固体物理习题答案
固体物理习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
奥鹏东师 固体物理练习题答案.doc

《固体物理》练习题一答案一、填空题(本题共5小题,每小题3分,共15分) 1. ( 六角 )( 6 )2. ( 夫伦克尔缺陷和肖脱基缺陷 )。
3.( 费米面 ),( 费米能级 )。
4.( 面心立方 ). 5.( 6). 6.二、简答题(本题共3小题,每小题5分,共15分)1.有人说“晶体的内能就是晶体的结合能”,对吗?请解释。
答:不对。
自由粒子结合成晶体过程中释放出的能量或者把晶体拆散成一个个自由粒子所需要的能量称为晶体结合能。
而晶体的内能是指原子的动能加原子间的相互作用势能之和。
0K 时,原子还存在零点振动能。
但零点振动能与原子间的相互势能的绝对值相比小得多,所以在0K 时原子间的相互势能的绝对值近似等于晶体的结合能。
2.请解释什么是布洛赫电子和布洛赫波。
答:布洛赫电子亦称“晶体电子”。
晶体是由许多原子按周期性排列所构成,故晶体中电子受到周期性原子势场作用,其波函数被晶格周期势场调制,变成由周期函数所调制的平面波,称为布洛赫波。
3.试解释本征半导体与绝缘体能带结构的基本特征。
解:在低温下,本征半导体的能带与绝缘体的能带结构相同,但本征半导体的禁带较窄,禁带宽度通常在2个电子伏特以下。
由于禁带窄,本征半导体禁带下满带顶电子可以借助热激发,跃迁到禁带上面空带的底部,使满带不满,空带不空,二者都对导电有贡献。
4、答:原子电负性的差别大的形成离子晶体,差别小的易形成分子晶体。
5、答:晶体中的一种线缺陷。
主要形成机制是滑移,位错线运动方向与滑移方向相同,好似晶体中嵌入半个原于平面,在原子平面的中断处就是一个刃位错。
小角晶界可以看作是一系列刃位错的组合。
6、答:对于导体材料,晶体能带中除了满带外,存在不满带,其价电子能带是不满带。
对于本征半导体,晶体能带中除了满带外,就是空带,而且,最高的满带与最低的空带之间的禁带宽度较较窄。
满带电子是不导电的,而不满带电子可以导电,导体之所以能导电,是因为存在不满带。
固体物理习题与答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理习题解答

《固体物理学》部分习题解答补充:证明“晶体的对称性定律”。
证明:晶体中对称轴的轴次n并不是任意的,而是仅限于 n=1,2,3,4,6这一原理称为“晶体的对称性定律”。
现证明如下:设晶体中有一旋转轴n 通过某点O,根据前一条原理必有一平面点阵与你n 垂直,而在其中必可找出与 n垂直的属于平移群的素向量a,将a作用于O得到A 点将-a作用于O点得到A’点:若a= ,则L( )及L(- )必能使点阵复原,这样就可得点阵点B,B’,可得向量BB’,显然BB与a平行,因为空间点阵中任意互相平行的两个直线点阵的素向量一定相等,因而向量BB’的长度必为素向量a的整数倍即:BB’= ma由图形关系可得:=即m=0,±1,±2m n-2 -1 p 2-1 - 30 0 41 62 1 2p 1所以 n=1,2,3,4,6综上所述可得结论:在晶体结构中,任何对称轴或轴性对称元素的轴次只有一重,二种,三重,四重或六重等五种,而不可能存在五重和七重及更高的其它轴次,这就是晶体对称性定律。
晶体的对称性定律证明:1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a a b i k a a a aππ⨯==+⋅⨯32()b i j a π=+ 可见由123,,b b b为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++同理22()b i j k a π=-+ 32()b i j k a π=-+可见由123,,b b b为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
固体物理学_答案(黄昆 原著 韩汝琦改编)

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理习题答案PPT课件

5 解: A2 b c,B 2 c a,C 2 a b
V c
V c
V c
V A (B C ) (2)3( b c )[ c ( a ) ( a b )] V c
A (B C )(A C )B (A B )C
6解:当 KCl 取 ZnS 结构时,晶体总相互作用
能为 utotN(zeRR q2)
已知:N=6.023*1023/mol, ρ=0.326埃,αZnS=1.6381,(见P103) 为NaCl结构时,Zλ=2.05*10-8erg, Z=6 当为ZnS 结构时,Z=4, Zλ=(4/6)*2.05*10-8erg
设ZnS 结构时,其晶格常数与NaCl结构相同, (为原子最近邻距离)
即 a=6.294埃(见P20,图20配位数为6,参见表10,表11, a=2*1.33+1.81=6.2埃),31/2a/4=2.72埃(为原子最近邻距
离)
u to 6 . 0 t 1 2 2 [ 3 0 6 4 2 2 . 0 1 5 8 e 0 0 2 . 3 . 7 2 2 1 . 6 6 2 . ( 3 7 4 . 8 1 8 2 1 8 0 1 0 e 1 5 0 0 ) 3 ] s 1 u . 8 K 5/ m 3 C
第二章 习题答案
3解:
(c)衍射先只出现在同时满足以下二个方程的方
向上:(1)acosθ1=nλ,(2) bcosθ2=mλ
(
a,b
为二个方向矢量)
所以在二个锥面的交线上出现衍射极大。当底板
//原子面时,衍射花样为二个锥面的交线与底板
的交点。
(d)反射式低能电子衍射(LEED)中,只有表面 层原子参与衍射,故为二维衍射,衍射点的周期 大小与晶体表面原子排列方向上周期大小成反比。
固体物理课后习题答案

