应用随机过程讲义一解析
应用随机过程教案 第1章 预备知识

定义 2 两个随机变量 X 与 Y,如果满足 P{ω∈Ω :X(ω) ≠Y(ω) }=0,则称它们是 等价的。
注:为简单起见,习惯将{ω:X(ω) ≥x}记为{X≥x},其他记号类似。
常用的随机变量:离散型随机变量、连续型随机变量。 离散性随机变量 X 的概率分布用如下分布列描述:
pk = P{X = xk }, k = 1,2, …
n 1
n
n 1
记 An A 。
1 1 例 6 设 { An , n 1,2,} 是一集合序列,其中 An , 1 , 则 An A (0,1) F 上的实值函数。如果
2
(1) P(Ω )=1; (2) 任意 A∈F,0≤P(A)≤1; (3) 对两两互不相容事件 A1,A2,… (即当 i≠j 时,Ai∩Aj=ϕ),有
其分布函数为
F ( x)
xk x
p P{ X x }
k xk x k
x
连续型随机变量 X 的分布用概率密度 f(x)描述,其分布函数为:
F ( x ) f (t ) dt
分布函数 F(x)的性质 (1) 0 F ( x) 1 (2) F () 0, F () 1 (3) F ( x) 是单调不减函数, a b 则 F (a) F (b) (4) F ( x) 是右连续函数,即 x, F ( x 0) F ( x) 随机向量 ( X 1 , X 2 ,, X d ) 的联合分布函数定义为
n
n
若对每个 n,有 An An 1 (或 An An 1 ) ,则称为单调增(单调减)序列。显然 对于单调集合序列 { An } 的极限存在, 且对于单调增集合序列 { An } , 若 A lim An ,
随机过程及其应用-清华大学解析

4.1(等待时间的和)设诚恳按照参数λ的Poisson 过程来到公交站,公交车于时刻t 发出,那么在],0[t 时间段内到达的乘客等待时间总和的期望应该如何计算那?对于某一个乘客而言,假设其到达时间为k t ,那么他等待时间就是k t t -所以乘客总的等待时间为∑=-=)(0)()(t N k k t t t S使用条件期望来处理平均等待))(|)(())((n t N t E E t S E ==对于某已成了而言,其到达时刻k t 随机],0[t 内均匀分布的随机变量。
但在车站上,乘客是先后到达次序排队,所以在n t N =)(的条件下,n t t t ,...,,21形成了独立均匀分布的顺序统计量。
不过就他们的和nt t ++...1而言,可以那他们看着顺序统计量,也可以把他们看着不排顺序的n 各独立的],0[t 内均匀分布的随机变量,所以2))((2)2)(())((22)())(|)((20t t N E t t t N E t E E nt nt nt t E nt n t N t E E nk k λ====-=-==∑=从而有4.2(数值记录)设},{N n X n ∈是一独立同分布的非负期望随机变量序列。
定义风险率)(t λ如下)(1)()(t F t f t -=λ 这里)()(t F t f 和分别是k X 的概率密度分布和分布函数。
定义随机过程)(t N 如下}),,..,m ax (:{#)(01t X X X X n t N n n n ≤>=-这里A #表示集合A 中的元素个数。
如果把)(t N 中的时间t 看做时间,那么)(t N 是一个非齐次Poisson 过程。
事实上,由于k X 彼此独立,所以)(t N 具有独立增量性。
很明显0)0(=N ,于是只需要检查一个时间微元内)(t N 的状态。
假定t ∆充分小,在0,...,X X n 中只有n X 在],(t t t ∆+上,因此111-11-11111))())(()((),...,(]),((),...,],,(()),...,max(],,(()),...,max(],,(()1)()((--∞=-∆+∆=≤≤∆+∈=≤≤∆+∈=>∆+∈>∆+∈==-∆+∑n n n n n n n n n n n n t F t o t t f t X t X P t t X P t X t X t t X P X X X t t X P X X X t t X P t N t t N P所以)()()(1)()())(())()(()1)()((21t o t t t F t o t t f x F t o t t f t N t t N P n n ∆+∆=-∆+∆=∆+∆==-∆+∑∞=-λ另一方面,可以证明)()2)()((t o t N t t N P ∆=≥-∆+ 所以)(t N 是非齐次的Poisson 过程,强度)(t λ。
随机过程例题和知识点总结

