(完整版)第五章飞机飞行操纵系统
合集下载
飞机机械与系统-第五章飞行操纵系统

上海交通职业技术学院
5.3 传动机构
• 5.3.1 硬式传动机构的主要构件
(1)传动杆
传动杆又称为拉杆。它通常采用硬铝管制成,两端有接头,
其一端的接头通常是可以调整的。在调整拉杆长度时,为了防止接
头的螺杆长度调出过多,而使螺纹的结合圈数过少,在管件端部应
有检查小孔。把传动杆调长时,接头螺杆的末端不应超过小孔的位
上海交通职业技术学院
5.3 传动机构
5.3.4 非线性传动机构
• 操纵系统中,如果没有特殊的机构来改变传动比,在舵面偏转过程中,传 动系数基本上是不变的,舵偏角A随杆行程X 的变化近似地成正比例关系, 即线性关系。
• 线性传动的操纵系统对低速飞机比较合适,但往往不能满足高速飞机的操 纵性要求,在操纵系统中设置了专门的非线性传动机构,靠它来改变整个 操纵系统的传动系数,以满足高速飞机的操纵性要求。
行姿态很快地随操纵动作而改变。要操纵灵敏,操纵系统中的各构件在工 作时的变形和构件之的间隙必须尽可能小。 3. 飞行中,当飞机机体结构应力变形时,操纵系统不应发生卡阻现象。 4. 各舵面的操纵要求互不干扰。 5. 进行操纵时,既要轻便,也要有适当的感觉力,而且这种感觉力应随舵面 偏转角度、飞行速度、飞行高度的改变而改变。要操纵轻便,操纵系统的 摩擦力必须尽可能小,即应保持各相互连接处的清洁和润滑。
性 间隙。钢索的弹性间隙太大,就会使操纵的灵敏性变差。
为了减小弹性间隙,操纵系统中的钢索在装配时都是预先拉 紧的,预先拉紧的力称为预加张力。有预先张力的钢索能减小弹 性间隙。 第一、钢索被预先拉紧后,就把各股钢丝绞紧,传动时钢索就不
容易被拉长 第二、钢索在传动中张力增加得较少
上海交通职业技术学院
5.3 传动机构
第五章 飞行操纵系统

存在摩擦、间隙和非线性因素导致无法实现精微操纵信 号传递; 机械操纵系统对飞机结构的变化非常敏感; 体积大,结构复杂,重量大! 机械操纵系统可靠性较高! 单通道电传系统可靠性较低: 7 可接受的安全指标: 110 解决措施:余度技术!
。
操纵系统
主操纵系统
副翼
升降舵
辅助操纵系统
前缘襟翼缝翼
后缘襟翼 扰流板 水平安定面
警告系统
失速警告 起飞警告
方向舵
第一 节 简单机械操纵系统(人力操纵)
简单机械操纵系统是一种人力操纵系统,由于 其构造简单,工作可靠,使用了30余年,才出 现助力操纵系统。 简单机械操纵系统现在仍广泛应用于低速飞机 和一些小型运输机上。
载荷感觉器刚度:
1. 小杆位移时,要求刚度大 2. 大杆位移时,要求刚度小
W
弹簧载荷感觉器(弹簧支柱)构造
F
W
五、调整片效应机构
杆力来源 无助力操纵系统 舵面铰链力矩 助力操纵系统 载荷感觉器 飞行中消除杆力的机构 配平调整片 调整片效应机构
第四节 飞机颤振与副翼反效
飞机颤振是飞机飞行中空气动力、结构弹性力 和惯性力之间的交互作用的现象。 颤振是飞机各种振动中最危险的一种振动,必 须保证在飞机使用中不发生颤振。 副翼反效——发生副翼反效的原因是属于副翼 位于机翼外侧后缘。 副翼偏转所产生的空气动力使机翼发生扭转和 弯曲的弹性变形,由弹性变形产生的附加空气 动力形成横向气动力矩,它与副翼操纵力矩方 向相反,遂降低了副翼操纵效能,甚至使其效 能降低为零,或使飞机随副翼的偏转而逆动, 这一情况称为副翼反效。
根据操纵信号来源不同,操纵系统可分为: 人工飞行操纵系统,其操纵信号由驾驶员发出。
飞机的俯仰、滚转和偏航操纵系统; 增升、增阻操纵系统; 人工配平操纵系统等。
。
操纵系统
主操纵系统
副翼
升降舵
辅助操纵系统
前缘襟翼缝翼
后缘襟翼 扰流板 水平安定面
警告系统
失速警告 起飞警告
方向舵
第一 节 简单机械操纵系统(人力操纵)
简单机械操纵系统是一种人力操纵系统,由于 其构造简单,工作可靠,使用了30余年,才出 现助力操纵系统。 简单机械操纵系统现在仍广泛应用于低速飞机 和一些小型运输机上。
载荷感觉器刚度:
1. 小杆位移时,要求刚度大 2. 大杆位移时,要求刚度小
W
弹簧载荷感觉器(弹簧支柱)构造
F
W
五、调整片效应机构
杆力来源 无助力操纵系统 舵面铰链力矩 助力操纵系统 载荷感觉器 飞行中消除杆力的机构 配平调整片 调整片效应机构
第四节 飞机颤振与副翼反效
飞机颤振是飞机飞行中空气动力、结构弹性力 和惯性力之间的交互作用的现象。 颤振是飞机各种振动中最危险的一种振动,必 须保证在飞机使用中不发生颤振。 副翼反效——发生副翼反效的原因是属于副翼 位于机翼外侧后缘。 副翼偏转所产生的空气动力使机翼发生扭转和 弯曲的弹性变形,由弹性变形产生的附加空气 动力形成横向气动力矩,它与副翼操纵力矩方 向相反,遂降低了副翼操纵效能,甚至使其效 能降低为零,或使飞机随副翼的偏转而逆动, 这一情况称为副翼反效。
