通信中的几个效应-波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应
(精选)通信中的几个效应

通信中的几个效应波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应阴影效应、拐角效应1、波导效应波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
移动通信复习知识要点

第一部分概述1.了解移动通信的发展情况古代移动通信-萌芽阶段-开拓阶段-商业阶段-蜂窝思想-第一代移动通信系统-数字化-第二代移动通信系统-宽带、多媒体-第三代移动通信系统-广带IP多媒体-第四代移动通信系统(1897年,马可尼完成莫尔斯电码无线通信实验,标志无线电通信的开始,开创了海上通信业)(1928年,美国底特律警察局率先使用装备贝茨发明的能适应移动车辆震动影响的无线电收发信机——超外差AM接收机的警用车辆无线电移动系统(单向),标志移动通信开始)(1935年,阿姆斯特朗发明了FM方式无线电,是移动通信中的第一个大分水岭)(早在40年代末,美国Bell实验室提出蜂窝构想;1974年正式提出了蜂窝移动通信的概念。
)2.了解通信系统的分类按工作方式分类---单工双工(TDD,FDD) 半双工按信号形式分类---模拟网和数字网按覆盖范围分类---城域网,局域网和个域网按服务特性分类---专用网,公用网按多址方式分类---FDMA,TDMA,CDMA,SDMA 按使用对象分类---民用系统、军用系统按业务类型分类---电话网、数据网、综合业务网、多媒体按使用环境分类---陆地通信、海上通信、空中通信依据通话状态和频率使用方法,可分为单向和双向单工和双工3.了解双工方式双工通信的特点是: 同普通有线电话很相似, 使用方便。
其缺点是: 在使用过程中, 不管是否发话, 发射机总是工作的, 故电能消耗很大, 这对以电池为能源的移动台是很不利的。
针对此问题的解决办法是: 要求移动台接收机始终保持在工作状态, 而令发射机仅在发话时才工作。
这样构成的系统称为准双工系统, 也可以和双工系统兼容。
这种准双工系统目前在移动通信系统中获得了广泛的应用。
基站移动台第二部分移动通信的传播特性1.了解电波的传播方式1) 直射波:电波传播过程中没有遇到任何的障碍物, 直接到达接收端的电波, 称为直射波。
直射波更多出现于理想的电波传播环境中。
移动通信考试各章重点

第一章移动通信的特点?在移动通信中,终端始终是移动的,传输线路是随终端移动而分配的动态无线链路,网络则是适应动态用户终端、动态线路的动态性交换网络。
(二重动态性、三重动态性、四重动态性)实现个人通信主要包含两大部分:一是全球性骨干核心网络平台;二是无时无处不在的灵活接入手段。
第二章移动通信信道的3个主要特点?1.传播的开放性2.接收环境的复杂性3.通信用户的随机移动性移动通信信道中的电磁波传播:直射波、反射波、绕射波、散射波。
接收信号中的4种效应:1.阴影效应2.远近效应3.多径效应4.多普勒效应三类主要快衰落:空间选择性衰落(克服:空间分集)、频率选择性衰落(克服:自适应均衡和Rake接收)、时间选择性衰落(克服:信道交织技术)第三章多址技术的基本概念:多址技术从原理上看,与固定通信中的信号多路复用是一样的,实质上都属于信号的正交划分与设计技术。
不同点是多路复用的目的是区别多个通路,通常是在基带和中频上实现的,而多址划分是区分不同的用户地址,通常需要利用射频频段辐射的电磁波来寻找动态的用户地址,同时为了实现多址信号之间互不干扰,信号之间必须满足正交特性。
其典型例子有FDMA(频分多址:每个信道传送一路电话,带宽较窄,公用设备成本高,连续传输开销小,效率高,同时无须复杂组帧与同步,无须信道均衡),TDMA(时分多址:每个载波最多可提供8个用户;突发脉冲序列传输;每个移动台的发射是不连续的;传输开销大),CDMA(所有用户共享同一时隙、同意频隙;采用扩频通信;抗干扰性强,低功率谱密度;码分多址信噪比受限),SDMA(空分多址:空间角度划分,频率/时间/码共享),OFDMA(小区间干扰协调;同步技术、峰平比抑制技术、分组调度以及信道估计). 扩频序列的相关特性:为什么具有很强的抗干扰(多址干扰)性?(利用香农公式分析扩频技术的抗干扰性)第四章语音压缩编码的分类:波形编码、参量编码、混合编码。
