并网系统的孤岛效应
分布式并网发电系统孤岛效应分析及检测方法的研究

(L C P C )meh d sp ri r o t l n aaaq it n( C A)meh da ds n T eiv r rs edtcinme o sn ld dlcl to , u e s ycnr dd t cus i S AD v o oa io to n oo . h et —i eet t d cu e a n e d o h i o
电 电压 与频 率不 稳定 ; 电网恢 复时分 布式 供 电系统
统 (G D )应运 而 生 。分布 式 发 电系统 是指 在 用户 现
场 或 靠近 用 电现 场配 置容 量 在数千 瓦 至数十 兆 瓦之
间 的发 电机 组 ( 一般低 于 3 W , 以满 足特 定用 户 0 ) M
的需要 ,支 持现 有配 电网的经 济运 行 ,或 同时满足
p s i e a d l c l c i e meho s Thi p p re p ta e n il n i g d t c i n m eh ds prn i e p nt g o tt e p e e t r b e n e a sv n o a tv t d . a s a e x a it d o sa d n e e to t o ’ i c pl, oi i u h r s n o l msa d r — n p
Abs r c :An l s s wa d o t e i lnd n n o — e e t n z n iti utd g i — o n c e e e a i n h e e t n me h d ta t a y i s ma e t h sa i g a d n n d t c i o e ofd sr b e rd c n e t d g n r t ,t e d t c i t o s o o o we edi i e n o g i — i e d t c i n a d i v re — i e d t c i n Th rd sd ee to t o s i l d d p we i a re o r v d d i t rd sd e e t n e t r sd ee t . e g i — i e d t c i n me h d o n o nc u e o rl c r i r mm u c t n ne c nia i o
光伏并网孤岛效应的检测与分析

光伏并网孤岛效应的检测与分析摘要:目前,分布式发电系统发展的规模口益扩大,更多的分布式光伏并网发电系统接入到公共电网的同时,出现孤岛效应的几率也随之增加。
孤岛效应的产生不仅给分布式发电设备带来危害,而且影响了电能的质量,所以要求能够准确且快速的检出孤岛效应现象。
关键词:孤岛效应;主动频率;负载功率1.引言孤岛效应的检测一般是通过监控并网系统输出端电压的幅值和频率来实现的。
当电网断开时,由于并网系统的输出功率和负载功率之间的差异会引起并网系统输出电压的幅值或频率发生较大的改变,这样通过监控系统输出的电压就可以很方便地检测出孤岛效应。
然而,当负载消耗的功率与光伏系统相匹配的时候,通过这种被动的检测方法就会变得困难。
该项目提出来周期性双向扰动主动频率偏移法无论是感性负荷还是容性负荷或者负载消耗的功率与光伏系统相匹匹配时的孤岛效应检测技术难题。
有效的控制了光伏系统发生孤岛效应时,给相关的设备和维护人员带来的危险。
2.孤岛效应检测方法的分析与选择孤岛是一种电气现象,发生在一部分的电网和主电网断开,而这部分电网完全由光伏系统来供电。
因为孤岛会损害公众和电力公司维修人员的安全和供电的质量,在自动或手动重新闭合供电开关向孤岛电网重新供电时有可能损坏设备。
逆变器通常会带有被动式防止孤岛效应装置。
对于平衡负载很好条件下通电和重新通电两种情况下的孤岛防止还不够充分,所以必须结合主动技术,主动技术是基于样本频率的移位、流过电流的阻抗监测、相位跳跃和谐波的监控、正反馈方法、或对不稳定电流和相位的控制器基础上的。
