初一第一学期期末考试试卷Word

合集下载

七年级上册期末试卷试卷(word版含答案)

七年级上册期末试卷试卷(word版含答案)

七年级上册期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在∠MON 内部作射线OC.(1)如图1,三角板的一边ON与射线OB重合,且∠AOC=150°.若以点O为观察中心,射线OM表示正北方向,求射线OC表示的方向;(2)如图2,将三角板放置到如图位置,使OC恰好平分∠MOB,且∠BON=2∠NOC,求∠AOM的度数;(3)若仍将三角板按照如图2的方式放置,仅满足OC平分∠MOB,试猜想∠AOM与∠NOC之间的数量关系,并说明理由.【答案】(1)解:∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,∴射线OC表示的方向为北偏东60°(2)解:∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°﹣∠MON﹣∠BON=180°﹣90°﹣45°=45°(3)解:∠AOM=2∠NOC.令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,∵∠AOM+∠MOC+∠BOC=180°,∴γ+90°﹣β+90°﹣β=180°,∴γ﹣2β=0,即γ=2β,∴∠AOM=2∠NOC【解析】【分析】(1)根据∠MOC=∠AOC﹣∠AOM代入数据计算,即得出射线OC表示的方向;(2)根据角的倍分关系以及角平分线的定义即可求解;(3)令∠NOC为β,∠AOM为γ,∠MOC=90°﹣β,根据∠AOM+∠MOC+∠BOC=180°即可得到∠AOM与∠NOC满足的数量关系.3.一副直角三角板(其中一个三角板的内角是45°,45°,90°,•另一个是30°,60°,90°)(1)如图①放置,AB⊥AD,∠CAE=________,BC与AD的位置关系是________;(2)在(1)的基础上,再拿一个30°,60°,90°的直角三角板,如图②放置,将AC′边和AD 边重合, AE是∠CAB′的角平分线吗,如果是,请加以说明,如果不是,请说明理由. (3)根据(1)(2)的计算,请解决下列问题:如图③∠BAD=90°,∠BAC=∠FAD= (是锐角),将一个45°,45°,90°直角三角板的一直角边与AD边重合,锐角顶点A与∠BAD的顶点重合,AE是∠CAF的角平分线吗?如果是,请加以说明,如果不是,请说明理由.【答案】(1)15°;BC与AD相互平行(2)解:AE是∠CAB′的角平分线.理由如下:如图②,∵∠EAD=45°,∠B′AC′=30°,∴∠EAB′=∠EAD-∠B′AC′=15°.又由(1)知,∠CAE=15°,∴∠CAE=∠EAB′,即AE是∠CAB′的角平分线(3)解:AE是∠CAF的角平分线.理由如下:如图③,∵∠EAD=45°,∠BAD=90°,∴∠BAE=∠DAE=45°,又∵∠BAC=∠FAD=α,∴∠BAE-∠BAC=∠DAE-∠FAD,∴∠CAE=∠FAE,即AE是∠CAF的角平分线【解析】【解答】(1)解:∵AB⊥AD,∴∠BAD=90°,∴∠CAE=90°-45°-30°=15°,∵AB⊥AD,AB⊥BC,∴BC与AD相互平行【分析】(1)∠CAE=∠BAD-∠BAC-∠EAD=15°,因为AB⊥AD,AB⊥BC,所以BC与AD相互平行;(2)先计算出∠EAB′=∠EAD-∠B′AC′=15°,由(1)可得∠EAB′=∠CAE,所以AE是∠CAB′的角平分线;(3)分别计算出∠CAE=∠FAE=45°-α,所以AE是∠CAF的角平分线.4.已知:,点,分别在,上,点为,之间的一点,连接, .(1)如图1,求证:;(2)如图2,,,,分别为,,,的角平分线,求证与互补;【答案】(1)证明:过C点作CG∥MN,∵,∴,∴∠MAC=∠ACG,∠PBC=∠GCB,∵∠ACB=∠ACG+∠GCB,∴∠ACB=∠MAC+∠PBC(2)证明:由(1)同理可知,∵,,,分别为,,,的角平分线,∴∠DAE=∠DBE= =90°,∴∠D+∠E=360°-(∠DAE+∠DBE)=180°,∴与互补.【解析】【分析】(1)过C点作CG∥MN,再根据两直线平行,内错角相等即可证明;(2)由(1)可知,,再根据角平分线的性质与平角的性质知∠DAE=∠DBE=90°,即可证得 + =180°.5.如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=________°;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=m°(m>90°)(如图2),则∠AEG﹣∠CEG=________°(用m的代表式表示).【答案】(1)45°(2)解:∵∠CEG=∠AEG﹣25°,∴∠AEG=180°﹣∠BEC﹣∠CEG=180°﹣45°﹣(∠AEG﹣25°)=160°﹣∠AEG,∴∠AEG=80°;(3)2m﹣180.【解析】【解答】解:(1)设∠BEC=x°,根据题意,可列方程:180﹣x=3(90﹣x),解得x=45°,故∠BEC=45°,故答案为:45°;( 3 )∵EF平分∠AED,∴∠AEF=∠DEF,设∠AEF=∠DEF=α,∠AEG=∠FEG﹣∠AEF=m﹣α,∠CEG=180°﹣∠GEF﹣DEF=180﹣m﹣α,∴∠AEG﹣∠CEG=m﹣α﹣(180﹣m﹣α)=2m﹣180.故答案为:2m﹣180.【分析】(1)设∠BEC=x°,根据题意,可列方程:180﹣x=3(90﹣x),解出∠BEC;(2)由∠CEG=∠AEG﹣25°,得∠AEG=180°﹣∠BEC﹣∠CEG=180°﹣45°﹣(∠AEG﹣25°),解出∠AEG;(3)计算出∠AEG和∠CEG,然后相减,即可得到结果.6.如图,O为直线AB上一点,∠BOC=36°.(1)若OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数:(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,求∠AOE的度数:(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用n含的代数式表示∠AOE的度数________(直接写出结果).【答案】(1)解:∵∠BOC=36°,OD平分∠AOC,∴∠AOD=∠DOC=72°,∵∠DOE=90°,则∠AOE=90°−72°=18°;故答案为:18°(2)解:设∠AOD=x,则∠DOC=2x,∠BOC=180°−3x=36°,解得:x=48°,∴∠AOE=60°-x=60°−48°=12°(3) .【解析】【解答】(3)设∠AOD=x,则∠DOC=(n−1)x,∠BOC=180°-nx=36°,解得:x=,∴∠AOE=-=.【分析】(1)利用角平分线的性质得出∠AOD=∠DOC=72°,进而得出∠AOE的度数;(2)设∠AOD=x,则∠DOC=2x,∠BOC=180°−3x=36°,得出x的值,进而得出∠AOE 的度数;(3)利用(2)中作法,得出x与α的关系,进而得出答案.7.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=________°,∠NOB=________°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)50;40(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【解答】(1)如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.8.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