根据操纵信号来源不同,操纵系统可分为: 人工飞行操纵系统,其操纵信号由驾驶员发出。
飞机的俯仰、滚转和偏航操纵系统; 增升、增阻操纵系统; 人工配平操纵系统等。
第五章 飞机飞行操纵系统【飞机结构】

振动有两个主要参数: ①重锤离开中间位置的最大距离Y叫做振 幅y1或y2; ②重锤离开中立位置而振动一周(一个 全波)的时间叫振动周期T。
2、传动杆的振动
传动杆会发生振动,振动的方向与传动杆的长 度垂直,因此叫做弯曲振动。
3、机翼与尾翼颤振的现象 飞机机翼与尾翼的颤振是一种非常强烈的振动。
它是一种自激振动。颤振通常会使飞机受到破坏。 4、机翼弯扭颤振
机翼发生颤振的原因如图所示:
影响颤振临界速度的因素主要有两个,即机翼 的刚度和机翼中心位置。
⑴ 机翼刚度
增大机翼扭转刚度的方法是增加机翼的蒙皮厚 度。为使蒙皮在弯曲强度中也有贡献,桁条在扭 转中也有贡献,因而发展了单块式机翼结构。在 飞机使用中,若机翼蒙皮连接处破坏,或蒙皮自 身发生裂纹,尤其是弦向裂纹,会使颤振临界速 度值降低。
3、飞机的航向操纵
飞机的航向操纵是通过脚蹬控制方向舵来实现 的。
三、中央操纵机构的机构和工作原理
飞机主操纵系统是由中央操纵机构和传动系统 两大部分组成。
㈠ 手操纵机构
手操纵机构一般分为驾驶杆式和驾驶盘式两种, 如图所示:
㈡ 脚操纵机构
脚操纵机构有脚蹬平放式和脚蹬立放式 两种。
四、传动机构的构造和工作原理 ㈠ 传动机构的构造形式
3、松紧螺套
❖ 作用:调整钢索的预张力 ❖ 注意:调松钢索时,螺杆末端不应超过小孔的位置
4、钢索张力补偿器
❖ 飞机机体外载荷及周围气 温变化会使机体结构和操 纵系统钢索产生相对变形, 导致钢索变松或过紧
❖ 变松将发生弹性间隙,过 紧将产生附加摩擦
❖ 钢索张力补偿器的功用是 保持钢索的正确张力
五、飞机飞行操纵系统的传动系数、传动比及非线 性传动机构
系统两部分。
2、传动杆的振动
传动杆会发生振动,振动的方向与传动杆的长 度垂直,因此叫做弯曲振动。
3、机翼与尾翼颤振的现象 飞机机翼与尾翼的颤振是一种非常强烈的振动。
它是一种自激振动。颤振通常会使飞机受到破坏。 4、机翼弯扭颤振
机翼发生颤振的原因如图所示:
影响颤振临界速度的因素主要有两个,即机翼 的刚度和机翼中心位置。
⑴ 机翼刚度
增大机翼扭转刚度的方法是增加机翼的蒙皮厚 度。为使蒙皮在弯曲强度中也有贡献,桁条在扭 转中也有贡献,因而发展了单块式机翼结构。在 飞机使用中,若机翼蒙皮连接处破坏,或蒙皮自 身发生裂纹,尤其是弦向裂纹,会使颤振临界速 度值降低。
3、飞机的航向操纵
飞机的航向操纵是通过脚蹬控制方向舵来实现 的。
三、中央操纵机构的机构和工作原理
飞机主操纵系统是由中央操纵机构和传动系统 两大部分组成。
㈠ 手操纵机构
手操纵机构一般分为驾驶杆式和驾驶盘式两种, 如图所示:
㈡ 脚操纵机构
脚操纵机构有脚蹬平放式和脚蹬立放式 两种。
四、传动机构的构造和工作原理 ㈠ 传动机构的构造形式
3、松紧螺套
❖ 作用:调整钢索的预张力 ❖ 注意:调松钢索时,螺杆末端不应超过小孔的位置
4、钢索张力补偿器
❖ 飞机机体外载荷及周围气 温变化会使机体结构和操 纵系统钢索产生相对变形, 导致钢索变松或过紧
❖ 变松将发生弹性间隙,过 紧将产生附加摩擦
❖ 钢索张力补偿器的功用是 保持钢索的正确张力
五、飞机飞行操纵系统的传动系数、传动比及非线 性传动机构
系统两部分。
飞机机械与系统-第五章飞行操纵系统

行姿态很快地随操纵动作而改变。要操纵灵敏,操纵系统中的各构件在工 作时的变形和构件之的间隙必须尽可能小。 3. 飞行中,当飞机机体结构应力变形时,操纵系统不应发生卡阻现象。 4. 各舵面的操纵要求互不干扰。 5. 进行操纵时,既要轻便,也要有适当的感觉力,而且这种感觉力应随舵面 偏转角度、飞行速度、飞行高度的改变而改变。要操纵轻便,操纵系统的 摩擦力必须尽可能小,即应保持各相互连接处的清洁和润滑。
置。
传动 杆 检查小孔
接耳
保险螺帽
传动杆的可调接头
上海交通职业技术学院
5.3 传动机构
(1)传动杆 在传动过程中,传动杆不仅要作往复直线运动,而且要相对
于摇臂转动。为了减小磨擦,其接头内通常装有滚珠轴承。 空心的传动杆要求有排水孔,因为潮气能从接头的连接处入到
杆的内腔,然后凝聚成水,除可能发生锈蚀和增加杆的重量外,由于 水能结成冰还可能膨胀而使杆损坏。排水孔必须足够大,在水结冰之 前就可以排除掉,但也不能过大以致过度消弱杆的强度。因此在维护 中不应使小孔堵塞或扩孔。