该研究项目解决了无论是感性负荷还是容性负荷或者负载消耗的功率与光伏系统相匹匹配时的孤岛效应检测技术难题。
安全可靠的保证电力光伏发电设备和财产损失,提高电力系统的服务信誉,可有效维护社会稳定和电网安全。
3.周期性双向扰动主动频率偏移法基本原理正反馈的主动频率偏移法是对对公共耦合点的频率运用了正反馈,提高了孤岛检测的速度。
光伏小电源并网孤岛效应对电网的影响

光伏小电源并网孤岛效应对电网的影响摘要:在简述了光伏并网系统中孤岛效应的定义与危害及其发生机理条件的基础上,本文介绍针对光伏并网造成系统防孤岛保护装置误检测进而导致保护拒动问题,以吐鲁番电网光伏小电源接入单侧电源的110 kV终端变电站—伊兰布拉克变电站为例,通过分析防孤岛保护与自动保护装置动作配合逻辑,在现有系统基础上对保护动作配合进行优化等解决方案,确保变电站安全自动装置可靠动作,防止孤岛运行现象发生,提升系统供电可靠性。
关键词:孤岛效应;危害;防孤岛保护;安全自动装置前言在追求低碳社会的今天,太阳能作为一种清洁的可再生能源,越来越受到世界各国的重视。
近年来,由于国家对分布式清洁能源的大力支持,大量分布式小电源(特别是风力发电厂和光伏电厂)并入电网。
分布式新能源电厂具有出力小、谐波大等特点,大部分分布式小电源点并入就近变电站向系统输送电能量,形成含分布式新能源在内的以火力、水力发电为主的多种能源发电的多侧电源点供电模式,如果光伏发电系统非计划性与电网系统断开,逆变器仍通过逆变向所带负载进行电能传输,就会形成独立于大电网的小规模孤岛电网现象。
在孤岛运行情况下,光伏系统无法维持稳定电压、频率,当系统负荷改变时,电网系统电压随负荷情况波动,重合闸产生巨大冲击电流,给电网、设备及人身安全带来威胁,在光伏并网过程中,孤岛效应问题已成为影响电能质量、稳定、安全的关键。
1.并网光伏发电系统的孤岛效应1.1孤岛效应当电网正常工作时,电网与光伏发电系统一同给变电站供电,但是当电网线路因检修或者故障而停电时,系统处于光伏发电系统单独给变电站供电的情况,此时系统失去了电网的控制,处于失控状态,这种光伏发电系统单独给变电站供电的情况叫做孤岛效应。
图1在光伏并网发电系统中,光伏发电系统可等效为电流源,电网可以等效为电压源,电网正常工作时,系统受到电网的钳制作用,光伏发电系统总与电网保持一致。
一旦发生孤岛效应,系统不再受电网的控制,处于失控状态的光伏发电系统将会带来很多危害。
并网光伏发电系统孤岛效应的危险性分析

并网光伏发电系统孤岛效应的危险性分析一、孤岛效应概念相对于离网光伏发电系统而言,并网光伏发电系统在运行时具有较高的光伏电能利用率,然而由于并网光伏发电系统直接将光伏阵列发出的电能逆变后馈送到电网,因此在工作时必须满足并网的技术要求,以确保系统安装者的安全以及电网的可靠运行。
对于通常系统工作时可能出现的功率器件过电流、功率器件过热、电网过/欠电压等故障状态,比较容易通过硬件电路与软件配合进行检测、识别并处理。
但对于并网光伏发电系统来说,还应考虑一种特殊故障状态下的应对方案,这种特殊故障状态就是所谓的孤岛效应。
实际上,孤岛效应问题是包括光伏发电在内的分布式发电系统存在的一个基本问题,所谓孤岛效应是指:在下图所示的分布式发电系统中,当电网供电因故障事故或停电维修而跳闸时,各个用户端的分布式并网发电系统(如光伏发电、风力发电、燃料电池发电等)未能及时检测出停电状态从而将自身切离市电网络,最终形成由分布电站并网发电系统和其相连负载组成的一个自给供电的孤岛发电系统。
▲分布式发电系统的孤岛效应示意图二、孤岛效应的危害孤岛效应的发生会给系统设备和相关人员带来如下危害:1、孤岛效应使电压及其频率失去控制,如果分布式发电系统中的发电装置没有电压和频率的调节能力,且没有电压和频率保护继电器来限制电压和频率的偏移,孤岛系统中的电压和频率将会发生较大的波动,从而对电网和用户设备造成损坏。
2、孤岛系统被重新接入电网时,由于重合闸时系统中的分布式发电装置可能与电网不同步而使电路断路器装置受到损坏,并且可能产生很高的冲击电流,从而损害孤岛系统中的分布式发电装置,甚至导致电网重新跳闸。
