无机非金属材料的分类

合集下载

无机非金属材料的定义

无机非金属材料的定义

无机非金属材料的定义无机非金属材料,也称非金属,是指不含金属元素作为基本组分的材料。

无机非金属材料的主要特点是由非金属原子组成的晶体和多种化合物,其物理性质介于金属和非金属之间,如磷、硅、氮和碳等。

无机非金属材料大致可以分为奥氏体钢、非晶硅、碳素材料和特殊材料等几类,常见的无机非金属材料有搪玻璃、陶瓷、氧化物、化学材料和合成石英等。

奥氏体钢是无机非金属材料中最常用的材料,它是一种氧化铁,是由氧原子和铁原子,其余部分由碳原子组成的复合材料。

它有良好的热力学性质和电学性质,容易制成非晶状态的棱柱,有高的抗腐蚀性、高的硬度,导电性和热导性较高,能够耐热和耐冲击,也具有一定的机械性能和高抗磨损性。

非晶硅属于无机非金属晶体材料,是一种典型的半导体材料,由硅原子和氧原子组成,它有很高的热稳定性,耐晒和耐酸碱腐蚀性,适合用作电子元件的基材、密封垫片等,在航空、航天和国防领域中有广泛应用,也用于半导体器件的制造。

碳素材料指的是由碳原子组装的无机非金属材料。

它具有良好的机械性能和耐火性能,可以用来制造各种微电子设备和低频电子设备,还可以用来制造电池和磁性材料,也可用于制造重要的无机结构部件。

石墨是常见的无机非金属材料之一,它是由高纯度的碳原子组成,有优良的抗热冲击性,具备良好的高温抗氧化性,可以用作动力发电机、电动机等电机的内层保护层材料。

石墨也被用于高温润滑剂的制备,用于制造机械零件的密封材料。

它还可以用作炉壁的耐火材料,用于制造航空航天电子器件、三相变压器的绝缘套件等。

特殊材料是指合成的石英及其它的复杂的无机非金属材料,比如金刚石和碳化物、二氧化碳复合体,玻璃纤维、陶搪玻璃、釉陶、镶嵌物等。

它们具有优良的电子特性、机械性能和化学稳定性,应用于太阳能电池、半导体器件、热电偶灯等电子产品的制造。

Inorganic nonmetallic materials, also known as nonmetals, refer tomaterials which are not composed of metallic elements as the basic components. The main characteristics of inorganic nonmetallic materials are crystals and various compounds composed of nonmetal atoms, with physical properties between metals and nonmetals, such as phosphorus, silicon, nitrogen and carbon, etc. Inorganic nonmetal materials can be divided into several categories such as austenite steel, amorphous silicon, carbon materials and special materials,and common inorganic nonmetallic materials include enamel, ceramics, oxides, chemical materials and synthetic quartz, etc.。

高三化学 无机非金属材料的定义与分类

高三化学 无机非金属材料的定义与分类

无机非金属材料包括耐火材料、耐火隔热材料、耐蚀(酸)非金属材料和陶瓷材料等。

一、耐火材料
常用有耐火砌体材料、耐火水泥、耐火混凝土。

二、耐热保温材料
常用有硅藻土、蛭石、玻璃纤维(又称矿渣棉)、石棉,以及它们的制品如板、管、砖等。

三、绝热材料
一般是轻质、疏松、多孔的纤维状材料。

它既包括保温材料,也包括保冷材料。

四、耐蚀(酸)非金属材料
常用有铸石、石墨、耐酸水泥、天然耐酸石材和玻璃等。

(一)铸石
具有极优良的耐磨性、耐化学腐蚀性、绝缘性及较高的抗压性能。

(二)石墨
具有高度的化学稳定性、极高的导热性能。

(三)玻璃
按形成玻璃的氧化物可分为硅酸盐玻璃、磷酸盐玻璃、硼酸盐玻璃和铝酸盐玻璃等,其中硅酸盐玻璃是应用最为广泛的玻璃品种。

(四)天然耐蚀石料
天然耐蚀石料组成中含SiO2的质量分数大于55.0%以上,其含量越高耐酸性能越好。

(五)水玻璃耐酸水泥
具有能抵抗大多数无机酸和有机酸腐蚀的能力,但不耐碱。

复杂的物理,化Na2CO3+SiO2Na2SiO3+CO2↑
CaCO3+SiO2CaSiO3+CO2↑复杂的物理,化学变化
无机非金属材料:
无机非金属材料的分类:
无机非金属材料的定义:
最初,无机非金属材料主要是指硅酸盐材料,所以,硅酸盐材料也称为传统无机非金属材料。

