一种节能灯,现在每盏的成本是 4.6元,是原来的。
原来每盏的成本是多少元?(3)一种节能灯,现在每盏的成本是 4.6元,比原来降低了。
原来每盏的成本是多少元?例3、冰融化成水后体积减少,现有10立方分米的水,结成冰后体积是多少?分析:“冰融化成水后体积减少”是说“水比冰体积减少”,所以冰是单位“1”。
练习:1、某果园今年植树棵树比去年多,今年植树 220 棵,去年植树多少棵?2、商店运进苹果 280 箱,比运进的梨多。
运进的莉有多少箱?3、某机械厂现在生产一种零件成本是28元,比过去降低了,过去生产这种零件成本是多少元?三、课堂达标检测(一)填空1、根据算式补充条件。
小明看一本故事书,已经看了60页, ,未看的有多少页?60÷ 。
60× 。
60×(1+)。
60×(1-)。
60÷(1+)。
60÷(1-)。
2、27吨的是()吨,()千克的是20千克,()千克比16千克多,25千克比()千克少。
比80千克少是()千克。
80千克比()千克少。
分数计算应用题分类

分数计算应用题分类1. 加减乘除应用题这类应用题需要进行基本的加减乘除运算。
通常从实际问题中提炼出算数运算的问题,要求学生运用所学的计算方法解决。
例如:问题:小明有3个苹果,小红给了他2个苹果,最后小明一共有多少个苹果?解答:3 + 2 = 5,所以小明最后有5个苹果。
2. 比例应用题比例应用题涉及到比例的计算和使用。
通常从实际情境中提出比例关系,要求学生根据给定的比例进行计算或推导。
例如:问题:小明每天用1个小时做作业,大约用2个小时做其他事情,他一天总共花了多少个小时?解答:作业时间和其他时间的比例为1:2,所以总共花费的时间为3个小时。
3. 百分比应用题百分比应用题需要计算和应用百分比概念。
通常从实际情境中提出百分比的问题,要求学生计算或应用百分比进行解决。
例如:问题:手机原价是1000元,现在打5折优惠,打折后的价格是多少?解答:5折即50%,打折后的价格为1000元 × 50% = 500元。
4. 数据统计应用题数据统计应用题需要进行数值和统计数据的计算与分析。
通常从给定的数据中提取关键信息,要求学生进行计算和分析。
例如:问题:班级里有30名学生,男生有20人,女生有多少人?解答:30 - 20 = 10,所以女生有10人。
5. 几何应用题几何应用题需要运用几何概念和性质进行计算。
通常通过图形和形状提出问题,要求学生进行计算和推导。
例如:问题:一个矩形的长是2cm,宽是3cm,面积是多少平方厘米?解答:面积 = 长 ×宽 = 2cm × 3cm = 6平方厘米。
以上是常见的分数计算应用题分类,通过不同类型的应用题,可以帮助学生巩固和应用所学的分数计算知识。
分数应用题的六种类型整理

②已知比一个数少几分之几的数是多少,求这个数。
用字母表示:
已知A,A比B少 n ,求B。
m
①除法
②解方程
A 1 n m
设 B为 x
1 n x A
m
分数应用题的六种类型整理
例
果园里有桃树30棵,桃树比梨树少
2 5
梨树多少棵?
30÷(1-
2 5
)
这是一类 怎样的分数应用题?解答这类 应用题要注意什么问题 ?
分数应用题的六种类型整理
(1)池塘里有12只鸭和4只鹅,
鹅的只数是鸭的几分之几?
单位“1”
鸭:
鹅:
4只
12只
求一个数是另一个数的几分之几(或
几倍)是多少,用除法计算。
4÷12=
1 3
1 答:鹅的只数是鸭的 。 3 分数应用题的六种类型整理
(2)池塘里有12只鸭,鹅的只数是鸭
的
1 3
。池塘里有多少只鹅单?位“1”
分数应用题的六种类型整理
我们一起来小结: 解答分数应用题要准确判断题目中的
( 单位“)1”,根据单位“1”已知还是 未知,单位“1”已知选择( 乘法)、单 位“1”未知选择( 除法),同时要处 理好( 数量间的对应关系)。
找单位“1”的方法有( )
分数应用题的六种类型整理
①电视机厂今年生产电视机36000台,相当于去年产量的1/4, 去年生产多少台?
②电视机厂今年生产电视机36000台,比去年少生产1/4,去 年生产多少台?
③电视机厂今年生产电视机36000台,比去年多生产1/4,去 年生产多少台?
④电视机厂今年生产电视机36000台,去年产量是今年的1/4, 去年生产多少台?