七年级上册期末试卷测试卷 (word版,含解析)

七年级上册期末试卷测试卷 (word版,含解析)

七年级上册期末试卷测试卷(word版,含解析)一、选择题1.在有理数2,-1,0,-5中,最大的数是()A.2B.C.0D.2.如图,给出下列说法:①∠B和∠1是同位角;②∠1和∠3是对顶角;③∠2和∠4是内错角;④∠A和∠BCD是同旁内角. 其中说法正确的有( )A.0个B.1个C.2个D.3个3.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a的值是()A.1 B.-2 C.3 D.b4.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐()A.13B.15C.17D.195.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°6.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是()A.13B.12C.23D.17.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A.B.4C.或4D.2或48.若x,y满足等式x2﹣2x=2y﹣y2,且xy=12,则式子x2+2xy+y2﹣2(x+y)+2019的值为()A.2018 B.2019 C.2020 D.2021 9.画如图所示物体的主视图,正确的是()A.B.C.D.10.有理数a、b在数轴上的位置如图所示,则下列各式正确的是( )A.ab>0 B.|b|<|a| C.b<0<a D.a+b>011.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m12.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( )A .﹣2B .0C .3D .513.下列各图是正方体展开图的是( )A .B .C .D . 14.2-的相反数是( )A .2-B .2C .12D .12- 15.关于零的叙述,错误的是( )A .零大于一切负数B .零的绝对值和相反数都等于本身C .n 为正整数,则00n =D .零没有倒数,也没有相反数.二、填空题16.3615︒'的补角等于___________︒___________′.17.(0.33)--________13--.(用“>”“<”或“=”填空) 18.计算:3-|-5|=____________.19.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为2k n (其中k 是使2k n 为奇数的正整数).“C 运算”不停地重复进行,例如,66n =时,其“C 运算”如下:…若35n =,则第2020次“C 运算”的结果是________.20.已知1x =是方程253ax a -=+的解,则a =__.21.已知线段 AB=7cm ,点 C 在直线 AB 上,若 AC=3cm ,点 D 为线段 BC 的中点,则线段AD= ___________________cm. 22.如图,三个一样大小的小长方形沿“竖-横-竖”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的宽为______.23.已知a ﹣2b =3,则7﹣3a +6b =_____.24.若王老师在一次数学过关测试中,以80分为过关线,记下了4名同学的成绩:+8,0,-8,+13,则这4名同学实际成绩最高的是__________分.25.甲数x 的23与乙数y 的14差可以表示为_________ 三、解答题26.如图,已知点A,B 是数轴上原点O 两侧的两点,其中点A 在负半轴上,点B 在正半轴上,AO=2, OB=10.动点P 从点A 出发以每秒2个单位长度的速度向右运动,到达点B 后立即返回,速度不变;动点Q 从点O 出发以每秒1个单位长度的速度向右运动,当点Q 到达点B 时,动点P ,Q 停止运动.设P ,Q 两点同时出发,运动时间为t 秒.(1)当点P 从点A 向点B 运动时,点P 在数轴上对应的数为 当点P 从点B 返回向点O 运动时,点P 在数轴上对应的数为 (用含t 的代数式表示)(2)当t 为何值时,点P ,Q 第一次重合?(3)当t 为何值时,点P ,Q 之间的距离为3个单位?27.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=.28.运动场环形跑道周长400米,小红跑步的速度是爷爷的53倍,小红在爷爷前面20米,他们沿跑道的同一方向同时出发,5min 后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?29.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是 立方单位,表面积是 平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.30.如图,直线AB,CD 交于点O ,OE 平分COB ∠,OF 是EOD ∠的角平分线.(1)说明: 2AOD COE ∠=∠;(2)若50AOC ∠=︒,求EOF ∠的度数;(3)若15BOF =︒∠,求AOC ∠的度数.31.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A =80°,则∠A 的半余角的度数为 ;(2)如图1,将一长方形纸片ABCD 沿着MN 折叠(点M 在线段AD 上,点N 在线段CD 上)使点D 落在点D ′处,若∠AMD ′与∠DMN 互为“半余角”,求∠DMN 的度数;(3)在(2)的条件下,再将纸片沿着PM 折叠(点P 在线段BC 上),点A 、B 分别落在点A ′、B ′处,如图2.若∠AMP 比∠DMN 大5°,求∠A ′MD ′的度数.32.解方程(1)5x ﹣1=3(x +1)(2)2151136x x +--= 33.解方程:(1)2(2)6x -=(2)11123 x x +--=四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。