随着科学和生产技术的发展,以及人们生活的需要,一些具有特殊结构、特殊功能的新材料被相继研制出来,如半导体材料、超硬耐高温材料、发光材料等,我们称这些材料为新型无机非金属材料。

无机非金属材料的分类

无机非金属材料的分类

无机非金属材料的分类无机非金属材料是指不含金属元素的无机材料,包括陶瓷、玻璃、高分子材料等。

根据其化学成分和结构特点,可以将无机非金属材料分为以下几类:1. 氧化物材料氧化物材料是指由氧元素和其他元素组成的化合物,如二氧化硅、氧化铝、氧化锌等。

这类材料具有高熔点、高硬度、高耐腐蚀性等特点,广泛应用于电子、光学、陶瓷等领域。

2. 碳化物材料碳化物材料是指由碳元素和其他元素组成的化合物,如碳化硅、碳化钨等。

这类材料具有高硬度、高耐磨性、高耐高温性等特点,广泛应用于切削工具、陶瓷等领域。

3. 氮化物材料氮化物材料是指由氮元素和其他元素组成的化合物,如氮化硅、氮化铝等。

这类材料具有高硬度、高耐磨性、高耐高温性等特点,广泛应用于电子、光学、陶瓷等领域。

4. 硼化物材料硼化物材料是指由硼元素和其他元素组成的化合物,如硼化硅、硼化铝等。

这类材料具有高硬度、高耐磨性、高耐高温性等特点,广泛应用于切削工具、陶瓷等领域。

5. 硅酸盐材料硅酸盐材料是指由硅元素、氧元素和其他元素组成的化合物,如石英、长石等。

这类材料具有高硬度、高耐磨性、高耐高温性等特点,广泛应用于建筑、陶瓷等领域。

6. 玻璃材料玻璃材料是指由硅元素、氧元素和其他元素组成的无定形物质,如玻璃、光纤等。

这类材料具有透明、硬度低、易加工等特点,广泛应用于光学、建筑、电子等领域。

总之,无机非金属材料具有多种不同的分类方式,每种分类方式都有其独特的特点和应用领域。

在未来的发展中,无机非金属材料将继续发挥重要作用,为各个领域的发展做出贡献。

现代无机非金属材料的分类与发展分析

现代无机非金属材料的分类与发展分析

现代无机非金属材料的分类与发展分析无机非金属材料是指那些不含金属元素的高科技新材料,包括合成晶体材料、无机玻璃材料、高分子复合材料、陶瓷材料、无机纤维材料等。

它们具有独特的物理、化学、光学、磁学、超导等性能,可以广泛地应用于电子、光电、光学、声学、机械、材料、生物、医学等领域,成为推动现代科技进步和社会经济发展的关键材料。

1. 合成晶体材料:合成晶体材料是人工合成的单晶体材料,是指在特定的化学成分、熔炼温度、熔炼周期和熔炼工艺条件下制备的单晶体。

合成晶体材料因其具有高光学、光电、磁学和电学性能,广泛应用于半导体器件、光学器件、电子器件、光纤通信等领域。

2. 无机玻璃材料:无机玻璃材料是由多种无机物或无机化合物制成的非晶态材料,具有高硬度、高抗磨损性、高耐蚀性、优异的光学、电学、声学性能等特点,广泛应用于电子器件、光学器件、化工等领域。