3、孤岛效应可能导致故障不能清除(如接地故障或相间短路故障),从而可能导致电网设备的损害,并且干扰电网正常供电系统的自动或手动恢复。
4、孤岛效应使得一些被认为已经与所有电源断开的线路带电,这会给相关人员(如电网维修人员和用户)带来电击的危险。
由上可知,当主电网跳闸时,分布式发电装置的孤岛运行将对用户以及配电设备造成严重损害,因此在包括并网光伏发电等系统在内的分布式发电系统中,并网发电装置必须具备反孤岛保护的功能,即具有检测孤岛效应并及时与电网切离的功能。
孤岛现象

孤岛现象一、概述孤岛现象也称孤岛效应,有时简称孤岛。
比如:防孤岛就是指防止孤岛现象产生的意思。
美国桑迪亚国家实验室(Sandia National Laboratories)提供的报告对孤岛现象描述如下:当电力公司的供电系统因故障事故或停电维修等原因停止工作时,安装在各个用户端的光伏并网发电系统未能及时检测出停电状态而不能迅速将自身切离市电网络,而形成的一个由光伏并网发电系统向周围负载供电的一种电力公司无法掌控的自给供电孤岛现象。
国家电网公司企业标准“Q/GDW480-2010分布式电源接入电网技术规定”对孤岛现象定义如下:孤岛现象islanding电网失压时,电源仍保持对失压电网中的某一部分线路继续供电的状态。
孤岛现象可分为非计划性孤岛现象和计划性孤岛现象。
非计划性孤岛现象unintentional islanding非计划、不受控地发生孤岛现象。
计划性孤岛现象intentional islanding按预先设置的控制策略,有计划地发生孤岛现象。
孤岛效应总是与分布式能源并网联系在一起,因为分布式能源并网的需要,一个电网存在包括分布式电源在内的多个电源。
这样,当电力部门需要维护或检修或其它任何原因需要断电时,其余电源可能还在供电,这样,线路上就会存在电压,给维护带来不便甚至危及维护人员的生命安全。
二、非计划性孤岛现象的危害非计划性孤岛现象发生时,由于系统供电状态未知,将造成以下不利影响:①可能危及电网线路维护人员和用户的生命安全;②干扰电网的正常合闸;③电网不能控制孤岛中的电压和频率,从而损坏配电设备和用户设备。
三、防孤岛技术非计划性孤岛现象是需要防止的。
防止非计划性孤岛现象的发生就称为防孤岛(anti-islanding)。
防孤岛在许多技术文献中也称反孤岛效应。
防孤岛的核心技术是检测电网是否存在。
一般分为被动式检测方法和主动式检测方法。
被动式防孤岛检测方法通过检测并网变流器的输出电压、电流、频率、谐波等的变化来判断电网是否存在,一般无需增加逆变器硬件电路。
光伏并网系统的孤岛效应检测技术

V0 . 3 NO 1 11 . 1 NO 0l V2 0
来衡 量 孤 岛检 测 方 法 的好 坏 ,NDZ 定义 合 适 的 区 域 ,在 此 区域 内某 孤 岛检 测 方法 不能 检 测 出孤 岛 效 应 ,通 常希 望 NDZ 可 能小 ,但 是公 共 电网情 尽
况较 复 杂 ,设 定 太 小 的NDZ 引起 反 孤 岛保 护 的 会
OI Yu u n Z A0 x a , HANG Dar n i u
( i u nUnv ri , h n d 1 0 5 C ia Sc a iesy C e g u6 6 , hn ) h t 0
Absr c :Thi p ra a y e hep i cpl lnd n a e n t e sr t r e g i c ne t d p o o o ti ta t spa e n l s st rn i eofi a i g b s d o h tucu eoft rd-on ce h t v lac s h s t m ,a d c yse n ompa e n umm a iest nt—s a ng sr t g e o pr ve tu n e i a sa i r sa d s rz he a ii lndi t a e i s t e n ni t nton lil nd ng.The c nsde a i ns on t o e s i t urh r r s a c he a t—s a ng sr t gi s a e a s s us e o i r to he pr bl m n he f t e e e r h oft n iil ndi ta e e r l o dic s d. Ke ywor :Grd c n c e Ph t vo t i yse ; sa di ; tc i n S r t g ds i — o ne td o o la cS tm I ln ng De e to ta e y