小学数学分数应用题类型题大全及例题解析

小学数学分数应用题类型题大全及例题解析研究必备:小学分数应用题大全及例题解析一、基础理论分数应用题是小学数学教学中的重点和难点。
它大体可以分成两种类型:一种是基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同;另一种是根据分数乘除法的意义而产生的具有独特解法的分数应用题。
分数应用题主要讨论的是以下三者之间的关系:分率、标准量和比较量。
二、分数应用题的分类1、求一个数的几分之几是多少。
这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。
即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量×分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。
2、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量÷标准量=分率。
以上是小学分数应用题的基础理论和分类,学生们可以结合例题进行练和掌握。
已知一个数的几分之几是多少,需要求这个数。
解决这类问题需要使用除法。
基本的数量关系是:分率对应的比较量除以分率等于标准量。
1)已知一个数的几分之几是多少,需要求这个数:分率对应的比较量除以几(分率)等于标准量。
2)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(几)等于多多少。
3)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(1+几)等于标准量。
4)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以几等于少多少。
5)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以(1-几)等于标准量。
在解决分数应用题时,正确审题非常重要。
需要能准确分清比较量和标准量,并判断标准量是已知还是未知。
分数的三种基本应用题数量关系及解题关键

分数的三种基本应用题数量关系及解题关键分数乘、除法应用题,既含有整数乘、除法应用题的数量关系,又具有新的数量关系,通常分为三种情况,或者叫做分数的三种基本应用题:1、求一个数是另一个数的几分之几或百分之几的除法应用题。
(1)简单的求分率或百分率的应用题基本数量关系:对应量÷单位“1”的量=对应分率(百分率)或部分量÷标准量 =对应分率(百分率)在实际生活中,经常需要比较两个数量的倍数关系,当它们的倍数等于1或大于1的时候,通常称为“几倍”;当它们的倍数小于1的时候,通常称为“几分之几”。
学习整数应用题的时候,只知道一个数是另一个数几倍。
如:白兔16只,黑兔4只,白兔只数是黑兔的16÷4=4(倍)。
到了学习分数以后,黑兔的只数也可以与白兔去比较,即黑兔的只数是白兔的4÷16=。
当学习了百分数以后,数是另一个数的几倍或几分之几,就统一为一个数是另一个数的百分之几了。
即:4÷16=25%这类问题的数量关系跟整数里求两个数的倍数是一致的,要求掌握谁与谁相比较。
如,甲是乙的几分之几,是用甲与乙相比较,那么乙是标准的量,甲是比较的量。
并且知道用标准的量作除数。
百分数在实际应用上,还有一些特殊性。
求一个数是另一个数的百分之几,也叫做两个数的百分比或百分率。
例如,产品合格率,种子发芽率,工人出勤率,存款的利息率,向国家交税的纳税率等。
所求的这些“率”,都是用百分数表示的,所以,在这些百分率的公式里,添上乘以100%,表示求得的结果必须用百分数表示。
求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等a率=a的数量÷总量×100%如,小麦出粉率=×100%在百分数里,经常会遇到除不尽的情况,除了指定精确度的以外,一般除到小数第四位,即万分位,然后四舍五入取三位小数,化成百分数后,百分号前面的数保留一位小数。
(2)稍复杂的求一个数比另一个数多(或少)百分之几实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数应用题的分类根据分数应用题的特点,可以把分数应用题分成三大类:一、求一个数是另一个数的几分之几(或百分之几、),1 :求一个数是另一个数的几分之几?例:六年级<1>有男生30人,女生24人,女生是男生的几分之几?方法是:一个数十另一个数算式:30 - 24 =这里“是”是关键词,也就是“是”字后面的是单位“ 1” 2:求一个数比另一个数多几分之几(或百分之几、几倍)。
例:甲数是5,乙数是4,甲数比已数多几分之几》?方法是:(甲数-乙数)十乙数这里的关键词是“比”,比字后边的是单位“ 1”。