3. 高分子复合材料:高分子复合材料是由含有多个基团的单体通过聚合反应形成的大分子,结合一些特定的添加剂制成的复合材料,具有优异的力学性能、耐磨损性、耐腐蚀性以及优秀的绝缘性和导电性能等特点,广泛应用于电子器件、汽车、航空航天、建筑等领域。

4. 陶瓷材料:无机非金属材料作为高科技新材料,其发展历史已有半个世纪之久。

20世纪60年代初,在半导体制造领域的发展推动下,合成晶体材料被广泛研究和应用。

随后,无机玻璃、高分子复合材料、陶瓷材料、无机纤维材料等各类无机非金属材料也开始得到不断的开发和研究。

现在,随着科技的不断发展和社会经济的进步,无机非金属材料在半导体、光学、光电、磁学、超导、生物、医学等领域中的应用越来越广泛和重要。

无机非金属材料的制备工艺与材料性能分析也得到不断深入和提高,有望在未来的发展中为人类创造更为广泛、丰富的应用前景。

传统无机非金属材料

传统无机非金属材料

传统无机非金属材料传统无机非金属材料是指那些不含金属元素的材料,通常是由非金属元素或化合物组成的材料。

这些材料在工业生产和日常生活中起着重要的作用,广泛应用于建筑、电子、化工、医药等领域。

本文将对传统无机非金属材料的种类、特性和应用进行介绍。

一、种类。

1. 陶瓷材料,陶瓷是一类重要的无机非金属材料,具有优良的耐高温、耐腐蚀、绝缘等特性。

陶瓷材料可分为结构陶瓷和功能陶瓷两大类,结构陶瓷主要用于制造陶瓷器皿、建筑材料等,功能陶瓷则主要用于制造电子元器件、陶瓷刀具等。

2. 玻璃材料,玻璃是一种非晶态固体材料,具有透明、硬度高、化学稳定性好等特点。

玻璃材料广泛应用于建筑、家具、器皿、光学仪器等领域。

3. 氧化物材料,氧化物材料是一类以氧化物为主要成分的无机非金属材料,如氧化铝、氧化硅等。

这些材料具有优良的绝缘性能、耐高温性能和化学稳定性,被广泛应用于电子、建筑、化工等领域。

二、特性。

1. 高温性能,传统无机非金属材料通常具有优良的耐高温性能,能够在高温环境下保持稳定的物理和化学性能,因此被广泛应用于高温工艺和高温设备的制造。

2. 绝缘性能,许多传统无机非金属材料具有良好的绝缘性能,能够有效阻止电流的传导,因此被广泛应用于电子、电气设备的制造和绝缘材料的生产。

3. 化学稳定性,大部分传统无机非金属材料具有良好的化学稳定性,能够在酸碱等恶劣环境下保持稳定的性能,因此被广泛应用于化工、医药等领域。

三、应用。

1. 建筑材料,陶瓷、玻璃等传统无机非金属材料被广泛应用于建筑材料的制造,如砖瓦、玻璃幕墙、陶瓷地砖等。

2. 电子领域,氧化物材料、陶瓷材料等被广泛应用于电子元器件的制造,如电容器、电阻器、陶瓷电路等。

3. 化工领域,传统无机非金属材料在化工领域具有重要应用,如氧化铝、氧化硅等被用于制造化工设备、耐腐蚀材料等。

总结。

传统无机非金属材料在工业生产和日常生活中具有重要作用,其种类繁多,特性优良,应用广泛。