随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。
下面我们通过一些例题来深入理解随机过程的相关知识点。
一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。
例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。
二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。
例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。
例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。
求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。
解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。
10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。
P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。
2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。
例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。
解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。
2016应用随机过程讲义第二篇

合分布函数全体,即:Ft ,t ,
1 2
, tn
x1 , x2 ,
, xn , t1 , t2 ,
, tn T , n 1
,称为
随机过程的有限维分布族;它具有如下性质: (ⅰ)对称性:对 12 n 的任一排列 i1i2 in ,有 Ft ,t , ,t xi , xi , , xi Ft ,t , ,t x1 , x2 , , xn ;
1 2 m 1 2 m m1 n
2t , 掷出反面;
2
求: X t 的一维分布函数 F1 x , F1 x 和二维分布函数 F1 ,1 x1 , x2 ; 【例 2.1.2】 设有随机过程 X t A Bt , 其中 A, B 独立同 N 0,12 分 布,试求 X os t , t R , A 是随机变量,且
1
1
1
仅描述随机过程在任一时刻取值的统计特性,而不能反映随 机过程各个时刻状态之间的联系; (b) t1 , t2 T , X t , X t 是二维随机向量,其联合分布函数为
Ft1 ,t2 x1 , x2 P X t1 x1 , X t2 x2
1
2
,称为随机过程的二维分布函数;
i1 i2 in 1 2 n 1 2 n
(ⅱ)相容性: m n ,有: Ft ,t , ,t x1 , x2 , , xm Ft ,t , ,t ,t , ,t x1 , x2 , , xm , , , 。 【例 2.1.1】利用重复掷硬币的试验可定义一个随机过程 cos t , 掷出正面; 1 X t , t ;已知 P 掷出正(反)面 ,试
应用随机过程PPT课件

k
EX kP(X k) (1)P(X k)
k0
k1 i1
P(X k)
交换求和顺序
k1
2021/7/1
60
同理,对连续型随机变量有相似的结论成立
若X0
x
EX0 xd(PXx)0 (0 dy)dP(Xx)
0 P(Xx)dx
2021/7/1
61
2021/7/1
62
2021/7/1
63
2021/7/1
2021/7/1
概率
16
1 .古典概型
A
P(A)
(A) ( )
A 中的样本点数目 中的样本点数目
隐含了等可能条件
2 .几何概型
P(A)
A 点集的面积 点集的面积
隐含了等可能条件
2021/7/1
17
概率是满足 1) 非负性; 2) 归一性; 3) 可列可加性; 的集函数。
可测集 粗略地说,可以定义长度(面积、体积)的 点集即为可测集;反之称为不可测集。
64
2021/7/1
65
Chebyshev不等式
0,
P(|
X
EX
|
)
DX
2
P(|
X
EX
|
)
E
|
X EX
p
|p
( p1)
2021/7/1
66
条件数学期望
2021/7/1
(iN)
67
2021/7/1
68
2021/7/1
69
用示性函数的线性组合表示离散型随机变量 (见前面“随机变量”部分 )
2021/7/1
70
例: 随机变量 X I A ,Y I B , A, B ,
应用随机过程课件

添加标题
添加标题
添加标题
添加标题
性质:线性变换不改变随机过程的 统计特性
举例:高斯随机过程经过线性变换 后仍为高斯随机过程
定义:将随机过程通过非线性函数进行变换得到新的随机过程。 常见变换:对随机变量进行指数变换、对数变换等。
应用场景:在信号处理、通信等领域中通过对随机信号进行非线性变换实现信号的调制、解调等功能。
多径传播:随机过程用于描述无线通信中的多径传播效应以提高信号的可靠性和稳定性。
随机过程在金融领域的应用包括股 票价格预测、风险评估和投资组合 优化等方面。
随机过程还可以用于信用评级和风 险评估帮助金融机构评估借款人的 信用风险和违约概率。
添加标题
添加标题
添加标题
添加标题
通过随机过程模型可以分析金融市 场的波动性和相关性从而制定有效 的投资策略。
循环性是随机过程的基本性质之一它决定了过程的可预测性和不可预测性的程度。
循环性对于理解和预测某些自然现象(如气候变化、生态系统的动态等)具有重要意义。
在实际应用中循环性可以帮助我们更好地理解和预测某些随机现象如股票价格的波动、人口增长等。
定义:将随机过程进行线性变换得 到新的随机过程
应用:在信号处理、通信等领域中 广泛应用
数学模型:基于概率论和随机过程的理论基础建立非线性变换的数学模型分析其统计特性。
傅里叶变换的定义和性质 随机过程的傅里叶变换方法 傅里叶变换在信号处理中的应用 傅里叶变换在随机过程中的应用实例
信号传输:随机过程用于描述信号在通信系统中的传输过程如噪声和干扰。
信道容量:随机过程用于分析通信信道的容量以优化通信系统的性能。 调制解调:随机过程用于实现高效的调制解调技术如QM和QPSK。
应用随机过程课后习题解答 毛用才 胡奇英