光伏发电并网系统的孤岛效应及反孤岛策略

光伏发电并网系统的孤岛效应及反孤岛策略近年来,随着能源的过度消耗,传统能源对环境带来的影响日益加重,人们逐渐意识到清洁能源的使用可以改善现有能源紧缺的状况,也可以改善能源使用对环境所带来的影响。
太阳能作为一种清洁、环保型的能源不仅无污染、可持续性强而且使用便捷,因此越来越多的人开始使用这种新型能源。
随着使用范围的扩大,它已经从补充型能源向替代型能源逐渐过渡。
孤岛效应是光伏发电中独有的故障,为了能够让清洁能源得到更好的利用,我们必须要制定对应的策略来改善孤岛效应带来的损害。
一、关于孤岛效应(一)概念它是指在光伏发电系统中,整个电力网络由于故障原因或是停电而出现跳闸断电的情况。
而此时各个分布式发电系统并没有检测出对应的故障问题,进而没有及时将光伏发电系统与电力网络断开,从而形成了一个以分布式发电系统以及其他负载组件共同形成的发电孤岛。
(二)危害1.一旦这种发电孤岛形成就会给系统内的电压和频率造成非常直接的影响,甚至会对相应的装置设备造成损害[1]。
2.而当故障解除之后,光伏发电系统在重新接入电力网络时又可能会出现电压不同步的情况,继而出现电流突变的情况,导致电力设备和其他器件受到损害。
3.断电之后的孤岛效应会造成接地故障无法彻底清除,给电力系统造成影响。
4.孤岛效应很容易给工作人员带来认知偏差,认为是电力网络断电,进而做出错误的判断,给工作人员的人身安全带来威胁。
为了避免孤岛效应给设备和工作人员造成危害,就必须要在出现此类情况时具备一定的防御保护能力,进而确保设备完好、人员安全。
二、关于孤岛效应危害的解决策略触发孤岛效应出现的必要条件就是光伏系统内的输出功率与其负载功率相互匹配。
依据孤岛效应的检测规定,当发电系统中所输出的有功功率和负载有功功率之间出现5%的误差且持续时间长达2s以上,便可以确定光伏发电的孤岛效应已经产生。
因此我们可以得出结论,孤岛效应的出现与功率数值是否匹配以及其所能够持续的时间有紧密的联系。
孤岛效应

光伏“孤岛效应”可解释为当逆变器并网工作时,因为各种原因导致市电不能给本地负载供电,此时如果没有任何孤岛判断技术,逆变器会持续给本地负载和局部电网负载供电。
一般来说,光伏孤岛效应可能对整个配电系统设备及用户端的设备造成不利的影响,主要包括:
1.危害电力公司输电线路维修人员的人身安全;
2.影响配电系统上的保护开关动作程序;
3.电力孤岛区域所发生的供电电压与频率的不稳定现象;
4.当电力公司供电恢复时所造成的相位不同步问题;
5.太阳能供电系统因单相供电而造成系统三相负载的欠相供电问题;
6.防止光伏孤岛效应的基本点和关键点是电网断电的检测,为了能快速检测到电网断电,通常需要采用被动式和主动式两种“孤岛效应”检测方法,一旦确认电网失电,均需在几个周期内将逆变器与电网断开并停止逆变器的运行。
随着光伏并网发电系统进一步的广泛应用,当多个光伏逆变器同时并网时,不同逆变器输出的变化非常大,从而导致上述方法可能失效。
因此,研究多光伏逆变器的并网通信、协同控制已成为光伏孤岛效应检测与控制的研究趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S
∆P, ∆Q
public grid
LR
{
QL = QC = 100 VAr
Fig. 1. Test circuit for islanding protection, as proposed by Häberlin [2].