随着科技的发展和工艺的进步,传统无机非金属材料的应用领域将不断扩大,为人类社会的发展做出更大的贡献。

无机非金属材料有哪些

无机非金属材料有哪些

无机非金属材料有哪些
无机非金属材料是指在自然界中广泛存在的,不含金属元素的材料。

它们具有
多样的性质和用途,广泛应用于工业、建筑、化工、电子等领域。

下面我们来了解一下无机非金属材料的主要种类和特点。

首先,我们来看看常见的陶瓷材料。

陶瓷是一种无机非金属材料,具有硬度高、耐磨、耐高温、绝缘等特点。

它包括氧化铝、氧化锆、氧化硅等多种材料,被广泛应用于制陶、建筑材料、电子元器件等领域。

其次,我们要提到的是玻璃材料。

玻璃是一种非晶态固体材料,主要成分是二
氧化硅、氧化钠、氧化钙等。

玻璃具有透明、坚硬、耐腐蚀等特点,被广泛用于建筑、家居用品、光学器件等领域。

另外,我们还有塑料材料。

塑料是一种由合成树脂为主要成分的材料,具有轻质、耐腐蚀、绝缘等特点。

常见的塑料包括聚乙烯、聚丙烯、聚氯乙烯等,被广泛应用于包装、建筑、电子、医疗等领域。

除此之外,还有复合材料。

复合材料是由两种或两种以上的材料组合而成的材料,具有优异的综合性能。

常见的复合材料包括碳纤维复合材料、玻璃纤维复合材料等,被广泛应用于航空航天、汽车、体育器材等领域。

最后,我们要提到的是硅材料。

硅是一种广泛存在于自然界中的无机非金属材料,具有优异的半导体性能。

硅材料被广泛应用于电子、光伏、半导体等领域。

综上所述,无机非金属材料具有多样的种类和广泛的应用领域,它们在现代工
业和生活中扮演着重要的角色。

我们需要深入了解这些材料的特点和性能,不断推动材料科学的发展,为人类社会的进步做出贡献。

三大无机非金属材料

三大无机非金属材料

三大无机非金属材料无机非金属材料是指除金属材料以外,由无机物质组成的材料。

这类材料具有许多优良的性能,如高温耐热、耐腐蚀、绝缘、光学性能等,被广泛应用于工业、建筑、电子、医疗、化工等领域。

本文将介绍三大无机非金属材料:陶瓷、玻璃和复合材料。

一、陶瓷陶瓷是一种固态无机非金属材料,主要由氧化物、硅酸盐、氮化物、碳化物等组成。

陶瓷具有高硬度、高强度、高耐磨、高耐腐蚀、高耐高温等特点,是一种理想的结构材料。

陶瓷可以分为普通陶瓷和高级陶瓷两类。

普通陶瓷是指以粘土、瓷土等为原料,经过成型、干燥、烧结等工艺制成的陶瓷制品。

普通陶瓷主要用于建筑、陶瓷器皿、卫生洁具等方面。

高级陶瓷是指以氧化铝、氮化硅、碳化硅等为原料,采用高温烧结、化学气相沉积等工艺制成的陶瓷制品。

高级陶瓷具有优良的物理、化学、机械性能,广泛应用于航空、航天、电子、机械、化工等领域。

二、玻璃玻璃是一种非晶态无机非金属材料,主要由二氧化硅、碳酸钙、氧化钠、氧化钾等组成。

玻璃具有透明、硬度大、耐腐蚀、绝缘等特点,是一种重要的建筑、装饰、容器材料。