• 5.1.3 飞机操纵系统组成 (1)主操纵系统
副翼、升降舵、方向舵 (2)辅助操纵系统
增升装置:后缘襟翼、前缘襟翼、缝翼 增阻装置:扰流板、地面扰流板 水平安定面 (3)警告系统 起飞警告系统、失速警告系统
上海交通职业技术学院
5.1 飞机操纵系统概述
上海交通职业技术学院
5.1 飞机操纵系统概述
上海交通职业技术学院
第五章 飞机飞行操纵系统
机电教研室 2010.11
上海交通职业技术学院
5.1 飞机操纵系统概述
• 5.1.1 飞机转动轴
上海交通职业技术学院
5.1 飞机操纵系统概述
• 5.1.2 飞机平衡 (1)飞机俯仰平衡
置。
传动 杆 检查小孔
接耳
保险螺帽
传动杆的可调接头
上海交通职业技术学院
5.3 传动机构
(1)传动杆 在传动过程中,传动杆不仅要作往复直线运动,而且要相对
于摇臂转动。为了减小磨擦,其接头内通常装有滚珠轴承。 空心的传动杆要求有排水孔,因为潮气能从接头的连接处入到
杆的内腔,然后凝聚成水,除可能发生锈蚀和增加杆的重量外,由于 水能结成冰还可能膨胀而使杆损坏。排水孔必须足够大,在水结冰之 前就可以排除掉,但也不能过大以致过度消弱杆的强度。因此在维护 中不应使小孔堵塞或扩孔。
• 5.1.3 飞机操纵系统组成 (1)主操纵系统
副翼、升降舵、方向舵 (2)辅助操纵系统
增升装置:后缘襟翼、前缘襟翼、缝翼 增阻装置:扰流板、地面扰流板 水平安定面 (3)警告系统 起飞警告系统、失速警告系统
上海交通职业技术学院
5.1 飞机操纵系统概述
上海交通职业技术学院
5.1 飞机操纵系统概述
上海交通职业技术学院
第五章 飞机飞行操纵系统
机电教研室 2010.11
上海交通职业技术学院
5.1 飞机操纵系统概述
• 5.1.1 飞机转动轴
上海交通职业技术学院
5.1 飞机操纵系统概述
• 5.1.2 飞机平衡 (1)飞机俯仰平衡
第五章 飞行操纵系统

第三节 助力机械操纵系统
助力机械操纵系统的提出
舵面铰链力矩是随舵面尺寸和飞行速压的增加而增加! 当舵面铰链力矩变得很大时,即使利用当时的空气动力补偿法,也不能使驾 驶杆(脚蹬)力保持在规定的范围之内:
1. 研究效率更高的空气动力补偿; 2. 研究液压助力器,以实现液压助力操纵!
助力机械操纵系统的分类
钢索承受拉力时,容易伸长。由于操纵系统的弹性变形而产 生的“间隙”称为弹性间隙; 钢索的弹性间隙太大,会降低操纵的灵敏性; 钢索预紧(施加予张力)是减小弹性间隙的措施! 常见故障:断丝与锈蚀,主要部位是滑轮或导索板处。
几个注意问题: 1、为了改善软式操纵系统的灵敏性,钢索在未安 装之前,必须用相当于设计强度50%~60%的力进 行予拉伸处理; 2、装在飞机上的钢索必须根据周围温度的高低而 保持一定的予张力; 3、在飞机主操纵系统中,可以使用的钢索最小直 径是1/8英寸; 4、钢索不可气割,不可焊接,只能用钢索剪剪断 或用錾子錾断; 5、在改变钢索方向不大于 3º的情况下,可以使用 导索板或导索环。
中央操纵机构—手操纵机构
驾驶杆式手操纵机构
推拉驾驶杆操纵升降舵; 左右压杆操纵副翼!
横纵向操纵的独立性
驾驶杆要操纵升降舵和副翼, 但两者不会互相干扰!
独 立 性 分 驾驶杆左右摆时,传动杆沿着以b-b线为中 析 心轴,以c点为顶点的锥面运动;
由于圆锥体的顶点c到底部周缘上任一点的 距离相等,所以当驾驶杆左右摆动时,摇 臂1不会绕其支点前后转动,因而升降舵不 会偏转!
。
操纵系统
主操纵系统
副翼
升降舵
辅助操纵系统
前缘襟翼缝翼
后缘襟翼 扰流板 水平安定面
警告系统
第五章 飞机飞行操纵系统

飞机结构与系统
Page34
五、飞机飞行操纵系统的传动系数、传动比及非线 性传动机构
㈠ 操纵系统的传动系数 舵偏角△δ与杆位移△X的比值
飞机结构与系统
Page35
㈡ 操纵系统的传动比
飞机结构与系统
Page36
㈢ 改变传动比和传动系数的机构 ——非线性传动机构
❖传动系数不变的操纵系统, 不能满足对飞机操纵性的要求:
飞机结构与系统
Page50
颤振
弹性结构在气动力 和惯性及自身弹性 结构力的作用下, 由于作用力相互耦 合而形成的剧烈自 激振动。
飞机结构与系统
Page51
颤振的形式
机翼弯曲扭转颤振 机翼弯曲-舵面偏转颤振 操纵面本身颤振
飞机结构与系统
Page52
机翼的弯扭颤振 • 由于机翼扭转而产生激振力
飞机结构与系统
脚操纵机构有脚蹬平放式和脚蹬立放式两种。
飞机结构与系统
Page18
㈡ 脚操纵机构
脚操纵机构有脚蹬平放式和脚蹬立放式两种。 脚蹬平放式脚操纵机构
平行四边形机构保证脚蹬只做平移而不转动
飞机结构与系统
Page19