算式:(5-4 )* 4 =3:求一个数比另一个数少几分之几(或百分之几、几倍)例:甲数是5,已数是4,已数比甲数少几分之几》?方法是:(甲数-乙数)十甲数=这里的关键词是“比”,比字后边的是甲数,所以甲数是单位“ 1”。
算式:(5-4 )-5 =此类题型特点:分率未知,求分率,用除法计算。
二:求一个数的几分之几(或百分之几、)是多少。
1、求一个数的几分之几(或百分之几、)是多少。
例、小明看一本60页的故事书,第一天看了这本书的 -,第一天看的多少页?3(这里“这本书”是单位“ 1”,是谁的2谁就是单位“ 1” .)3 特点:单位“ 1”的量已知,用乘法计算。
解题方法:单位“ 1”的量x所求数量的对应分率=所求数量2算式:60 X =40 (页)32、求比一个数多几分之几的数是多少。
1某校六年级有男生120人,女生比男生多-,女生有多少人?5特点:单位“ 1”的量已知,用乘法计算。
“多”是加法方法是:单位“1”的量X (1+几分之几)=(1+几分之几)对应量1算式:120 X (1 + 丄)=53、求比一个数少几分之几的数是多少。
1例、某校六年级有女生120人,男生比女生少-,男生有多少人?5特点:单位“-”的量已知,用乘法计算。
“少”是减法方法是:单位“1”的量X (1 -几分之几)=(1-几分之几)对应量1算式:120X (1-1)=5三、已知一个数的几分之几是多少,求这个数。
1:已知一个数的几分之几是多少,求这个数。
1例、六年级<1>班有女生24人,相当于男生人数的」,男生有多少人?5(这里“相当于”是关键词,所以男生人数是单位“1” .)特点:单位“ 1”的量未知,用除法计算。
解题方法:已知数量*已知数量的对应分率=单位“ 1”的量1算式:24 -丄=24 X 5=120 (人)52、已知比一个数多几分之几的数是多少,求这个数。
例、六年级<1>有男生30人,比女生多1,女生有多少人?5(这里“比”是关键词,所以女生人数是单位“ 1” .)特点:单位“ 1”的量未知,用除法计算,“多”是加法。
解题方法:已知数量*(1+已知数量的对应分率)=单位“1”的量1算式:30 *(1+—)=53、已知比一个数少几分之几的数是多少,求这个数。
1例、六年级<1>有女生24人,比男生人数少-,男生有多少人?5(这里“比”是关键词,所以男生人数是单位“ 1” .)特点:单位“ 1”的量未知,用除法计算,“少”是减法。
解题方法:已知数量*(1-已知数量的对应分率)=单位“1”的量1算式:24*(1--)=5在小升初数学应用题中,可以分为方程的应用题、比的应用题、百分数的应用题、圆的应用题、分数的应用题和其他应用题。
下面是奥数网小编为大家整理的分数应用题的归类和详细解析,大家在分数应用题感觉还有所不够的话,可以参考下!小升初分数应用题归类详解(一)求一个数是另一个数的几分之几(百分之几)的应用题在分数、百分数三类基本应用题和较复杂的应用题中是以“求一个数是另一个数的几分之几几)”应(百分之用题为基础的。
这是因为这类应用题,在实际工作和生活中应用广泛,另一方面通过这类应用题的学习,搞清百分数的基本数量关系,也就有利于其他两类百分数应用题的理解。
“求一个数是另一个数的几分之几(百分之几)”应用题的结构特征是:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。
这里,“一个数”是比较量,“另一个数”是标准量。
因此,这一类问题的实质是已知比较量和标准量,求分率或百分率,也就是求它们的倍数关系。
其解法是:分率(百分率)=比较量*标准量解这类问题,找准标准量和比较量是关键。
分析方法一般是在弄清已知条件和问题的相依关系的基础上,从问题入手,搞清谁与谁比,以谁做标准,分清比较量与标准量;如果两个量中有一个是未知数,那么,首先应通过已知条件先求出这两个数,才能进行解答。
要使比较量、标准量找得准确,还必须了解这类应用题的关键句式。
按其形式来分,可以有以下三种:1. 基本句式:“甲是乙的几分之几(百分之几)”甲是比较量,乙是标准量,几分之几(百分之几)”是分率(百分率)。
即甲与乙比,甲是比较量,乙是标准量。
句式为:“……是……的……”。
类似的提法有:“……占……的……”、“……相当于……的……”、“……完成了……的……”等。
其规律一般是:用“是”、“占”、“相当于”、“完成了”等词连接的两个量,前面那个量是比较量,后面那个量是标准量。
2. 引伸句式:“甲比乙多(或少)几分之几(百分之几)”。
这种用“比……多(或少)……”的句式连接的两个量中的比较量发生了变化。
必须弄清这种句式的实际意义,即:“甲-乙比乙多(或少几分之几)或(百分之几)”。
与“……比……(标准量)多……”类似,而涉及实际意义的有:“……比……增加、提高、超额、超过、上升……”等。
与“……比……少…… ”相类似而涉及实际意义的有:“……比……减少、降低、下降、缩小、慢、节省、节约……”等。
其规律一般是:“……比……多(或少)……”的句式中,比字后面那个量是标准量,而比较量则是两个相关联的量之差。