GSM语音编码:规则脉冲激励长期预测编码,其基本原理基于线性预测编码。
移动通信原理复习资料

1.FDMA系统通过_________频率__________来区分信道;TDMA系统通过_时隙______来区分信道;CDMA系统通过___________编码序列________ 来区分信道。
2.移动通信采用的常见多址方式有 TDMA 、CDMA和 FDMA 。
3.移动通信信道中的噪声一般分为:内部噪声、自然噪声和人为噪声。
4.当移动台接入网络时,它首先占用的逻辑信道是__RACH__;5.基站BSS是由__基站收发台__和___基站控制器___组成的;6.移动通信中的干扰主要是同频干扰、邻道干扰和互调干扰。
7.单工制通信就是指通信的双方只能交替地进行发信和收信,不能同时进行。
8.按无线设备工作方式的不同,移动通信可分为单攻、半双工和全双工三种方式。
9.3G三种主流技术标准为WCDMA、 CDMA2000 、 TD-SCDMA 。
10.移动通信系统中,无线电台间的相互干扰包括_同频干扰_、邻道干扰_、_ 互调干扰_、杂散干扰。
11.无线通信的三种常见“效应”是:多普勒效应、远近效应、阴影效应。
12.交织技术可以用来抗突发性误码,信道编码技术可以用来抗随机性误码13.SIM卡的主要功能为存储数据、用户身份鉴权和用户PIN的操作和管理。
14.GPRS在2G系统GSM 的基础上,引入了 SGSN 和GGSN 节点。
15.接收分集技术主要有空间分集、频率分集、时间分集、极化分集等。
16.利用一定距离的两幅天线接收同一信号,称为_空间__分集;17.移动通信信道中的噪声一般分为:自然噪声、内部噪声和人为噪声。
18.IS-95CDMA是属于第 2 代移动通信系统;20.如果在网络信号覆盖范围内的某一特定区域,MS在此区域内移动时,并不需要告知网络更新位置,则此区域即为一个位置区。
这就是通常的位置更新。
22.在移动通信信号传输中,由于信号到达接收端走过多条路径,最后叠加而造成的衰落称为多径衰落。
贮必要的数据。
移动通信的几种效应(1)

多址技术
如下图所示的频分多址和时分多址方式: a. FDMA b. TDMA
多址技术
时分多址(TDMA)的特点
(1)TDMA系统中几个用户共享同一个载频,但每个用户使用彼 此互不重叠的时隙。
(2)TDMA系统中的数据发射是不连续的,是以突发方式发射, 耗电较少,移动台可在空闲的时隙里监听其他基站,使越区切换 大为简化。
蜂窝系统
蜂窝的分类
宏蜂窝(Macrocell):
每小区的覆盖半径大多为1~25km 用于大面积覆盖 基站天线置于相对较高的地方 基站的发射功率较强 存在热点和盲点问题
蜂窝系统的分类
微蜂窝(Microcell):
覆盖半径大约为30~300m
发射功率相对较小,一般在1~2W 基站天线置于相对低的地方 用于解决热点/盲点问题
多址技术
时分多址(TDMA)
TDMA是把时间分成周期性的帧,每一帧再分割成若干时隙,
一个时隙就是一个通信信道。
通信时,给每个用户分配一个时隙,使各移动台在每帧内只
能按指定的时隙向基站发射或接收信号。同一个频道就可供几个 用户同时进行通信。
GSM系统无线路径上采用TDMA方式,每一个载频可分成8个时 隙,一个时隙为一个信道,一个载频最多可有8个移动用户同时 进行通信。
多普勒效应
生活中有这样一个有趣的现象:当一辆救护车迎面驶来的时候,听到声音 越来越高;而车离去的时候声音越来越低。你可能没有意识到,这个现象 和医院使用的彩超同属于一个原理,那就是“多普勒效应”。 在移动通信中,当移动台移向基站时,频率变高,远离基站时频率变低, 所以在移动通信中要充分考虑多普勒效应。 产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间 内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的 个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接 收到的完全波的个数决定的。当波源和观察者有相对运动时,观察者接收到的 频率会改变.在单位时间内,观察者接收到的完全波的个数增多,即接收到的 频率增大.同样的道理,当观察者远离波源,观察者在单位时间内接收到的完 全波的个数减少,即接收到的频率减小.