(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
固体物理习题带答案

第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有
r
m
rn
。证明:要使两原子处于平衡状
r
m
rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2
2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m
r0
m 1
n
r0
n 1
。所以
m nm r0 。 n
0
r0
同
时
有
d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r
。
所
以
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 思考题
1、简述晶态、非晶态、单晶、多晶、准晶的特征和性质
答:
主要区别在微结构有序度。 固体中微观组成粒子(原子、离子、分子)在空间排列有序, 具有微米数量级以上的三维平移周期性,这种具有长程 有序态的固体称为晶态固体(晶体),否则为非晶态。 晶体中微观组成粒子空间排列有序存在于整个固体中,称为 单晶体。多晶体由许多单晶体随机堆砌而成。
第四章 思考题
2、周期场是能带形成的必要条件吗? 答:周期场是由布洛赫函数描述的能带结构的必要条件。 布洛赫定理推导出周期场中单电子状态的一般属性(主要是能带 结构,参见图4.2-1 一维能带结构的表示图式),而晶格周期 势场是布洛赫定理的前提条件。 在晶体周期性结构(平移对称性)中,电子波函数 (k) 是布洛赫 函数,能量本征值和本征函数在 k 空间具有倒格矢反演和 周期性,电子波矢 k 是与平移对称性相联系的量子数 。 非晶态也具有相似的基本能带结构,即:导带、价带和禁带。 但非晶态的电子态与晶态比较有本质区别。非晶态不存在 周期性,因此 k 不再是具有类似特征的量子数。 非晶态能带中电子态分扩展态和局域态二类。扩展态的电子为 整个固体共有,可在整个固体内找到,在外场中运动类似 晶体中电子;局域态的电子基本局限在某一区域,状态波 函数只能在围绕某一不大的尺度内显著不为零,它们依靠 声子协助,进行跳跃式导电。
设晶面 (hkl)在底 面截线
b k
晶胞基矢:
a a i, b a j, c a k
原胞基矢:
a1
a 2
( j k ), a 2
a 2
( k i ), a 3
a 2
( i j)
b
C D
根据晶面指数是在基矢
截距倒数的关系 : a1 a 2 a 3 , , 。 h1 h 2 h 3
第一章 思考题
5、试画出体心立方和面心立方(100)、(110)、(111)面上格点的 分布图。 (100) (110) (111)
体心立方
面心立方
第一章 思考题
6、怎样判断一个体系对称性的高低?讨论对称性有何物理意义。 答: 一个物理体系对称性用其具有的对称操作集合来描述。一个体 系具有的对称操作越多,其对称性就越高。在数学上,基 本操作的集合构成 “群”,每个基本操作称为群的一个元 素。由于晶格周期性限制,描述晶体宏观对称性的“点群” 只有32种。描述晶体微观对称性的“空间群”只有230种。 一个物理体系,如知道其几何对称性,就可在一定程度上确定 它的某些物理性质。例如,若原子结构具有中心反演对称 性,则原子无固定偶极矩;若一个体系具有轴对称性,偶 极矩必在对称轴上;若有对称面,偶极矩必在对称面上。 由此可见,不必讨论体系结构细节,仅从体系的对称性,就可 对其物理性质作出某些判断。对称理论已成为定性和半定 量研究物理问题的重要方法。
a 2 a 2
( i j) ( i j)
蜂窝二维格子 不是布拉菲格子 边心立方格子
a a1 底心立方格子
a 3 ak
第一章 习题
1.3 对于面心立方晶格,如果取晶胞的三边为基矢,某一族晶 面的密勒指数 为(hkl),问,如果取原胞的三边为基矢,该 族晶面的晶面指数是多少? 解:已知,面心立方晶格某晶面密勒指数(hkl),求该晶面指数 (h1h2h3)。
第一章 思考题
3、引入倒格子有什么实际意义?对于一定的布拉菲格子,基 矢选择不唯一,它所对应的倒基矢也不唯一,因而有人说 一个布拉菲格子可以对应于几个倒格子,对吗?复式格子 的倒格子也是复式格子吗? 答:
引入倒格子概念,对分析和表述有关晶格周期性的各种问题 非常有效,如:晶体X射线衍射,晶体周期函数的傅里 叶变换。 布拉菲格子不可以对应于几个倒格子。基矢选择不唯一,但 定义的布拉菲格子是唯一确定的;同样,倒基矢选择不 唯一,但定义的倒格子是唯一确定的。因此,给定布拉 菲格子对应唯一确定的倒格子。 倒格子定义在布拉菲格子概念上,而非复式格子。表达晶体 结构周期性,以基元为格点的布拉菲格子是唯一的。