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=〔其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑〕令 0()(1)n n S x n x ∞==+∑那么 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 那么211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰〕2、〔1〕 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有一样的参数的b 的Γ分布,关于参数p 具有可加性。
解 〔1〕设X 服从(,)p b Γ分布,那么10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ 〔2〕'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 假设(,)i i X p b Γ 1,2i = 那么121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
应用随机过程全套教学课件

x属于该序列的其余集合 .
关系:lim inf
n
An
lim
n
sup
An
例1.3:
{所以投掷硬币结果“正 面”和“反面”组成的 序列.}
F {的所有子集},An {第n结果是“正面”}. 则
lim sup
n
An
有无限多次投掷的结果
是“正面”}
lim inf
n
An
{除有限多次外,其余投 掷的结果都是
x
x
(4)F (x)是又连续的, 即F(x 0) lim F(t) F(x).
tx
随机变量的类型:
离散型: P( X xk ) pk pk 1
k 1
F(x) P( X x) pk
xk x
连续型: F(x) P( X x) x f (t)dt
(其中f (x)为概率密度函数, f (x)dx 1) f (x) dF(x) dx
i 1
i 1
1i jn
P( Ai Aj Ak ) (1)n1P( A1A2 An )
1i jk n
事件列极限1:假设事件序列Ai ,
(1) 如果A1 A2 An ,
则 lim
n
An
An
n1
An A
(2) 如果A1 A2 An , An A
则
lim
n
An
An
n1
结论: 单调事件(集合)序列必有极限.
f
( x1,,
xd
)
d
F (x1, x2,, xd x1x2 xd
)
一些常见的分布:
1.离散均匀分布:
分布列:
pk
1 n
,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
202பைடு நூலகம்/4/13
应用随机过程讲义 第一讲
8
事 件 序 列{A, n 1}
若An An1, 称之为单调不减序列。
n 1
An
lim
n
An
若An1 An , 称之为单调不增序列。
n 1
An
lim
n
An
2020/4/13
应用随机过程讲义 第一讲
9
(
n1 k n
Ak )
lim
n
An
以上集类和A生成相同的σ-代数,都是上面提到的一 维Borelσ-代数,即 ( ) ( k ), (1 k 5)
2020/4/13
应用随机过程讲义 第一讲
25
• 直观地说, ( ) 中包含一切开区间,闭区间, 半开半闭区间,半闭半开区间,单个实数,以及 由它们经可列次并交运算而得出的集类。
2020/4/13
应用随机过程讲义 第一讲
12
公理化定义
集类 粗略地说,由的子集作为元素构成的的集合 称为集类。 {, }是最简单的集类。
2020/4/13
应用随机过程讲义 第一讲
13
2020/4/13
应用随机过程讲义 第一讲
14
概率
2020/4/13
应用随机过程讲义 第一讲
15
概 率 空 间(,,P)
应用随机过程
清华大学数学科学系
林元烈 主讲
教材:《应用随机过程》(第三次印刷)
林元烈,清华大学出版社
学习要求
• 不仅是掌握知识,更重要的是掌握思想 • 学会把抽象的概率和实际模型结合起来
2020/4/13
应用随机过程讲义 第一讲
2
学习重点
1. 用随机变量表示事件及其分解——基本理 论
2. 全概率公式——基本技巧
,称为一维Borel可测集.
2020/4/13
应用随机过程讲义 第一讲