通信中的几大效应

孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。
什么是孤岛效应?问:怎样发现某个掉话点是由于“孤岛效应”产生的?答:分析 1 掉话2 掉话现象:一直不切换,直至掉话。
主服小区与邻区同BCCH同BSIC也是这个现象吗?3 确定目前主服小区是多少,距离基站距离是多少?4 然后从掉话点开始查看是否存在六个邻区中没有与主服务小区建立邻区关系,5 如果有邻区关系,仍然一直不切换,直至掉话,是信号质量差。
6 如果没有邻区关系,是因为漏加了邻区关系,还是孤岛效应,怎样区分?7 如果确实是邻区,是漏加了邻区,如果不是邻区,是孤岛效应?8 怎样确定孤岛效应的区域范围?怎样消除孤岛效应?漂移小区与相邻小区同BCCH、BSIC,以至没有邻区可以切换什么是越区覆盖?它和孤岛效应有什么关系?孤岛的一个原因是越区覆盖。
孤岛效应和越区覆盖都属于基站覆盖性问题。
无遮挡传播远?天线高度高?高山站、街道的波导效应?湖泊的反射效应?“飞地效应”:当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。
楼房会有“飞地效应”吗?“伞状覆盖”效应:服务小区由于各种原因(无线传输环境太好、基站位置过高或天线的倾角较小),导致覆盖太大以至于将邻小区覆盖在内,造成在某些小区的覆盖范围出现一片孤独区域(所谓的伞状覆盖),此孤独区域在地理上没有邻区,类似于“孤岛”。
通信参数

阿(波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应)1、波导效应波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
四大效应

乒乓效应、孤岛效应、切换效应、屏蔽效应、波导效应乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的"乒乓效应"。
防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“ 再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
为说明这个问题,我们假设这两个电平值接近,比如都为23dB。
此时,手机虽然可以很容易地切换到下一个基站上去,但是由于移动通信的信号有不稳定的特点,很可能刚切换过来的基站的信号又变弱,手机又开始往回切换,从而造成“乒乓效应”。
这两个值相差越大,“乒乓效应”发生的可能性就越小。
但太大又可能造成手机在合适的时候无法使用下一基站通话。
一般情况下,我们都采用上面给出的参考值;一些特殊环境也可考虑改变这些参数。
上面我们讨论的是由手机发起切换申请的情形,另外还有由基站发起申请的情形,即当基站接收手机的信号弱到一定程度(6dB),由基站通知手机做切换,如果此时手机能找到一个信号强的基站(32dB以上),则切换到该基站上通话。
造成“乒乓效应”有两种可能,一是通信信号很不稳定,二是两参数值间隔太小。
有这样一个例子,某一高层楼房,外面采用日立大功率基站定向覆盖,楼内采用20mW 京瓷基站覆盖。
在楼房内的办公室中,当客户通话过程中如果转动身体,则手机便做频繁的切换,甚至无法通话。
这是因为,开始时假如用户使用外面的基站进行通话,手机的上行信号能够经过窗口(较强)和透过墙壁(较弱)到达基站。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信中的几个效应(波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应)1、波导效应波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