脚蹬立放式脚操纵机构
之一
飞机结构与系统
之二
Page20
四、传动机构的构造和工作原理 四、传动机构的构造和工作原理
飞机结构与系统
Page22
摇臂的作用
• 支持传动杆 • 改变传动力的大小 • 改变位移 • 改变传动速度 • 改变传动方向 • 实现差动操纵
飞机结构与系统
2、摇臂 摇臂通常由硬铝材料制成,在与传动杆和支
座的连接处都装有轴承。
⑴ 放大或缩小力的作用
飞机结构与系统
nF
Page34
五、飞机飞行操纵系统的传动系数、传动比及非线 性传动机构
㈠ 操纵系统的传动系数 舵偏角△δ与杆位移△X的比值
飞机结构与系统
Page35
㈡ 操纵系统的传动比
飞机结构与系统
Page36
㈢ 改变传动比和传动系数的机构 ——非线性传动机构
❖传动系数不变的操纵系统, 不能满足对飞机操纵性的要求:
飞机结构与系统
Page50
颤振
弹性结构在气动力 和惯性及自身弹性 结构力的作用下, 由于作用力相互耦 合而形成的剧烈自 激振动。
飞机结构与系统
Page51
颤振的形式
机翼弯曲扭转颤振 机翼弯曲-舵面偏转颤振 操纵面本身颤振
飞机结构与系统
Page52
机翼的弯扭颤振 • 由于机翼扭转而产生激振力
飞机结构与系统
脚操纵机构有脚蹬平放式和脚蹬立放式两种。
飞机结构与系统
Page18
㈡ 脚操纵机构
脚操纵机构有脚蹬平放式和脚蹬立放式两种。 脚蹬平放式脚操纵机构
平行四边形机构保证脚蹬只做平移而不转动
飞机结构与系统
Page19
脚蹬立放式脚操纵机构
之一
飞机结构与系统
之二
Page20
四、传动机构的构造和工作原理 四、传动机构的构造和工作原理
飞机结构与系统
Page22
摇臂的作用
• 支持传动杆 • 改变传动力的大小 • 改变位移 • 改变传动速度 • 改变传动方向 • 实现差动操纵
飞机结构与系统
2、摇臂 摇臂通常由硬铝材料制成,在与传动杆和支
座的连接处都装有轴承。
⑴ 放大或缩小力的作用
飞机结构与系统
nF
飞机构造基础第5章飞机飞行操纵系统

双套机械传动线路 内、外侧飞行扰流板分别由两套液压系统供压;
驾驶盘转动超过一定角度后,飞行扰流板随副
翼成比例运动;
液压失效时可利用机械传动对副翼进行 操纵;
副翼或扰流板机械传动线路卡阻时可加力转 动驾驶盘旁通故障线路;
感觉定中机构和与副翼配平
作用
– Feel:转动驾驶盘,产生感觉力; – Centering :松开驾驶盘,系统定中; – Trimming :配平操纵期间,系统重新定中,维 持飞机的起动力平衡; – Aileron trim indicator
横滚操纵的特点
使用两个独立的液压助力器驱动副翼; 驾驶盘转动超过一定角度后,飞行扰流板随副翼成比 例运动; 内、外侧飞行扰流板分别由两套液压系统供压; 液压失效时可利用机械传动对副翼进行操纵;副翼或 扰流板机械传动线路卡阻时可加力转动驾驶盘旁通故障 线路; 副翼配平电门通过配平电机使副翼重新定中立位,从 而消除感力; 大型客机常采用混合副翼: 内副翼:全速副翼 外副翼:低速副翼
自动驾驶仪; 发动机油门自动控制
结构振动模态抑制系统
。
(2)根据信号传递方式
机械操纵系统
钢索、传动杆等机械部件传递 电缆传递
电传操纵系统
(3)根据驱动舵面运动方式
简单机械操纵系统(无助力) 助力操纵系统
液压助力(有回力/无回力) 电驱动
(4)根据舵面的类型
主操纵系统
副翼 升降舵 方向舵 襟翼、缝翼 扰流板 安定面 横滚操纵 俯仰操纵 偏航操纵 增升装置操纵 扰流板操纵 配平操纵
辅助操纵系统
B737 副翼及其调整片
A320 扰流板
5. 对飞行操纵系统的要求
• 一般要求:
飞机构造基础第5章飞机飞行操纵系统

驾驶杆
助力器
升降舵
水平安定面
马赫配平机构
定中连杆
滚轮 滚轮臂
壳体 定中凸轮 定中弹簧
感觉作动筒
回油
动压感觉机构
感觉变换机构
升降舵感觉和定中机构
动压载荷感觉装置—除具有弹簧式感觉定中机 构的特性外,还可以将空速信号引进,即随飞 行速度增加,驾驶员感觉力也会增加; 升降舵动压感觉机构,感觉作动筒; 水平安定面移动或马赫配平机构工作——改变 定中机构壳体位置,使得升降舵和驾驶杆移动 到新中立位置。
2. 脚操纵机构
• 立放式脚蹬
– 蹬脚蹬时,通过传动杆和摇臂等构件的传动使 方向舵偏转; – 由于传动杆和摇臂等的连接,左右脚蹬的动作 是协调的!
手操纵机构与脚操纵机构的匹配
驾驶杆 平放 式脚 蹬 驾驶盘
平放式脚蹬为了取得较大的 操纵力臂,两脚蹬之间距离 较大; 与左右活动范围较大的驾驶 杆配合使用! 通过增长与脚蹬连接的摇 臂来获得足够的操纵力臂 的,两脚蹬之间距离较小; 多与驾驶盘配合使用!