玻璃可以分为普通玻璃和特种玻璃两类。

普通玻璃是指以石英砂、碳酸钙、氧化钠、氧化钾等为原料,经过熔化、拉伸、冷却等工艺制成的玻璃制品。

普通玻璃广泛应用于建筑、装饰、家具、车辆等领域。

特种玻璃是指以硼酸、氟化物、硅酸盐等为原料,采用特殊工艺制成的玻璃制品。

特种玻璃具有高透明度、高抗冲击性、高耐高温、高防辐射等特点,广泛应用于电子、光学、医疗等领域。

三、复合材料复合材料是指由两种或两种以上的不同材料组合而成的材料。

复合材料具有优良的性能,如高强度、高刚度、高耐磨、高耐腐蚀、高耐高温等,被广泛应用于航空、航天、汽车、体育器材等领域。

复合材料可以分为无机复合材料和有机复合材料两类。

无机复合材料主要由陶瓷、玻璃等无机材料组成,具有高耐高温、高耐腐蚀等特点,广泛应用于航空、航天等领域。

有机复合材料主要由树脂、纤维等有机材料组成,具有高强度、高韧性等特点,广泛应用于汽车、体育器材等领域。

传统无机非金属材料

传统无机非金属材料

配料计算:根据原料的化学成分和物理性质进行配料计算
混合与成型:将原料混合均匀后,采用成型设备制成所需形状的耐火材料
烧成与冷却:将成型后的耐火材料进行烧成和冷却处理,以获得所需的物理和化学性能
陶瓷的性能特点
耐高温:陶瓷材料具有较高的熔点和化学稳定性,能够在高温下保持优良的性能。
硬度高:陶瓷材料具有较高的硬度,能够承受较大的压力和磨损。
耐久性好:水泥材料具有较好的耐久性,能够抵抗自然环境中的侵蚀和破坏。
耐火性差:水泥的耐火性较差,容易受到高温的影响而失去强度。
抗渗性差:水泥的抗渗性较差,容易受到水分和化学物质的侵蚀。
耐腐蚀性差:水泥的耐腐蚀性较差,容易受到低温的影响而失去强度。
无机非金属材料具有高硬度、高耐磨耗性、高熔点等特性,被广泛应用于建筑、机械、电子等领域。
无机非金属材料的分类
传统无机非金属材料:水泥、玻璃、陶瓷等
新型无机非金属材料:功能陶瓷、功能玻璃、新型碳材料等
传统无机非金属材料与新型无机非金属材料的区别
无机非金属材料的应用领域
无机非金属材料的应用领域
建筑材料:如水泥、玻璃、陶瓷等
玻璃的制备工艺
原料选择与配料
熔制过程
玻璃成型
玻璃退火与淬火
水泥的制备工艺
添加标题
添加标题
添加标题
添加标题
生产过程:破碎、配料、均化、煅烧、冷却、粉磨等
原料:石灰石、粘土、铁矿粉等
生产设备:立窑、回转窑、磨机等
生产工艺流程:原材料准备、配料、生料制备、熟料煅烧、水泥粉磨等
耐火材料的制备工艺
原料选择:根据耐火度要求选择合适的原料
陶瓷案例分析:以陶瓷刀具为例,介绍其性能特点、应用领域及市场前景。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无机非金属材料的分类
(1)传统陶瓷(其中,瓷是在陶的基础上上一层釉)
陶瓷在我国有悠久的历史,是中华民族古老文明的象征。