为说明这个问题,我们假设这两个电平值接近,比如都为23dB。
此时,手机虽然可以很容易地切换到下一个基站上去,但是由于移动通信的信号有不稳定的特点,很可能刚切换过来的基站的信号又变弱,手机又开始往回切换,从而造成“乒乓效应”。
这两个值相差越大,“乒乓效应”发生的可能性就越小。
但太大又可能造成手机在合适的时候无法使用下一基站通话。
一般情况下,我们都采用上面给出的参考值;一些特殊环境也可考虑改变这些参数。
上面我们讨论的是由手机发起切换申请的情形,另外还有由基站发起申请的情形,即当基站接收手机的信号弱到一定程度(6dB),由基站通知手机做切换,如果此时手机能找到一个信号强的基站(32dB以上),则切换到该基站上通话。
造成“乒乓效应”有两种可能,一是通信信号很不稳定,二是两参数值间隔太小。
有这样一个例子,某一高层楼房,外面采用日立大功率基站定向覆盖,楼内采用20mW京瓷基站覆盖。
在楼房内的办公室中,当客户通话过程中如果转动身体,则手机便做频繁的切换,甚至无法通话。
这是因为,开始时假如用户使用外面的基站进行通话,手机的上行信号能够经过窗口(较强)和透过墙壁(较弱)到达基站。
当转动身体时,手机通过窗口的信号减弱,造成外面基站几乎收不到手机的信号,于是基站申请要手机做切换,以使用周围的比如室内基站。
当用户再转动身体时,室内基站信号又变弱,室外基站信号变强,手机又往回切,造成“乒乓效应”。
这里的情况主要是由于外面基站采用定向天线的天线阵阵元数目太少(基站侧的另两根全向接收天线对手机的上行信号几乎不起任何作用,因为它们在该用户方向上的接收增益非常微弱),造成下行信号在室内和上行信号在基站侧的多径衰落深度加大,信号不稳定。
对于室内20mW基站,其信号强度本身就弱,并且它的天线也为简单阵元结构,本身消除多径效应的能力也很弱。
所以,用户所处环境多径衰落非常明显,信号在空间上(手机侧)和时间上(基站侧)很不稳定。
要解决这个问题,须将两个定向天线同时覆盖该楼房,并将另外两根全向接收天线也换成定向天线,以接收来自大楼方向的手机信号;还可以适当调高周围相关基站的两个切换参数间的差值。
或者将日立基站换作京瓷基站(因京瓷基站4根天线均为发射和接收天线,可以更好的减小多径衰落;但此时基站会由于采用了定向天线,其自适应功能而被浪费掉)。
在满足话务覆盖的情况下,室内的20mW基站也可以不用安装。
3、记忆效应记忆效应多发生在基站分布较密集,移动台快速行使的情况下,如城市的高架道路、城市的轻轨以及磁悬浮列车路线等。
产生条件:某一基站A存在两个同频不同BSIC的邻区关系B和C。
移动台从B站附近经过,邻区表中已解出B小区的BSIC,过后,以动态快速行使至A小区覆盖区域,并切换到A小区,此后,移动台在快速行使至C小区主覆盖区域,此时,C小区的电平很强,已达到切换条件,基站下发切换命令,但造成切换失败。
产生原因:在通信过程中,移动台为了和其邻小区建立起预同步切换关系就必须要根据服务小区下行SACCH携带系统消息的指示去收听其邻小区的BCCH信道,BCCH信道携带着小区的同步和频率校正信道,移动台验证它接收的信道确实是BCCH的一种办法就是确认这个频率是否携带着FCCH。
预同步要求移动台不仅要对其邻小区的FCCH解码而且要对带有TDMA帧号和BSIC号的SCH来解码。
就移动台而言它只有通过TCH26复帧的空闲帧才有足够的时间来解译其邻小区BCCH信的信息。
在数据交换过程中,移动台可以在接收结束和发送开始这个时间间隔(约1ms)来测量本小区的接收电平和质量,但没有足够时间来测量邻小区的电平;但在移动台发送结束和接收开始这个时间间隔(约2ms)内,它不仅可以用来测量本小区的接收电平和信号质量,还可以测量邻小区的电平,但还是没有时间来寻找邻小区的FCCH并解码SCH;在TCH26复帧结构中总有一个空闲帧,移动台可以利用这个空闲帧所带来的长间隔(约6ms),来进行FCCH和SCH的解码。