辅助操纵系统
B737 副翼及其调整片
A320 扰流板
5. 对飞行操纵系统的要求
• 一般要求:
–重量轻、制造简单、维护方便; –具有足够的强度和刚度。
• 特殊要求:
–保证驾驶员手、脚操纵动作与人类运动本能相一致; –纵向或横向操纵时彼此互不干扰; –脚操纵机构能够进行适当调节; –有合适的杆力和杆位移; –启动力应在合适的范围内; –系统操纵延迟应小于人的反应时间; –应有极限偏转角度止动器; –所有舵面应用“锁”来固定。
独 立 性 分 析 驾驶杆左右摆时,传动杆沿着以b-b线为中心轴,以c点为 顶点的锥面运动;
由于圆锥体的顶点c到底部周缘上任一点的距离相等,所 以当驾驶杆左右摆动时,摇臂1不会绕其支点前后转动, 因而升降舵不会偏转!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
㈠ 传动机构的构造形式
飞机操纵系统的传动机构通常分为软式、硬式、 混合式三种。
㈡ 硬式传动机构的主要构件
1、传动杆,传动杆又称为拉杆。传动杆的接头如图 所示:
2、摇臂
摇臂通常由硬铝材料制成,在与传动杆和支座 的连接处都装有轴承。
摇臂的作用
❖ 支持传动杆 ❖ 改变传动力的大小 ❖ 改变位移 ❖ 改变传动速度 ❖ 改变传动方向 ❖ 实现差动操纵
第五章 飞机飞行操纵系统
第一节 概述
飞机操纵系统是飞机的重要组成部分之一,它的正 常与否直接关系到飞机的飞行安全,因而操纵系统 是飞机的极其重要的环节。 飞机操纵系统可分为两大类:人工飞行操纵系统和 自动飞行控制系统。
第二节 简单机械操纵系统
一、对飞机操纵系统的要求
二、飞机操纵系统的工作原理 飞机操纵系统通常包括主操作系统和辅助操作
3、松紧螺套
❖ 作用:调整钢索的预张力 ❖ 注意:调松钢索时,螺杆末端不应超过小孔的位置
4、钢索张力补偿器
❖ 飞机机体外载荷及周围气 温变化会使机体结构和操 纵系统钢索产生相对变形, 导致钢索变松或过紧
❖ 变松将发生弹性间隙,过 紧将产生附加摩擦
❖ 钢索张力补偿器的功用是 保持钢索的正确张力
五、飞机飞行操纵系统的传动系数、传动比及非线 性传动机构
系统两部分。
飞行操纵系统组成
操纵系统
主操纵系统
辅助操纵系统 警告系统
副翼 升降舵 方向舵
前缘襟翼缝翼 后缘襟翼 扰流板
水平安定面
失速警告 起飞警告
软式 硬式
1、飞机的纵向操纵
飞机的纵向操纵是通过操纵驾驶杆或驾驶盘控 制升降舵来实现的。
2、飞机的横向操纵
飞机的横向操纵系统是通过操纵驾驶杆或驾驶 盘控制副翼来实现的。
副翼和襟翼通常都位于机翼的后缘,襟翼在内侧, 副翼在外侧。
提高副翼反效作用的临界速度的措施如下:
① 把副翼向机翼内侧移动,缺点是挤掉襟翼 面积,如图所示:
② 用差动平尾以代替正常形式的副翼,同时采用机 翼上的扰流片,以辅助差动平尾在低速时效能不 足。
③ 在大型飞机的机翼上有两个副翼。一个位于机 翼内侧称为内侧副翼,又称高速副翼;另一个位 于机翼外侧,称为外侧副翼,又称低速副翼。如 图所示:
ˊ之比。
小的回力比可以在舵面枢轴力矩很大的情况下 保证驾驶杆力不致过大,但在舵面枢轴力矩阵较 小的时候,会使驾驶杆变得过“轻”,这对飞行 员凭杆力来操纵飞机是不利的。因此,在有回力 的助力操纵系统中,往往还装设载荷感觉器,来 适当增加驾驶杆力。
有回力液压助力器工作原理图:
2、无回力的助力操纵系统
机翼弯曲——副翼偏转颤振的发生过程如下图 所示:
副翼重心到转轴的距离如下图中c所示:
防止机翼弯曲——副翼偏转颤振的措施:
如下图所重量平衡法。
副翼重量平衡的主要方式有两种:分布配重和 集中配重,如下图所示:
6、尾翼颤振
尾翼颤振是和机身的弯扭、振动联合产生的, 尾翼颤振有机身弯曲——舵面偏转或机身扭转— —舵面偏转。也就是机身弯曲和扭转振动加上舵 面偏转振动。
有助力器的飞机操纵系统,简称助力操纵系统。 一、助力操纵系统的形式 1、有回力的助力操纵系统
有回力的助力操纵系统,通常是利用回力连杆 把舵面传来的一部分载荷传给驾驶杆的。
所谓回力比就是在舵面枢轴力矩相同的条件下, 使用液压助力器使平衡舵面载荷所需的杆力P杆与 不使用液压助力器使平衡舵面载荷所需的杆力P杆
只用中央集中配重来达到百分之百的静平衡是 不够的,还需在舵面的尖端安置端部配重,且是 过度的静平衡,如图所示:
升降舵的过度重量平衡对飞机操纵性有不良的 影响。当飞机做法向过载飞行时,由于升降度配 重的质量力使驾驶杆自动向后倒向驾驶员,一般 在驾驶杆的前面加上反平衡配重,如图所示:
㈢ 副翼反效
机翼的弹性变形对副翼效能有严重的影响,在飞行 速度很大时,能使副翼效能完全丧失,甚至出现反效能, 称为“副翼反效”或“副翼逆动”。
➢ 传动活塞的摩擦力作用在活塞、活塞杆与外筒内 壁接触的部位,如图所示:
➢ 为了保证助力器的密封性,在外筒两端和传动活 塞周围都装有橡胶密封圈;内部零件装配精密度 很高;此外,许多液压助力器的配油柱塞的凸缘 与它所遮盖的通油孔之间,都有一定的交叠量。