七年级上册期末试卷综合测试(Word版 含答案)

七年级上册期末试卷综合测试(Word版 含答案)

七年级上册期末试卷综合测试(Word版含答案)一、选择题1.﹣3的相反数是()A.13-B.13C.3-D.32.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.3.如图,图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=18°,则图2中∠AEF的度数为()A.120°B.108°C.126°D.114°4.2020的相反数是()A.2020 B.﹣2020 C.12020D.﹣120205.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有()A.1个B.2个C.3个D.4个6.27-的倒数是()A.72B.72-C.27D.27-7.如图是一个几何体的表面展开图,这个几何体是()A .B .C .D . 8.一5的绝对值是( )A .5B .15C .15- D .-59.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ).A .B .C .D .10.画如图所示物体的主视图,正确的是( )A .B .C .D .11.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤ 12.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点 13.下列说法正确的是( )A .如果ab ac =,那么b c =B .如果22x a b =-,那么x a b =-C .如果a b = 那么23a b +=+D .如果b c a a=,那么b c = 14.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6-15.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .二、填空题16.3615︒'的补角等于___________︒___________′.17.比较大小:π1-+ _________3-(填“<”或“=”或“>”).18.某同学在电脑中打出如下排列的若干个2、0: 202202220222202222202222220,若将上面一组数字依此规律连续复制得到一系列数字,那么前2020个数字中共有__________个0.19.若221x x -+的值是4,则2245x x --的值是_________.20.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.21.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.22.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.23.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.24.计算:3-|-5|=____________.25.216x -的系数是________ 三、解答题26.如图,已知在三角形ABC 中,BD AC ⊥于点D ,点E 是BC 上一点,EF AC ⊥于点F ,点M ,G 在AB 上,且AMD AGF ∠∠=,当1∠,2∠满足怎样的数量关系时,//DM BC ?并说明理由.27.解下列方程:(1)3(1)4(21)8x x --+=(2)12123x x -+-= 28.先化简,再求值:3x 2+(2xy -3y 2)-2(x 2+xy -y 2),其中x =-1,y =2.29.解方程(1)528x +=-(2)4352x x -=+(3)()4232x x -=--(4)2151136x x +--= 30.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.31.计算:(1)﹣2÷8×(﹣12);(2)2312(3)()19---⨯-+.32.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.33.按要求画图:如图,在同一平面内有三点A、B、C.(1)画直线AB和射线BC;(2)连接线段AC,取线段AC的中点D;(3)画出点D到直线AB的垂线段DE.四、压轴题34.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由. 35.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =36.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).37.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.38.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)39.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.40.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=_______;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α-β|=45°,请用t的式子表示α、β并直接写出t的值.41.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).42.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数43.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.B解析:B【解析】试题分析:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.解:根据以上分析应是圆锥和圆柱的组合体.故选B.考点:点、线、面、体.3.D解析:D【解析】【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x-18°,再由第2次折叠得到∠C′FB=∠BFC=x-18°,于是利用平角定义可计算出x=66°,接着根据平行线的性质得∠A′EF=180°-∠B′FE=114°,所以∠AEF=114°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−18°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−18°,而∠B′FE+∠BFE+∠C′FB=180°,∴x+x+x−18°=180°,解得x=66°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−66°=114°,∴∠AEF=114°.故答案选:D.【点睛】本题考查了翻折变换(折叠问题)与平行线的性质,解题的关键是熟练的掌握翻折变换(折叠问题)与平行线的性质.4.