3. 省略句式:在分数、百分数应用题中,大部分叙述句中省略了某些成份,这一类应用题更多体现在问句中。
在分析问题时,必须把省略简化了的成份补述出来,以便正确地确定比较量和标准量。
一般来说,“……占……的……”句中的“占”一类的关键词不写出来。
如“完成了几分之几(百分之几)”“增产几分之几(百分之几)” “降低……”等。
以“价格降低了百分之几?”为例,原意是:“降低的部分占原价的百分之几”又如“实际超产百分之几”原意则是:“实际产量比原计划超过百分之几。
”标准量分别是原价格和原计划,而比较量则是降低和超过的部分。
除此之外在审题时还应注意类似“增加到” “增加了”“减少到”“减少了”等概念的区别。
在解法方面,与基本应用题相应的较复杂应用题大致有:1. 已知甲乙两数,求甲数比乙数多几分之几(百分之几)。
这种类型题的解法是:甲数十乙数2. 已知甲乙两数,求乙数比甲数少几分之几(百分之几)。
这种类型题的解法是:(甲数-乙数)十甲数x 100%如果按应用题涉及的实际意义来分类,常见的有:A、求实际完成任务量的百分数。
解法是:实际生产数十计划数x 100%B求超额完成量的百分数。
解法是:(实际生产数-计划数)十计划数x 100%C求降低价格的百分数。
解法是:(原价格-后来价格)十原价格100%D求增长率。
解法是:(后来生产量-原产量)十原产量100%根据这一类应用题涉及的实际意义、范围及其解法可概括为四个部分。
1. 基本型。
已知两个具体数,求它们之间的或它们各自与总量之间倍数关系的应用题(包括求发芽率、浓度、误差、复种指数等),即:(1)已知甲数与乙数,求甲数是乙数的几分之几(百分之几),乙数是甲数的几分之几(百分之几)。
(2)已知甲数和乙数,求甲数占甲乙总数的几分之几(百分之几),乙数占甲乙总数的几分之几(百分之几)。
例1.三年级一班有42名同学。
参加游泳比赛的有18名。
参加游泳比赛的占全班人数的几分之几?分析:“求参加游泳比赛的人数占全班人数的几分之几”,是参加比赛的人数与全班人数比,应以全班人数做标准量。
解:18-42=18/42=3/7答:参加游泳比赛的占全班人数的3/7例2.机修车间有男工25人,女工20人,女工占车间总人数的百分之几?分析:“求女工占车间总人数的几分之几”应以车间总人数为标准量。
解:总人数:25+20=45(人)20 -45~44.4%答:女工占车间总人数的44.4%。
例3.玩具厂第一季度计划制造电动玩具600件,实际多做了48件。
完成计划的百分之几?分析:“求完成计划百分之几”,要以计划数做标准量,实际数做比较量。
解法1:(600+48) - 600=648- 600=108%解法2:把计划数看做整体“ 1”,则实际比计划多做48十600=8%共完成计划数的8%+1=108%即:4 8-600+1=8%+1=1083答 :完成计划的108%例4.试验组用500粒小麦种子做发芽试验,有490粒种子发了芽。
求发芽率。
分析,“率”就是比率,就是百分比。
求发芽率就是求发芽数占种子总数的百分之几。
以种子总数做标准量。
解:发芽数十种子总数X 100%即:490十500X 100%=98%答:发芽率是98%同理:求出粉率。
就是求出粉数占粮食总数的百分之几,以粮食总数为标准量。
求出油率。
就是求出油数占原料总数的百分之几,以原料总数为标准量。
求出勤率。
就是求出勤人数占总人数的百分之几,以总人数为标准量。
求成活率。
就是求活了的数占总数的百分之几,以总数为标准量。
求合格率。
就是求合格的数占产品总数的百分之几,以产品总数为标准量。
例5.把12.5千克食盐放入1000千克水中,溶成盐水。
求盐水的浓度。
分析:把食盐放入水中后形成的食盐水,叫做溶液,食盐叫溶质。
溶质与溶液的百分比,叫做浓度。
求浓度就是求溶质占溶液的百分之几,以溶液为标准量。
根据题意溶液是食盐与水重量的和。
解:12.5 - (12.5+1000) X 100%« 1.23% 答:盐水的浓度约是 1.23%。
例6.从甲城到乙城实际距离是75.18千米,测得结果是75.04千米。
求误差对于测量值的百分比。
分析:误差:是实际长度和测量结果的差。
“求误差对于测量值的百分比”,就是求误差与测量值的百分比。
以测量值为标准量。
0.19%。
解:(75.18- 75.04)- 75.04〜0.19%答:误差对于测量值的百分数约是2. 引伸型。
求一个数比另一个数多(或少)几分之几(百分之几)的应用题。
这部分应用题是基本类型的引伸。
一般有:(1)已知甲(大数)、乙(小数)两数,求甲数比乙数多几分之几(百分之几);(2)已知甲(大数)、乙(小数)两数,求乙数比甲数少几分之几(百分之几);这类题的解法规律是先求出两个数的差,以差作为比较量。
但不能误认为甲数比乙数多几分之几(百分之几),乙数就比甲数少几分之几(百分之几)。
比多时应以乙数(小数)作为标准量;比少时应以甲数(大数)作为标准量。