㈠ 操纵系统的传动系数 舵偏角△δ与杆位移△X的比值
㈡ 操纵系统的传动比
㈢ 改变传动比和传动系数的机构——非线性传动
机构
❖ 传动系数不变的操纵系统,不 能满足对飞机操纵性的要求:
传动系数大,小舵面偏角小时, 杆行程太小,难以准确地控制操 纵量
传动系数小,舵面偏角很大时, 杆行程过大
❖ 装有非线性传动机构的操纵系 统,杆行程与舵面偏角之间成 曲线关系
3、飞机的航向操纵
飞机的航向操纵是通过脚蹬控制方向舵来实现 的。
三、中央操纵机构的机构和工作原理 飞机主操纵系统是由中央操纵机构和传动系统
两大部分组成。
㈠ 手操纵机构
手操纵机构一般分为驾驶杆式和驾驶盘式两种, 如图所示:
㈡ 脚操纵机构
脚操纵机构有脚蹬平放式和脚蹬立放式两种。
四、传动机构的构造和工作原理
1、振动的主要特性参数
振动有两个主要参数:
①重锤离开中间位置的最大距离Y叫做振幅y1 或y2;
②重锤离开中立位置而振动一周(一个全波) 的时间叫振动周期T。
2、传动杆的振动
传动杆会发生振动,振动的方向与传动杆的长 度垂直,因此叫做弯曲振动。
3、机翼与尾翼颤振的现象 飞机机翼与尾翼的颤振是一种非常强烈的振动。
⑴ 放大或缩小力的作用,如图所示:
⑵ 放大或缩小位移的作用:主动臂的半径一定,
在相同的主动臂端点位移s1的条件下,从动臂的 半径越大,所得到的从动臂端点位移s2也越大; 从动臂的半径越小,所得到的从动臂端点位移s2 也越小。如图所示:
⑶ 放大或缩小运动速度的作用:由于整体具有相
同的角速度,通过改变从动臂和主动臂的半径关 系从而实现放大或缩小运动速度。如图所示:
它是一种自激振动。颤振通常会使飞机受到破坏。 4、机翼弯扭颤振
机翼发生颤振的原因如图所示:
影响颤振临界速度的因素主要有两个,即机翼 的刚度和机翼中心位置。
⑴ 机翼刚度
增大机翼扭转刚度的方法是增加机翼的蒙皮厚 度。为使蒙皮在弯曲强度中也有贡献,桁条在扭 转中也有贡献,因而发展了单块式机翼结构。在 飞机使用中,若机翼蒙皮连接处破坏,或蒙皮自 身发生裂纹,尤其是弦向裂纹,会使颤振临界速 度值降低。
二、液压助力器的基本工作原理
(一)液压助力器的工作原理
飞机上使用的液压助力器的构造虽然各不相同, 但其基本工作原理却是相同的,均为液压位置伺 服控制系统。在采用机械式操纵机构的系统中, 为机液位置伺服机构;在采用电传操纵系统(或 自动驾驶仪)中,为电液位置伺服机构。
液压位置伺服控制系统是一种以液压动力装置 作为执行机构并且有反馈控制的控制系统。不仅 能自动地,准确而快速地复现输入量的变化规律, 而且还能对输入信号进行放大与变换。
传动活塞运动速度与流量的关系为 V传动活塞F=Q,传动活塞的有效面积是不变的,其运动速度仅与油液流量成
正比,即V传动活塞=Q/F。如图所示:
通油孔面积f与配油柱塞的尺寸、通油孔形状 和通油孔开度Z等因素有关,开度越大,进入助力 器的油液流量就越大,传动活塞也就运动的越快。 如图所示:
对同一个助力器来说,其快速性还与传动活塞 上的载荷p有关。载荷包括舵面传来的载荷和助力 器以后的传动机构的摩擦力。载荷越小,通油孔 两边的压力差就越大,因而传动活塞的运动速度 也越大。
如下图为飞机上常用的机液伺服机构和电液伺 服控制机构的原理图:
(二)典型液压助力器的基本工作原理
其基本组成部分为外筒、传动活塞和配油柱塞。 如图所示:
一、典型液压助力器构造
配油柱塞
壳体
传动活塞
二、典型液压助力器工作原理
二、典型液压助力器工作原理
二、典型液压助力器工作原理
二、典型液压助力器工作原理
六、气动力补偿及气动力平衡
㈠ 气动力补偿
⑴ 移轴补偿
⑵ 角式补偿
⑶ 随动补偿
⑷ 内补偿
⑸ 操纵调整片
㈡ 气动力平衡
1、配平调整片:调整片一般用于飞机配平,当飞机 着陆时,如果需要也可以利用调整片带动升降舵 向上偏转来减小驾驶杆的拉力。配平调整片的构 造如图所示:
2、补偿配平调整片:又称助力配平调整片,如图所 示。这种调整片既可以进行配平使飞机气动力矩 平衡和杆力为零,又可以进行气动力补偿,以减 小杆力。
三、液压助力器的性能分析和维护、修理、使用特点 (一)液压助力器的性能分析
经验表明,液压助力器的各项工作性能中,与维护、使用关系最 为密切的是:快速性、灵敏性和稳定性。 1、快速性 ❖ 液压助力器的快速性是指助力器的传动活塞在液压作用下,能以多大 速度运动的性能。 ❖ 快速性直接影响舵面偏转的最大角速度,从而影响飞机的操纵性 (1)影响液压助力器快速性的因素 ❖ 流量 ❖ 密封性
⑵ 机翼重心的位置
机翼重心现象位置对颤振临界速度的大小也有 严重的影响。为了提高颤振临界速度常在机翼翼 尖的前缘部位上加配重。
5、机翼弯曲——副翼偏转颤振 机翼弯曲——副翼偏转颤振又称舵面型颤振。
发生副翼自由偏转的原因可能是由于副翼操纵 系统的弹性变形或系统中有间隙,也可能由于松 杆式机翼发生不对称的弯曲,如下图所示:
⑷ 改变传动杆运动方向原理如图所示:
差动臂:当驾驶杆左右或前后移动的位移相等, 而舵面上下偏转的角度不等,称之为差动操纵。 实现差动操纵最简单的机构是双摇臂,称为差动 摇臂,其工作原理如图所示:
3、导向滑轮
导向滑轮是由三个或四个小滑轮及其支架所组 成。它的功用是:支持传动杆,提高传动杆的受 压时的杆轴临界应力,使传动杆不至于过早地失 去总稳定性。
飞机操纵系统的传动机构通常分为软式、硬式、 混合式三种。
㈡ 硬式传动机构的主要构件
1、传动杆,传动杆又称为拉杆。传动杆的接头如图 所示:
2、摇臂
摇臂通常由硬铝材料制成,在与传动杆和支座 的连接处都装有轴承。
摇臂的作用
❖ 支持传动杆 ❖ 改变传动力的大小 ❖ 改变位移 ❖ 改变传动速度 ❖ 改变传动方向 ❖ 实现差动操纵
第五章 飞机飞行操纵系统
第一节 概述
飞机操纵系统是飞机的重要组成部分之一,它的正 常与否直接关系到飞机的飞行安全,因而操纵系统 是飞机的极其重要的环节。 飞机操纵系统可分为两大类:人工飞行操纵系统和 自动飞行控制系统。
第二节 简单机械操纵系统
一、对飞机操纵系统的要求
二、飞机操纵系统的工作原理 飞机操纵系统通常包括主操作系统和辅助操作
3、松紧螺套
❖ 作用:调整钢索的预张力 ❖ 注意:调松钢索时,螺杆末端不应超过小孔的位置
4、钢索张力补偿器
❖ 飞机机体外载荷及周围气 温变化会使机体结构和操 纵系统钢索产生相对变形, 导致钢索变松或过紧
❖ 变松将发生弹性间隙,过 紧将产生附加摩擦
❖ 钢索张力补偿器的功用是 保持钢索的正确张力
五、飞机飞行操纵系统的传动系数、传动比及非线 性传动机构
系统两部分。
飞行操纵系统组成
操纵系统
主操纵系统
辅助操纵系统 警告系统
副翼 升降舵 方向舵
前缘襟翼缝翼 后缘襟翼 扰流板
水平安定面
失速警告 起飞警告
软式 硬式
1、飞机的纵向操纵
飞机的纵向操纵是通过操纵驾驶杆或驾驶盘控 制升降舵来实现的。
2、飞机的横向操纵
飞机的横向操纵系统是通过操纵驾驶杆或驾驶 盘控制副翼来实现的。
副翼和襟翼通常都位于机翼的后缘,襟翼在内侧, 副翼在外侧。
提高副翼反效作用的临界速度的措施如下:
① 把副翼向机翼内侧移动,缺点是挤掉襟翼 面积,如图所示:
② 用差动平尾以代替正常形式的副翼,同时采用机 翼上的扰流片,以辅助差动平尾在低速时效能不 足。
③ 在大型飞机的机翼上有两个副翼。一个位于机 翼内侧称为内侧副翼,又称高速副翼;另一个位 于机翼外侧,称为外侧副翼,又称低速副翼。如 图所示:
ˊ之比。
小的回力比可以在舵面枢轴力矩很大的情况下 保证驾驶杆力不致过大,但在舵面枢轴力矩阵较 小的时候,会使驾驶杆变得过“轻”,这对飞行 员凭杆力来操纵飞机是不利的。因此,在有回力 的助力操纵系统中,往往还装设载荷感觉器,来 适当增加驾驶杆力。
有回力液压助力器工作原理图:
2、无回力的助力操纵系统
机翼弯曲——副翼偏转颤振的发生过程如下图 所示:
副翼重心到转轴的距离如下图中c所示:
防止机翼弯曲——副翼偏转颤振的措施:
如下图所重量平衡法。
副翼重量平衡的主要方式有两种:分布配重和 集中配重,如下图所示:
6、尾翼颤振
尾翼颤振是和机身的弯扭、振动联合产生的, 尾翼颤振有机身弯曲——舵面偏转或机身扭转— —舵面偏转。也就是机身弯曲和扭转振动加上舵 面偏转振动。
有助力器的飞机操纵系统,简称助力操纵系统。 一、助力操纵系统的形式 1、有回力的助力操纵系统
有回力的助力操纵系统,通常是利用回力连杆 把舵面传来的一部分载荷传给驾驶杆的。
所谓回力比就是在舵面枢轴力矩相同的条件下, 使用液压助力器使平衡舵面载荷所需的杆力P杆与 不使用液压助力器使平衡舵面载荷所需的杆力P杆
只用中央集中配重来达到百分之百的静平衡是 不够的,还需在舵面的尖端安置端部配重,且是 过度的静平衡,如图所示:
升降舵的过度重量平衡对飞机操纵性有不良的 影响。当飞机做法向过载飞行时,由于升降度配 重的质量力使驾驶杆自动向后倒向驾驶员,一般 在驾驶杆的前面加上反平衡配重,如图所示:
㈢ 副翼反效
机翼的弹性变形对副翼效能有严重的影响,在飞行 速度很大时,能使副翼效能完全丧失,甚至出现反效能, 称为“副翼反效”或“副翼逆动”。
➢ 传动活塞的摩擦力作用在活塞、活塞杆与外筒内 壁接触的部位,如图所示:
➢ 为了保证助力器的密封性,在外筒两端和传动活 塞周围都装有橡胶密封圈;内部零件装配精密度 很高;此外,许多液压助力器的配油柱塞的凸缘 与它所遮盖的通油孔之间,都有一定的交叠量。
㈠ 操纵系统的传动系数 舵偏角△δ与杆位移△X的比值
㈡ 操纵系统的传动比
㈢ 改变传动比和传动系数的机构——非线性传动
机构
❖ 传动系数不变的操纵系统,不 能满足对飞机操纵性的要求:
传动系数大,小舵面偏角小时, 杆行程太小,难以准确地控制操 纵量
传动系数小,舵面偏角很大时, 杆行程过大