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.5.B解析:B【解析】【分析】根据直角三角板可得第一个图形∠α+∠β=90°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α+∠β=90°,根据同角的余角相等可得第二个图形∠α=∠β,第三个图形∠α和∠β互补,根据等角的补角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有2个,故选B.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.6.B解析:B【解析】根据倒数的定义即可求解.【详解】27-的倒数是72- 故选B.【点睛】此题主要考查倒数,解题的关键是熟知倒数的定义.7.C解析:C【解析】【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选:C .【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.8.A解析:A【解析】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣5到原点的距离是5,所以﹣5的绝对值是5,故选A .9.A解析:A【解析】试题解析:A 、∠α+∠β=180°-90°=90°,则∠α与∠β互余,选项正确;B 、∠α与∠β不互余,故本选项错误;C 、∠α与∠β不互余,故本选项错误;D 、∠α和∠β互补,故本选项错误.故选A .10.A解析:A【解析】【分析】直接利用三视图解题即可【详解】解:从正面看得到的图形是A .【点睛】本题考查三视图,基础知识扎实是解题关键11.C解析:C【解析】【分析】根据数轴上点的距离判断即可.【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>;∴②③⑤正确故选C.【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质.12.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a ,如果a 大于180°,夹角=360°-a ,如果a ≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.13.D解析:D【解析】【分析】根据等式基本性质分析即可.【详解】A . 如果ab ac =,当0a ≠, 那么b c =,故A 选项错误;B . 如果22x a b =-,那么12x a b =-,故B 选项错误;C . 如果a b = 那么22a b +=+,故C 选项错误;D . 如果b c a a=,那么b c =,故D 选项正确. 故选:D【点睛】本题考查了等式基本性质,理解性质是关键. 14.A解析:A【解析】【分析】把x =3代入方程3x ﹣a =0得到关于a 的一元一次方程,解之即可.【详解】把x =3代入方程3x ﹣a =0得:9﹣a =0,解得:a =9.故选A .【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.15.C解析:C【解析】【分析】根据正方体的展开图特征逐一判断即可.【详解】A 不是正方体的展开图,故不符合题意;B 不是正方体的展开图, 故不符合题意;C 是正方体的展开图,故符合题意;D 不是正方体的展开图,故不符合题意;故选C .【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.二、填空题16.45【解析】【分析】根据补角定义直接解答.【详解】的补角等于:180°−=143°45′.故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题解析:45【解析】【分析】根据补角定义直接解答.【详解】3615︒'的补角等于:180°−3615︒'=143°45′.故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题的关键是熟记补角的概念.17.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.解析:>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.18.62【解析】【分析】首先根据题意,可得每两个0之间2的个数依次多一个,进而即可解题.【详解】解:由题可知每两个0之间2的个数依次多一个,即2的个数分别是1,2,3,4,5..... 然后根解析:62【解析】【分析】首先根据题意,可得每两个0之间2的个数依次多一个,进而即可解题.【详解】解:由题可知每两个0之间2的个数依次多一个,即2的个数分别是1,2,3,4,5.....然后根据20,220,2220,22220....的数字个数分别是2,3,4,5,6....∴前n 组总个数为(12)1(3)22n n n n ++=+, ∵162(623)20152⨯⨯+=,163(633)20792⨯⨯+=, 2015<2020<2079∴前2020个数字中共有62个0.【点睛】 此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19.1【解析】【分析】根据题意,得到,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵,∴,∴;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到,熟练运用整解析:1【解析】【分析】根据题意,得到223x x -=,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵2214x x -+=,∴223x x -=,∴222452(2)52351x x x x --=--=⨯-=;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到223x x -=,熟练运用整体代入法进行解题.20.-1【解析】分析:由题意可得算式:-5+4,利用有理数的加法法则运算,即可求得答案. 详解:根据题意得:-5+4=-1(℃),∴调高4℃后的温度是-1℃.故答案为-1.点睛:此题考查了有理解析:-1【解析】分析:由题意可得算式:-5+4,利用有理数的加法法则运算,即可求得答案.详解:根据题意得:-5+4=-1(℃),∴调高4℃后的温度是-1℃.故答案为-1.点睛:此题考查了有理数的加法的运算法则.此题比较简单,注意理解题意,得到算式-5+4是解题的关键.21.静.【解析】【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“冷”与“心”是相对面,“细”与“解析:静.【解析】【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“冷”与“心”是相对面,“细”与“范”是相对面,“静”与“规”是相对面,在正方体中和“规”字相对的字是静;故答案为:静.【点睛】本题主要考查了正方形相对两个面上的文字,注意正方形的空间图形,从相对面入手,分析及解答问题.22.﹣5.【解析】【分析】根据:当输入的值为时,输出的值是,可得:,据此求出的值是多少,进而求出当输入的值为时,输出的值为多少即可.