从西安地区出土的秦始皇陵中大批陶兵马俑,气势宏伟,形象逼真,被认为是世界文化奇迹,人类的文明宝库。

唐代的唐三彩、明清景德镇的瓷器均久负盛名。

传统陶瓷材料的主要成分是硅酸盐,自然界存在大量天然的硅酸盐,如岩石、土壤等,还有许多矿物如云母、滑石、石棉、高岭石等,它们都属于天然的硅酸盐。

此外,人们为了满足生产和生活的需要,生产了大量人造硅酸盐,主要有玻璃、水泥、各种陶瓷、砖瓦、耐火砖、水玻璃以及某些分子筛等。

硅酸盐制品性质稳定,熔点较高,难溶于水,有很广泛的用途。

硅酸盐制品一般都是以黏土(高岭土)、石英和长石为原料经高温烧结而成。

黏土的化学组成为Al₂O3·2SiO₂·2H₂O,石英为SiO₂,长石为K₂O·Al₂O3·6SiO₂(钾长石)或Na2O·Al2O3·6SiO2(钠长石)。

这些原料中都含有SiO2,因此在硅酸盐晶体结构中,硅与氧的结合是最重要也是最基本的。

硅酸盐材料是一种多相结构物质,其中含有晶态部分和非晶态部分,但以晶态为主。

硅酸盐晶体中硅氧四面体[SiO4]是硅酸盐结构的基本单元。

在硅氧四面体中,硅原子以sp杂化轨道与氧原子成键,Si—O键键长为162 pm,比起Si和O的离子半径之和有所缩短,故Si—O键的结合是比较强的。

(2)精细陶瓷
精细陶瓷的化学组成已远远超出了传统硅酸盐的范围。

例如,透明的氧化铝陶瓷、耐高温的二氧化锆(ZrO2)陶瓷、高熔点的氮化硅(Si3N4)和碳化硅(SiC)陶瓷等,它们都是无机非金属材料,是传统陶瓷材料的发展。

精细陶瓷是适应社会经济和科学技术发展而发展起来的,信息科学、能源技术、宇航技术、生物工程、超导技术、海洋技术等现代科学技术需要大量特殊性能的新材料,促使人们研制精细陶瓷,并在超硬陶瓷、高温结构陶瓷、电子陶瓷、磁性陶瓷、光学陶瓷、超导陶瓷和生物陶瓷等方面取得了很好的进展,下面选择一些实例做简要的介绍。

高温结构陶瓷汽车发动机一般用铸铁铸造,耐热性能有一定限度。

由于需要用冷却水冷却,热能散失严重,热效率只有30%左右。

如果用高温结构陶瓷制造陶瓷发动机,发动机的工作温度能稳定在1 300 ℃左右,由于燃料充分燃烧而又不需要水冷系统,使热效率大幅度提高。

用陶瓷材料做发动机,还可减轻汽车的质量,这对航天航空事业更具吸引力,用高温陶瓷取代高温合金来制造飞机上的涡轮发动机效果会更好。

目前已有多个国家的大的汽车公司试制无冷却式陶瓷发动机汽车。

我国也在1990年装配了一辆并完成了试车。

陶瓷发动机的材料选用氮化硅,
它的机械强度高、硬度高、热膨胀系数低、导热性好、化学稳定性高,是很好的高温陶瓷材料。

氮化硅可用多种方法合成,工业上普遍采用高纯硅与纯氮在1 300 ℃反应后获得:
3Si+2N2→Si3N4 (1 300 ℃)
高温结构陶瓷除了氮化硅外,还有碳化硅(SiC)、二氧化锆(ZrO2)、氧化铝等。