❖ 装有非线性传动机构的操纵系 统,杆行程与舵面偏角之间成 曲线关系
3、飞机的航向操纵
飞机的航向操纵是通过脚蹬控制方向舵来实现 的。
三、中央操纵机构的机构和工作原理 飞机主操纵系统是由中央操纵机构和传动系统
两大部分组成。
㈠ 手操纵机构
手操纵机构一般分为驾驶杆式和驾驶盘式两种, 如图所示:
㈡ 脚操纵机构
脚操纵机构有脚蹬平放式和脚蹬立放式两种。
四、传动机构的构造和工作原理
1、振动的主要特性参数
振动有两个主要参数:
①重锤离开中间位置的最大距离Y叫做振幅y1 或y2;
②重锤离开中立位置而振动一周(一个全波) 的时间叫振动周期T。
2、传动杆的振动
传动杆会发生振动,振动的方向与传动杆的长 度垂直,因此叫做弯曲振动。
3、机翼与尾翼颤振的现象 飞机机翼与尾翼的颤振是一种非常强烈的振动。
⑴ 放大或缩小力的作用,如图所示:
⑵ 放大或缩小位移的作用:主动臂的半径一定,
在相同的主动臂端点位移s1的条件下,从动臂的 半径越大,所得到的从动臂端点位移s2也越大; 从动臂的半径越小,所得到的从动臂端点位移s2 也越小。如图所示:
⑶ 放大或缩小运动速度的作用:由于整体具有相
同的角速度,通过改变从动臂和主动臂的半径关 系从而实现放大或缩小运动速度。如图所示:
它是一种自激振动。颤振通常会使飞机受到破坏。 4、机翼弯扭颤振
机翼发生颤振的原因如图所示:
影响颤振临界速度的因素主要有两个,即机翼 的刚度和机翼中心位置。
⑴ 机翼刚度
增大机翼扭转刚度的方法是增加机翼的蒙皮厚 度。为使蒙皮在弯曲强度中也有贡献,桁条在扭 转中也有贡献,因而发展了单块式机翼结构。在 飞机使用中,若机翼蒙皮连接处破坏,或蒙皮自 身发生裂纹,尤其是弦向裂纹,会使颤振临界速 度值降低。
二、液压助力器的基本工作原理
(一)液压助力器的工作原理
飞机上使用的液压助力器的构造虽然各不相同, 但其基本工作原理却是相同的,均为液压位置伺 服控制系统。在采用机械式操纵机构的系统中, 为机液位置伺服机构;在采用电传操纵系统(或 自动驾驶仪)中,为电液位置伺服机构。
液压位置伺服控制系统是一种以液压动力装置 作为执行机构并且有反馈控制的控制系统。不仅 能自动地,准确而快速地复现输入量的变化规律, 而且还能对输入信号进行放大与变换。
传动活塞运动速度与流量的关系为 V传动活塞F=Q,传动活塞的有效面积是不变的,其运动速度仅与油液流量成
正比,即V传动活塞=Q/F。如图所示:
通油孔面积f与配油柱塞的尺寸、通油孔形状 和通油孔开度Z等因素有关,开度越大,进入助力 器的油液流量就越大,传动活塞也就运动的越快。 如图所示:
对同一个助力器来说,其快速性还与传动活塞 上的载荷p有关。载荷包括舵面传来的载荷和助力 器以后的传动机构的摩擦力。载荷越小,通油孔 两边的压力差就越大,因而传动活塞的运动速度 也越大。
如下图为飞机上常用的机液伺服机构和电液伺 服控制机构的原理图:
(二)典型液压助力器的基本工作原理
其基本组成部分为外筒、传动活塞和配油柱塞。 如图所示:
一、典型液压助力器构造
配油柱塞
壳体
传动活塞
二、典型液压助力器工作原理
二、典型液压助力器工作原理
二、典型液压助力器工作原理
二、典型液压助力器工作原理
六、气动力补偿及气动力平衡
㈠ 气动力补偿
⑴ 移轴补偿
⑵ 角式补偿
⑶ 随动补偿
⑷ 内补偿
⑸ 操纵调整片
㈡ 气动力平衡
1、配平调整片:调整片一般用于飞机配平,当飞机 着陆时,如果需要也可以利用调整片带动升降舵 向上偏转来减小驾驶杆的拉力。配平调整片的构 造如图所示:
2、补偿配平调整片:又称助力配平调整片,如图所 示。这种调整片既可以进行配平使飞机气动力矩 平衡和杆力为零,又可以进行气动力补偿,以减 小杆力。
三、液压助力器的性能分析和维护、修理、使用特点 (一)液压助力器的性能分析
经验表明,液压助力器的各项工作性能中,与维护、使用关系最 为密切的是:快速性、灵敏性和稳定性。 1、快速性 ❖ 液压助力器的快速性是指助力器的传动活塞在液压作用下,能以多大 速度运动的性能。 ❖ 快速性直接影响舵面偏转的最大角速度,从而影响飞机的操纵性 (1)影响液压助力器快速性的因素 ❖ 流量 ❖ 密封性
⑵ 机翼重心的位置
机翼重心现象位置对颤振临界速度的大小也有 严重的影响。为了提高颤振临界速度常在机翼翼 尖的前缘部位上加配重。
5、机翼弯曲——副翼偏转颤振 机翼弯曲——副翼偏转颤振又称舵面型颤振。
发生副翼自由偏转的原因可能是由于副翼操纵 系统的弹性变形或系统中有间隙,也可能由于松 杆式机翼发生不对称的弯曲,如下图所示:
⑷ 改变传动杆运动方向原理如图所示:
差动臂:当驾驶杆左右或前后移动的位移相等, 而舵面上下偏转的角度不等,称之为差动操纵。 实现差动操纵最简单的机构是双摇臂,称为差动 摇臂,其工作原理如图所示:
3、导向滑轮
导向滑轮是由三个或四个小滑轮及其支架所组 成。它的功用是:支持传动杆,提高传动杆的受 压时的杆轴临界应力,使传动杆不至于过早地失 去总稳定性。