【详解】∵当x =12时,y =8,∴12÷3+b =8,解得解析:﹣5.【解析】【分析】根据:当输入x 的值为12时,输出y 的值是8,可得:1238b ÷+=,据此求出b 的值是多少,进而求出当输入x 的值为12-时,输出y 的值为多少即可. 【详解】∵当x =12时,y =8,∴12÷3+b =8,解得b =4,∴当x =﹣12时, y =﹣12×2﹣4=﹣5. 故答案为:﹣5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简. 23.15【解析】【分析】因为∠BAC=60°, ∠DAE=45°,根据角的和差关系及三角板角的度数求解.【详解】解:∵∠DAB=∠BAC-∠DAC, ∠EAC=∠DAE-∠DAC∴=(∠B解析:15【解析】【分析】因为∠BAC=60°, ∠DAE=45°,根据角的和差关系及三角板角的度数求解.【详解】解:∵∠DAB=∠BAC-∠DAC, ∠EAC=∠DAE-∠DAC∠-∠∴DAB EAC=(∠BAC-∠DAC)-(∠DAE-∠DAC)=∠BAC-∠DAC- ∠DAE+∠DAC=∠BAC-∠DAE∵∠BAC=60°, ∠DAE=45°∠-∠=60°-45°=15°.∴DAB EAC【点睛】本题考查角的和差关系,根据和差关系将角进行合理的等量代换是解答此题的关键. 24.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.25.【解析】【分析】根据单项式的系数的定义即可求解.【详解】解:的系数是.故答案为:.【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数. 解析:16- 【解析】【分析】根据单项式的系数的定义即可求解.【详解】 解:216x -的系数是16-. 故答案为:16-. 【点睛】本题考查单项式的系数.单项式中的数字因数叫做单项式的系数.三、解答题26.当12∠∠=时,//DM BC【解析】【分析】根据平行线的性质得到2CBD ∠∠=,等量代换得到1CBD ∠∠=,根据平行线的判定定理得到//GF BC ,证得//MD GF ,根据平行线的性质即可得到结论.【详解】当12∠∠=时,//DM BC ,理由://BD EF ,2CBD ∠∠∴=,12∠∠=,1CBD ∠∠∴=,//GF BC ∴,AMD AGF ∠∠=,//MD GF ∴,//DM BC ∴.【点睛】本题考查了平行线的判定和性质,解题关键是熟练掌握平行线的判定和性质.27.(1)3x =-;(2)13x =.【解析】【分析】(1)根据等式的基本性质,去括号、移项、合并同类项、系数化1即可;(2)根据等式的基本性质,去分母、去括号、移项、合并同类项、系数化1即可.【详解】解下列方程:(1)3(1)4(21)8x x --+=解:33848x x ---=5843x -=++515x -=3x =-(2)12123x x -+-= 解:3(1)62(2)x x --=+ 33642x x --=+32436x x -=++13x =【点睛】本题考查解一元一次方程,解题关键是:等式性质是解方程的依据.28.x 2﹣y 2,﹣3.【解析】【分析】去括号合并同类项后,再代入计算即可.【详解】原式=3x 2+2xy ﹣3y 2﹣2x 2﹣2xy +2y 2=x 2﹣y 2.当x =﹣1,y =2时,原式=(﹣1)2﹣22=1﹣4=﹣3.【点睛】本题考查了整式的加减,解题的关键是熟练掌握整式的加减法则,属于中考常考题型.29.(1)x=-2;(2)x=4;(3)x=2;(4)x=-3【解析】【分析】(1)先移项合并同类项,再系数化1;(2)先移项合并同类项,再系数化1;(3)先去括号,再移项合并同类项,最后系数化1;(4)先去分母,再去括号,然后一项合并类项,最后在系数化1.【详解】解:(1)528x +=-,移项合并同类项得:5x=-10系数化1得:x=-2;(2)4352x x -=+移项合并同类项得:2x=8系数化1得:x=4;(3)()4232x x -=--去括号得:4-x=2-6+3x移项合并同类项得:4x=8系数化1得:x=2;(4)2151136x x +--= 去分母得:2(2x+1)-(5x-1)=6去括号得:4x+2-5x+1=6移项合并同类项得:-x=3系数化1得:x=-3【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的步骤是解题的关键.30.【解析】【分析】首先根据AB 和BD 求出AD ,然后根据中点的性质求出AC ,即可得出CB.【详解】∵12AB =,7BD =,∴1275AD AB BD =-=-=.∵点D 是AC 的中点,∴22510AC AD ==⨯=.∴12102CB AB AC =-=-=.【点睛】此题主要考查线段的求解,熟练掌握,即可解题.31.(1)3;(2)﹣6.【解析】【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】(1)原式121238=⨯⨯=;(2)原式1427143169⎛⎫=-+⨯-+=--+=-⎪⎝⎭.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 32.(1)150°;(2)20°;(3)32°;(4)30°.【解析】【分析】(1)根据角的和差即可得出结论;(2)根据角的和差即可得出结论;(3)根据角的和差即可得出结论.【详解】(1)∵∠EBC=∠EBD+∠ABC,∴∠EBC=90°+60°=150°.(2)∵∠EBC=∠EBD+∠DBA+∠ABC,∴∠α=∠EBC-∠EBD-∠ABC=170°-90°-60°=20°;(3)∵∠EBC=∠EBD+∠DBC=∠EBD+∠ABC-∠α,∴∠α=∠EBD+∠ABC-∠EBC=90°+60°-118°=32°;(4)∵∠ABE=∠DBE-∠α=90°-∠α,∠DBC=∠ABC-∠α=60°-∠α,∴∠ABE-∠DBC=(90°-∠α)-(60°-∠α)=90°-∠α-60°+∠α=30°.【点睛】本题考查了角的和差的计算.结合图形得出角的和差关系是解答本题的关键. 33.(1)见详解;(2)见详解;(3)见详解.【解析】【分析】(1)根据直线和射线的概念作图可得;(2)根据线段的概念和中点的定义作图可得;(3)过点D作DE⊥AB于点E,连接DE即可.【详解】解:(1)如图所示,直线AB和射线BC即为所求;(2)如图线段AC和点D即为所求;(3)线段DE为所求垂线段.【点睛】本题主要考查作图——复杂作图,解题的关键是掌握直线、射线、线段及点到直线的距离的概念是解题的关键.四、压轴题34.(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或180 11或1807,使得∠POQ=12∠AOQ.【解析】【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t≤15时,2t +40+6t=120, t=10;当15<t≤20时,2t +6t=120+40, t=20;当20<t≤30时,2t=6t-120+40, t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=12(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=12(120 -6t),t=18011.