但这个空闲帧并不一定正好对应上邻小区的FCCH信道。
这里就是26和51两个数的算术特性介入的地方,因为这两个数没有公因子,两个周期随时间推移而循环,可使空闲帧肯定能在11个循环周期内与FCCH对准。
在通话过程中,手机没有足够的时间取得同邻小区的同步,根据GSM规范,当某一频点消失后,手机内存中会保存该频点以及BSIC大概10秒钟,当再次出现该频点时,在没有解出BSIC之前,将以前存在内存中的该频点的BSIC码,作为当前的BSIC码。
解决措施:主要是修改BCCH的频点。
在高速路段尽量拉开同BCCH小区的间距,使移动台不断刷新储存的BCCH和BSIC的对应关系,减少“记忆效应”的发生。
4、孤岛效应造成越区覆盖原因:天线挂高较高,覆盖较远;该区域覆盖较差,没有主覆盖;地形复杂引起覆盖的不规则;相邻关系定义不全造成的孤岛效应等。
危害:对其它基站造成干扰,丢失邻区关系形成孤岛效应而导致掉话等。
如何判断越区覆盖?在测试中判断越区覆盖,主要从以下几个途径:1、看服务小区:在测试地点,MS占用附近基站以外的基站的信号。
即MS和服务基站之间另有基站相隔。
可以判断服务小区存在越区覆盖。
2、看邻小区:如果发现邻小区中存在附近基站/小区之外的小区,且电平和附近小区的电平相当或更高。
可以判断该邻小区存在越区覆盖。
1、增大天线倾角(推荐)2、降功率。
要慎重,有可能造成该小区主力覆盖方向的室内覆盖不好!3、对于全向站而言,天线倾角无法更改,添加切换关系,适当降一点功率;更改频点等。
5、多径效应由电波传播信道中的多径传输现象所引起的干涉延时效应。
在实际的无线电波传播信道中(包括所有波段),常有许多时延不同的传输路径,称为多径现象。
通常信号从端到端的传播路径可以是直射、反射或是绕射等,不同路径的相同信号在接受端叠加就会增大或减小信号的能量,即所谓的多径干扰。
多径效应移动体(如汽车)往来于建筑群与障碍物之间,其接收信号的强度,将由各直射波和反射波叠加合成。
多径效应会引起信号衰落。
各条路径的电长度会随时间而变化,故到达接收点的各分量场之间的相位关系也是随时间而变化的。
这些分量场的随机干涉,形成总的接收场的衰落。
各分量之间的相位关系对不同的频率是不同的。
因此,它们的干涉效果也因频率而异,这种特性称为频率选择性。
在宽带信号传输中,频率选择性可能表现明显,形成交调。
与此相应,由于不同路径有不同时延,同一时刻发出的信号因分别沿着不同路径而在接收点前后散开,而窄脉冲信号则前后重叠。
多径效应不仅是衰落的经常性成因,而且是限制传输带宽或传输速率的根本因素之一。
在短波通信中,为保证电路在多径传输中的最大时延与最小时延差不大于某个规定值,工作频率要求不低于电路最高可用频率的某个百分数。
这个百分数称为多径缩减因子,是确定电路最低可用频率的重要依据之一。
图中为多径缩减因子与路径长度的关系。
对流层传播信道中的抗多径措施,通常有抑制地面反射、采用窄天线波束和分集接收等。
6、远近效应由于手机用户在一个小区内是随机分布的,而且是经常变化的,同一手机用户可能有时处在小区的边缘,有时靠近基站。
如果手机的发射功率按照最大通信距离设计,则当手机靠近基站时,功率必定有过剩,而且形成有害的电磁辐射。
解决这个问题的方法是根据通信距离的不同,实时地调整手机的发射功率,即功率控制。
功率控制的原则是,当信道的传播条件突然变好时,功率控制单元应在几微妙内快速响应,以防止信号突然增强而对其他用户产生附加干扰;相反当传播条件突然变坏时,功率调整的速度可以相对慢一些。
也就是说,宁愿单个用户的信号质量短时间恶化,也要防止对其他众多用户都产生较大的背景干扰。
远近效应是CDMA所独有的,GSM 无此效应。
所谓远近效应,就是指当基站同时接收两个距离不同的移动台发来的信号时,由于两个移动台功率相同,则距离基站近的移动台将对另一移动台信号产生严重的干扰。