In principle, every self-commutated inverter is able to
capacitor of the resonant circuit. ∆P and ∆Q are the active and reactive power, supplied to the grid before grid
tripping. When inductive power is supplied to the grid, ∆Q
islanding mode [3]. In Figure 2 the NDZs of a 200 W inverter are indicated for different combinations of P, Q
and QC.
60
P Q Qc
40
200 W, 50 VAr, 100 VAr 200 W, 50 VAr, 50 VAr
20
30
∆ Qind to Grid in VAr
Fig. 2. Calculated NDZ of a 200 W inverter at different power levels and for different load capacitances with fixed voltage and frequency limits.
particular protection algorithm in a slightly different manner.
Inverters with AFD generate a slightly distorted current waveform (Fig. 3). In this example, the first current half cycle is shorter than half of the period of the grid voltage. The current is controlled to be zero during a
ISLANDING OF GRID-CONNECTED AC MODULE INVERTERS
Achim Woyte, Ronnie Belmans, K.U.Leuven, ESAT-ELEN Kard. Mercierlaan 94, B-3001 Leuven, Belgium
Johan Nijs, IMEC v.z.w. and K.U.Leuven, ESAT-INSYS Kapeldreef 75, B-3001 Leuven, Belgium
As every decentralized production unit being connected to the public grid, the PV AC module has to comply with common safety standards. A major issue is to avoid non-intentional operation in islanding mode with the grid being tripped at fault conditions or for maintenance purposes.
is positive. ∆P and ∆Q can be adjusted by tuning the domestic load. For a given capacitance and inverter power, a so-called non-detective zone (NDZ) can be
ABSTRACT
A major safety issue about grid-connected photovoltaics is to avoid non-intentional operation in islanding mode, the grid being tripped.
This paper presents detailed measurements on the islanding behavior of four module inverters with a maximum rated power of 200 W. Although applying active anti-islanding measures each inverter could be forced into islanding. It could be observed experimentally what recently has been shown analytically, that some methods against islanding fail if inverters are loaded with considerable parallel capacitance. As most distribution grids contain a considerable capacitance, those methods are to be improved. One of the inverters failed totally what illustrates the need for standardized type approvals.
ISLANDING PHENOMENON AND TESTS
Investigations carried out at K.U.Leuven in 1997 [1] have shown that small so-called "module inverters" are in general more sensitive to islanding than larger units. Recently four module inverters that are currently available on the European market, ranging from 90 to 200 W rated power, have been examined with regard to their islanding
Assuming constant active and reactive power output before and after grid tripping, voltage and frequency in islanding operation can be determined from the power balance, yielding equation (1) and (2).
behavior under different load conditions. The applied test circuit is shown in Figure 1.
PV array simulator
inverter
==
= ~
resonant circuit
P, Q
domestic
load
∆P P
=
1
−
Vg2rid Vis2land
(1)
ω island ω grid
⋅
∆P P
−∆Q Q=来自çæ ç èω
2 island
ω
2 grid
−
1÷÷ö ø
⋅
QC Q
+ ω island ω grid
−1
(2)
In these equations P and Q indicate the inverter operating point. QC is the reactive power supplied by the
determined in the ∆P-∆Q-domain where an inverter with predefined voltage and frequency limits will operate in
P to Grid in W Amplitude normalized on RMS value
becomes inverted and the control bias for ω⋅tz is measured. For the current fundamental this means a
phase shift by 0.5⋅ωgrid⋅tz with regard to the grid voltage. Hence, in order to maintain a high power factor, tz must not be chosen too high. The ratio of tz to half of the period of the grid voltage is referred to as the chopping fraction (cf):
operate in islanding mode. If no particular control algorithm for islanding prevention is implemented, the load conditions under which islanding occurs, depend only on the inverter's frequency and voltage limits.
The outcomes show where to put accents in the development and implementation of efficient protection algorithms.