当20<t≤30时,2t–(6t -120)=12(6t -120),t=1807.答:存在t=12或18011或1807,使得∠POQ=12∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.35.(1)3;(2)12或74-;(3)13秒或79秒 【解析】【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可.【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1,∴线段AB 的长度为:-1-(-4)=3;(2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--,解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+,解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.36.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8.【解析】【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB 的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ),∵CD=2,∴|0﹣m|=2,解得:m=±2, ∴点D 的坐标为(1,2)或(1,﹣2).【拓展】:(1)d (E ,F )=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E (2,0),H (1,t ),d (E ,H )=3,∴|2﹣1|+|0﹣t |=3,解得:t =±2.(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),∵三角形OPQ 的面积为3, ∴12|x |×3=3,解得:x =±2. 当点Q 的坐标为(2,0)时,d (P ,Q )=|3﹣2|+|3﹣0|=4;当点Q 的坐标为(﹣2,0)时,d (P ,Q )=|3﹣(﹣2)|+|3﹣0|=8综上所述,d (P ,Q )的值为4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.37.(1)5cm ;(2)2a b +;(3)线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【解析】【分析】(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN CM CN =+;(2)根据点M 、N 分别是AC 、BC 的中点,12CM AC =,12CN BC =,所以()122a b MN AC BC +=+=; (3)长度会发生变化,分点C 在线段AB 上,点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论.【详解】(1)6AC cm =,M 是AC 的中点,∴132CM AC ==(cm ), 4BC cm =,N 是CB 的中点,∴122CN CB ==(cm ), ∴325MN CM CN =+=+=(cm );(2)由AC a =,M 是AC 的中点,得1122CM AC a ==, 由BC b =,N 是CB 的中点,得1122CN CB b ==, 由线段的和差,得222a b a b MN CM CN +=+=+=; (3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知2a b MN +=, 当点C 在线段AB 的延长线时,如图:则AC a BC b =>=,AC a =,点M 是AC 的中点,∴1122CM AC a ==, BC b =,点N 是CB 的中点,∴1122CN BC b ==, ∴222a b a b MN CM CN -=-=-= 当点C 在线段BA 的延长线时,如图:则AC a BC b =<= , 同理可得:1122CM AC a ==, 1122CN BC b ==, ∴222b a b a MN CN CM -=-=-=, ∴综上所述,线段MN 的长度变化,2a b MN +=,2a b -,2b a -. 【点睛】本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.38.(1)①3;②12a ;(2)③40︒;④40;(3)12n 【解析】【分析】(1)①先求出BC ,再根据中点求出AM 、BN ,即可求出MN 的长;②利用①的方法求MN 即可;(2)③先求出∠BOC ,再利用角平分线的性质求出∠AOM ,∠BON ,即可求出∠MON ; ④利用③的方法求出∠MON 的度数;(3)先求出∠BOC ,利用角平分线的性质分别求出∠AOM ,∠BON ,再根据角度的关系求出答案即可.【详解】(1)①∵6AB =,2AC =,∴BC=AB-AC=4,∵M 是AC 的中点,N 是BC 的中点.∴112AM AC ==, 122BN BC ==, ∴MN=AB-AM-BN=6-1-2=3;②∵AB a ,AC b =,∴BC=AB-AC=a-b ,∵M 是AC 的中点,N 是BC 的中点.∴12AM b =,1()2BN a b =-, ∴MN=AB-AM-BN=11()22a b a b ---=12a , 故答案为:12a ; (2)③∵80AOB ∠=︒,30AOC ∠=︒,∴∠BOC=∠AOB-∠AOC=50︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=15︒,∠BON=25︒,∴∠MON=∠AOB-∠AOM-∠BON=40︒;④∵80AOB ∠=︒,AOC m ∠=︒,∴∠BOC=(80-m)︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=12m ,∠BON=(40-12m )︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒, 故答案为:40;(3)∵AOB n ∠=︒,AOC m ∠=︒,∴∠BOC=∠AOC-∠AOB=(m-n)︒,∵AOC ∠和BOC ∠的角平分线分别是OM ,ON ,∴∠AOM=12m ,∠CON=1()2m n -, ∴∠MON=∠AOC-∠AOM-∠CON=111()222m m m n n ---=, 故答案为:12n . 【点睛】此题考查线段的和差计算,角度的和差计算,线段中点的性质,角平分线的性质,解题中注意规律性解题思想的总结和运用.39.(1)MN =40;(2)EF=35;(3)509=t 或t =12. 【解析】【分析】 (1)由MN =BM+BN =1122AB BD +即可求出答案; (2)根据EF =AD ﹣AE ﹣DF ,可求出答案;(3)可得PE =AE ﹣AB ﹣BP =52t +,DF =752t -,则QF =55722t -或75522t -,由PE =QF 可得方程,解方程即可得出答案.【详解】解:(1)∵M 为AB 的中点,N 为BD 的中点,∴12BM AB =,12BN BD =, ∴MN =BM+BN =1122AB BD +=11804022AD =⨯=;。