24
实际上,设集类
1={[a, b),a, b R, a b}, 2={(a, b],a, b R, a b}, 3={(a, b),a, b R, a b}, ={(r1, r2 ),r1, r2为有理数}, 5={G : G为R中开集}
5. P(A B) P(A) P(B) P(AB)
6. 若A B,则P( A) P(B)
2020/4/13
应用随机过程讲义 第一讲
20
7. Ak ,1 k n, n 2,
n
n
P( Ak ) P(Ak ) P( Ai Aj ) P( Ai Aj Ak )
k 1
k 1
1i jn
2020/4/13
应用随机过程讲义 第一讲
11
用示性函数的关系及运算来 表示相关事件的关系及运算
min(a, b) a b, 取 下 端 max(a, b) a b, 取 上 端
I AB () I A () I B () I AB () I A () I B () 若A B, 则I A-B () I A ()-I B () A B I A () I B () A B I A () I B (),
1i jn
... (1)n1 P( A1A2...An )
8. 可列次可加性
P( Ak ) P( Ak )
k 1
k 1
9. 概率连续性
若{An , n 1}为单调事件序列,则
P(lim n
An
)
lim
n
P(
An
)
2020/4/13
应用随机过程讲义 第一讲
21
这部分的详细讨论可以参见
《随机数学引论》
lim n
sup An
(
n1 k n
Ak
)
lim
n
An
lim inf n
An
如果 lim n
An
lim
n
An,
则定义 lim n
An
lim
n
An
lim n
An .
2020/4/13
应用随机过程讲义 第一讲
10
示性函数
I
A
(
)
1, A 0, A
是最简单的随机变量
事件{ : I A () 1} A 用随机变量来表示事件 事件{ : I A () 0} A
:集合,样本空间
:集类, 代数
P:完全可加的集函数,概率 A:的元素,事件 P( A):事件的概率
2020/4/13
应用随机过程讲义 第一讲
16
1.古典概型
A
P(
A)
( A) ()
A中的样本点数目 中的样本点数目
隐含了等可能条件
2.几何概型
P(
A)
A点集的面积 点集的面积
隐含了等可能条件
2020/4/13
2020/4/13
由概率非负性即得
2. P( A) 1 P( A)
3. 有限可加性
由P() 0及完全(可列)可加性 即得
若A1, A2 ,...An , 且AA=(i j),则
n
n
P( Ak ) P( Ak )
k 1
k 1
2020/4/13
应用随机过程讲义 第一讲
19
4. A, B P( A \ B) P( A) P( AB) 若B A P( A B) P( A) P(B)
2020/4/13
应用随机过程讲义 第一讲
6
样本点 对于随机试验E,以ω表示它的一个可能 出现的试验结果,称ω为E的一个样本点。
样本空间 样本点的全体称为样本空间,用Ω表示。 Ω ={ω}
2020/4/13
应用随机过程讲义 第一讲
7
随机事件 粗略地说,样本空间Ω的子集就是随机事件,
用大写英文字母A、B、C等来表示。
应用随机过程讲义 第一讲
17
概率是满足 1) 非负性; 2) 归一性; 3) 可列可加性; 的集函数。
可测集 粗略地说,可以定义长度(面积、体积)的 点集即为可测集;反之称为不可测集。
2020/4/13
应用随机过程讲义 第一讲
18
概率的性质
1. P() 0
显然有= .., . P() P(), k 1
林元烈,清华大学出版社
2020/4/13
应用随机过程讲义 第一讲
22
• Buffon试验:最早用随机试验的方法求 某个未知的数。
• 测度:满足非负性、可列可加性的集函 数。
2020/4/13
应用随机过程讲义 第一讲
23
设集类 {[a,b],a,b R, a b}
则由 生成的代数 ( ) 称为 一维Borel 代数.
3. 数学期望和条件数学期望——基本概念
2020/4/13
应用随机过程讲义 第一讲
3
第一讲
2020/4/13
应用随机过程讲义 第一讲
4
随机事件与概率
随机试验
2020/4/13
应用随机过程讲义 第一讲
5
要点:
• 在相同条件下,试验可重复进行;
• 试验的一切结果是预先可以明确的,但每 次试验前无法预先断言究竟会出现哪个结 果。