b k
求解
a3 a3 b a3 a3 a b a 0 CD BD 2 kh 3 h3 h kh h3
b
C D
代入 a a i , b a j , 和
a3 a
a 3 a 3 0,
a3 a a 2 b a 3 aj a
2
第一章 习题
1.1 何谓布拉菲格子?画出NaCl晶格所构成的布拉菲格子,说 明基元代表点构成的格子是面心立方晶体,每个原胞中含 几个格点? 解: 由基元代表点-格点-形成的晶格称为布拉菲格子或布拉菲点 阵。它的特征是每个格点周围的情况(包括周围的格点数 目和格点配置的几何方位等)完全相同。 基元由相邻的一个Na+和一 个Cl−构成,基元代表点 (如: Na+ 位置) 构成面心立方晶 格。 每个原胞中含一个格点。
d hkl a h k
2 2
, 有面心立方 l
2
d 111
a 3
, 体心立方
d 110
1 2 h3
a 2
因此,最大格点面密度
表达式,
dh h
2
1 2 h3
2 / G h h
面心立方
111
4 a3
a 3
4 3 3a
, 体心立方
110
2 a3
a 2
a
2
2
第一章 习题
FCC b1 b2 b3
( 倒基矢 ) 2 a 2 a 2 a (i j k ) (i j k ) (-i j k )
要求同学通过矢量运算, 证明得出结论:
b2 b3
第四章 思考题
1、能带理论作了哪些近似和假定?得到哪些结果? 答: 能带理论是近似理论。它作了绝热近似、平均场近似和周期势 场假定。 绝热近似视固体中原子核(离子实)静止不动,价电子在固定不变 的离子实势场中运动。通过绝势近似将电子系统和原子核 (离子实)系统分开考虑。 平均场近似视固体中每个电子所处的势场都相同,使每个电子 所受势场只与该电子位置有关,而与其它电子位置无关。 通过平均场近似使所有电子都满足同样的薛定鄂方程。 通过绝热近似和平均场近似,将一个多粒子体系问题简化为单 电子问题。绝热近似和平均场近似也称为单电子近似。 周期势场假定则认为电子所受势场具有晶格平移周期性。 通过以上近似和假定,最终将一个多粒子体系问题变成在晶格 周期势场中的单电子的薛定鄂方程定态问题。
a3
a
即: (
密勒指数
:
A k j i
a3 h3
aB
a h
C D B D 0,
a b c , , ,晶面指数 h k l
a3 h3
b k
) (
a3 h3
a h
)
a3 a3 h3
2
b a3 kh 3
a3 a h3 h
ba kh
0
第一章 习题
晶面在底 面截线
2
1
)
对于正交晶系,
即, d
2 2
cos( a , n ) cos( b , n ) cos( c , n ) 1
2 2
d
d
2 2
1,
1
d
2
(a h)
(b k )
(c l )
2 2 2 (a ) (b ) ( c ) h k l 2 c 2 2 c 2 2 2 (b ) ( ) (a ) ( ) (a ) (b ) k l h l h k
第四章 思考题
3、按自由电子近似,禁带产生的原因是什么?紧束缚近似呢? 答: 按自由电子近似,零级近似波函数是平面波,它在晶体中传播 如同X射线。当波矢 k 不满足布拉格条件时,晶格的影响 很弱,电子几乎不受阻碍地通过晶体。但当 k = n/a (处在 布里渊区边界),波长 = 2/k = 2a/n 正好满足布拉格反射 条件,受到晶格的全反射,反射波和入射波干涉形成驻波, 使电子分布密度发生变化。一部分主要分布在离子实之间, 受离子实吸引较弱,势能较高,一部分主要分布在离子实 周围,受离子实吸引较强,势能较低。由此出现能隙。 按紧束缚近似,原来孤立原子的每一能级,当原子相互接近组 成晶体时,由于原子间的相互作用就构成一个能带,若原 子间距离越小,原子波函数间交叠越多,相互作用越大, 能带宽度就越宽。
a3
a 2
a 2
( i j)
a
2
A
k j i
a3 h3
aB
a h
( i j)
k
2
2
( i j) a i
k, b a aj ai a k
2
得到
a3 a3 h3
2
b a3 kh 3
a3 a h3 h
ba kh
a
2
k
a
2
k
1.7 证明体心立方格子和面心立方格子互为倒格子。 证明: 根据 BCC和 FCC 基矢表达式,
BCC ( 正基矢 ) a1 a2 a3 a 2 a 2 a 2 (i j k ) (i j k ) (-i j k )
FCC ( 正基矢 ) a1 a2 a3 a 2 a 2 a 2 ( i j) (k i )
单晶体,具有以下性质:(1)规则几何外形;(2) 各向异性物 理性质,(3)确定的熔点。
多晶体不具有规则的外形,物理性质不表现各向异性。 非晶体不具有确定的熔点。
第一章 思考题
2、晶体结构可分成布拉菲格子和复式格子吗? 答: 可以。
以原子为结构参考点,可以把晶体分成布拉菲格子和复式格 子。