2023-2024学年第一学期七年级生物期末考试试题word版(带答案)

2023-2024学年第一学期七年级生物期末考试试题word版(带答案)

2023-2024学年第一学期七年级期末检测 生 物 试 题考试时间:60分钟;分值:100分注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I 卷一、选择题(本大题共25小题,共50分)1.“十月怀胎,一朝分娩”。

母亲在怀孕期间,身体负担明显加重。

在从受精卵到胎儿呱呱坠地前的整个过程中,其生长发育所需的营养物质获取于()①卵黄 ②胎盘 ③脐带 ④母体 A. ①③ B. ②④ C. ①④ D. ②③ 2.人体新生命诞生于图中哪个结构( ) A. ① B. ②C. ③D. ④3.十月怀胎,一朝分娩,婴儿在母体内大约280天.请你写出正常情况下的一个胎儿从生命开始到呱呱坠地其间所经历的全部场所( )①睾丸 ②输精管 ③卵巢 ④输卵管 ⑤子宫 ⑥阴道. A. ④⑤⑥B. ②④⑤⑥C. ①②④⑤⑥D. ①②③④⑤⑥4.下表所示实验或探究活动中,相关操作或注意事项与所要达到的目的对应错误的是( )名称 操作或注意事项 目的A 探究唾液对淀粉的消化作用两支试管在37°温水中放置一段时间使唾液中消化酶更好的发挥作用B 比较不同果蔬中维生素C 的含量 始终使用一支滴管,并在每次使用前用蒸馏水洗干净 提高实验的准确性C 探究酒精对水蚤心率的影响记录水蚤心率时重复三次使实验数据更准确D比较人体呼出气体与空气的差别 在两个集气瓶中分别伸入一根点燃的细木条检测两瓶气体中有无二氧化碳5.如图示人体某部位的部分血管,箭头示血液流动方向,下列说法错误的是( )乡镇 学校 班级 姓名 考号 座号 密 封 线A. 若b为肾小球毛细血管网,则c中为代谢废物减少的静脉血B. 若b为小肠处毛细血管网,则c为含营养物质丰富的静脉血C. 若b为肺部毛细血管网,则经肺循环后c中为二氧化碳减少的动脉血D. 若b为肾小管外毛细血管网,则c中为含营养物质增多的静脉血6.下面关于人体消化食物、吸收营养物质的叙述中,错误的是()A. 人体内消化食物和吸收营养物质的主要器官是小肠B. 食物中的所有营养物质都必须经过消化后才能被人体吸收C. 消化主要是通过消化液中多种消化酶的作用而进行D. 胆汁中虽然没有消化酶,但对食物的消化也能起作用7.人体的结构与功能是相适应的,有关这一结论的下列例证中,不正确的是()A. 小肠的内表面有许多环形皱襞,皱襞上有许多小肠绒毛,适宜消化食物B. 毛细血管的管壁非常薄,数目多、分布广,适宜物质交换C. 肺泡外缠绕着毛细血管网和弹性纤维,适宜气体交换D. 鼻腔中的鼻毛和鼻黏膜,可使吸入的空气变得清洁、温暖且湿润8.如图是人体在平静呼吸时肺内气体容量变化曲线,由b到c的过程表示()A. 吸气,膈肌收缩,膈顶下降B. 呼气,膈肌收缩,膈顶下降C. 吸气,膈肌舒张,膈顶上升D. 呼气,膈肌舒张,膈顶上升9.如图是人体呼吸全过程示意图,有关说法正确的是()A. 图中a,b表示氧气扩散过程,c,d表示二氧化碳扩散过程B. 肺吸气后进行的过程依次是a,b,c,d,最后完成呼气过程C. a过程后,毛细血管中的动脉血变成了静脉血D. C过程后,血液到达心脏时,首先流人左心房10.下列有关人体生理活动的叙述,正确的是()A. 血液中的气体都是由红细胞中的血红蛋白来运输B. 肾小管重吸收作用消耗的氧气是通过扩散作用从血液进入组织细胞C. 经体循环,血液因营养物质减少,代谢废物增多,动脉血变成了静脉血D. 人能够控制呼吸运动暂时停止,这说明人的呼吸中枢位于大脑皮层上11.如图所示为正常情况下人体内的某种物质(Y)依次经过Ⅰ、Ⅱ、Ⅲ三种结构时含量的变化曲线。