透明陶瓷一般陶瓷是不透明的,但光学陶瓷像玻璃一样透明,故称透明陶瓷。

一般陶瓷不透明的原因是其内部存在有杂质和气孔,前者能吸收光,后者使光产生散射,所以就不透明了。

因此如果选用高纯原料,并通过工艺手段排除气孔就可能获得透明陶瓷。

早期就是采用这样的办法得到透明的氧化铝陶瓷,后来陆续研究出如烧结白刚玉、氧化镁、氧化铍、氧化钇、氧化钇-二氧化锆等多种氧化物系列透明陶瓷。

近期又研制出非氧化物透明陶瓷,如砷化镓(GaAs)、硫化锌(ZnS)、硒化锌(ZnSe)、氟化镁(MgF2)、氟化钙(CaF2)等。

这些透明陶瓷不仅有优异的光学性能,而且耐高温,一般它们的熔点都在2 000 ℃以上。

如氧化钍-氧化钇透明陶瓷的熔点高达3 100 ℃,比普通硼酸盐玻璃高1 500 ℃。

透明陶瓷的重要用途是制造高压钠灯,它的发光效率比高压汞灯提高一倍,使用寿命达2
万小时,是使用寿命最长的高效电光源。

高压钠灯的工作温度高达1 200 ℃,压力大、腐蚀性强,选用氧化铝透明陶瓷为材料成功地制造出高压钠灯。

透明陶瓷的透明度、强度、硬度都高于普通玻璃,它们耐磨损、耐划伤,用透明陶瓷可以制造防弹汽车的窗、坦克的观察窗、轰炸机的轰炸瞄准器和高级防护眼镜等。

光导纤维从高纯度的二氧化硅或称石英玻璃熔融体中,拉出直径约100 μm的细丝,称为石英玻璃纤维。

玻璃可以透光,但在传输过程中光损耗很大,用石英玻璃纤维光损耗大为降低,故这种纤维称为光导纤维,是精细陶瓷中的一种。

利用光导纤维可进行光纤通信。

激光的方向性强、频率高,是进行光纤通信的理想光源。

光纤通信与电波通信相比,光纤通信能提供更多的通信通路,可满足大容量通信系统的需要。

光导纤维一般由两层组成,里面一层称为内芯,直径几十微米,但折射率较高;外面一层称包层,折射率较低。

从光导纤维一端入射的光线,经内芯反复折射而传到末端,由于两层折射率的差别,使进入内芯的光始终保持在内芯中传输着。

光的传输距离与光导纤维的光损耗大小有关,光损耗小,传输距离就长,否则就需要用中继器把衰减的信号放大。

用最新的氟玻璃制成的光导纤维,可以把光信号传输到太平洋彼岸而不需任何中继站。

在实际使用时,常把千百根光导纤维组合在一起并加以增强处理,制成像电缆一样的光缆,这样既提高了光导纤维的强度,又大大增加了通信容量。

用光缆代替通信电缆,可以节省大量有色金属,每公里可节省铜1.1 t、铅2~3 t。

光缆有质量轻、体积小、结构紧凑、绝缘性能好、寿命长、输送距离长、保密性好、成本低等优点。

光纤通信与数字技术及计算机结合起来,可以用于传送电话、图像、数据、控制电子设备和智能终端等,起到部分取代通信卫星的作用。

光损耗大的光导纤维可在短距离使用,特别适合制作各种人体内窥镜,如胃镜、膀胱镜、直肠镜、子宫镜等,对诊断、医治各种疾病极为有利。

生物陶瓷人体器官和组织由于种种原因需要修复或再造时,选用的材料要求生物相容性好,对肌体无免疫排异反应;血液相容性好,无溶血、凝血反应;不会引起代谢作用异常现象;对人体无毒,不会致癌。

目前已发展起来的生物合金、生物高分子和生物陶瓷基本上能满足这些要求。

利用这些材料制造了许多人工器官,在临床上得到广泛的应用。

但是这类人工器官一旦植入体内,要经受体内复杂的生理环境的长期考验。

例如,不锈钢在常温下是非常稳定的材料,但把它做成人工关节植入体内,三五年后便会出现腐蚀斑,并且还会有微量金属离子析出,这是生物合金的缺点。

有机高分子材料做成的人工器官容易老化,相比之下,生物陶瓷是惰性材料,耐腐蚀,更适合植入体内。

氧化铝陶瓷做成的假牙与天然齿十分接近,它还可以做人工关节用于很多部位,如膝关节、肘关节、肩关节、指关节、髋关节等。

ZrO2陶瓷的强度、断裂韧性和耐磨性比氧化铝陶瓷好,也可用以制造牙根、骨和股关节等。

羟基磷灰石〔Ca10(PO4)6(OH)2〕是骨组织的主要成分,人工合成的与骨的生物相容性非常好,可用于颌骨、耳听骨修复和人工牙种植等。

目前发现用熔融法制得的生物玻璃,如CaO-Na2O-SiO2-P2O5,具有与骨骼键合的能力。

陶瓷材料最大的弱点是性脆,韧性不足,这就严重影响了它作为人工人体器官的推广应用。

陶瓷材料要在生物工程中占有地位,必须考虑解决其脆性问题。

(3)纳米陶瓷
从陶瓷材料发展的历史来看,经历了三次飞跃。

由陶器进入瓷器这是第一次飞跃;由传统陶瓷发展到精细陶瓷是第二次飞跃,在这个期间,不论是原材料,还是制备工艺、产品性能和应用等许多方面都有长足的进展和提高,然而对于陶瓷材料的致命弱点──脆性问题没有得到根本的解决。

精细陶瓷粉体的颗粒较大,属微米级(10 m),有人用新的制备方法把陶瓷粉体的颗粒加工到纳米级
(10 m),用这种超细微粉体粒子来制造陶瓷材料,得到新一代纳米陶瓷,这是陶瓷材料的第三次飞跃。

纳米陶瓷具有延性,有的甚至出现超
塑性。

如室温下合成的TiO2陶瓷,它可以弯曲,其塑性变形高达100%,韧性极好。

因此人们寄希望于发展纳米技术去解决陶瓷材料的脆性问题。

纳米陶瓷被称为21世纪陶瓷。

相关文档
最新文档