七年级上册期末试卷试卷(word版含答案)

七年级上册期末试卷试卷(word版含答案)

七年级上册期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.2.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。

七年级上册期末试卷试卷(word版含答案)

七年级上册期末试卷试卷(word版含答案)

七年级上册期末试卷试卷(word 版含答案)一、选择题1.庆祝澳门回归祖国20周年时,据统计澳门共有女性约360000人,则360000用科学记数法可以表示为( ) A .53610⨯ B .60.3610⨯ C .53.610⨯ D .43610⨯2.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=-3.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( )A .c >0,a <0B .c <0,b >0C .c >0,b <0D .b =0 4.下列单项式中,与2a b 是同类项的是( )A .22a bB .22a bC .2abD .3ab 5.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( ) A .3B .4C .5D .66.如图,C 是线段AB 上一点, AC=4,BC=6,点M 、N 分别是线段AC 、BC 的中点,则线段MN 的长是( )A .5B .92C .4D .37.A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2.5 B .2或10C .2.5或3D .38.12-的倒数是( ) A .B .C .12-D .129.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .10.下列说法: ①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直; ④过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个11.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.12.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A.27°40′B.57°40′C.58°20′D.62°20′13.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④14.下列合并同类项正确的是()A.2x+3x=5x2B.3a+2b=6ab C.5ac﹣2ac=3 D.x2y﹣yx2=0 15.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是().A.-1B.0C.3D.4二、填空题︒'的补角等于___________︒___________′.16.361517.如图,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)18.若单项式2a m b4与-3ab2n是同类项,则m-n=__.19.如图,已知线段AB =8,若O 是AB 的中点,点M 在线段AB 上,OM =1,则线段BM 的长度为_____.20.已知关于x 的方程4231x m x +=+与方程3265x m x +=+的解相同,则方程的解为_________.21.在2π,3.14,0,0.1010010001(每两个1之间依次增加1个0),23中,无理数有_________个.22.2-的结果是_______.23.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.24.已知220x y +-=,则124x y --的值等于______. 25.-6的相反数是 .三、解答题26.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分AOB ∠,OE 在BOC ∠内,13BOE EOC ∠=∠.(1)若OE AC ⊥,垂足为O 点,则∠BOE 的度数为________°,BOD ∠的度数为________°;在图中,与AOB ∠相等的角有_________; (2)若32AOD ∠=︒,求EOC ∠的度数. 27.先化简,再求值:()()2222233a b ab aba b ---+,其中1a =-,13b =. 28.、两地相距,甲、乙两车分别沿同一条路线从地出发驶往地,已知甲车的速度为,乙车的速度为,甲车先出发后乙车再出发,乙车到达地后再原地等甲车.(1)求乙车出发多长时间追上甲车? (2)求乙车出发多长时间与甲车相距?29.先化简,再求值:2a 2b ﹣3ab 2﹣2(a 2b +ab 2),其中a =1,b =﹣2. 30.如图,直线AB 与CD 相交于点O ,OE 是COB ∠的平分线,OE OF ⊥,. (1)图中∠BOE 的补角是(2)若∠COF =2∠COE ,求∠BOE 的度数;(3) 试判断OF 是否平分∠AOC ,并说明理由;请说明理由.31.如图,已知直线AB和CD相交于点O,OE CD⊥,OF平分AOE∠.(1)写出AOC∠与BOD∠的大小关系:______,判断的依据是______;(2)若35COF∠=︒,求BOD∠的度数.32.某商店以每盏20元的价格采购了一批节能灯,运输过程中损坏了2 盏,然后以每盏25元的价格售完,共获得利润150元.该商店共购进了多少盏节能灯?33.先化简,后求值.(1)化简:()()22222212a b ab ab a b+--+-(2)当()221320b a-++=时,求上式的值.四、压轴题34.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.35.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a≠相除记作na,读作“a的n次商”.(1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是()A.任何非零数的2次商都等于1B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭36.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.37.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由. 38.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).39.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .40.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.41.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 42.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值43.已知,,a b 满足()2440a b a -+-=,分别对应着数轴上的,A B 两点. (1)a = ,b = ,并在数轴上面出,A B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,点Q 到达点C 后停止运动.求点P 和点Q 运动多少秒时,,P Q 两点之间的距离为4,并求此时点Q 对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将360000用科学记数法表示为:3.6×105. 故选C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.A解析:A 【解析】 【分析】根据幂的乘法运算法则判断即可. 【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误; 故选A. 【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.3.A解析:A 【解析】 【分析】根据题意分类讨论,综合情况解出即可. 【详解】1.假设a 为负数,那么b+c 为正数; (1)b 、c 都为正数;(2)一正一负,因为|b|>|c|,只能b 为正数,c 为负数; 2.假设a 为正数,那么b+c 为负数,b 、c 都为负数;(1)若b 为正数,因为|b|>|c|,所以b+c 为正数,则a+b+c=0不成立; (2)若b 为负数,c 为正数,因为|b|>|c|,则|b+c|<|b|<|a|,则a+b+c=0不成立. 故选A. 【点睛】本题考查绝对值的性质,关键在于分类讨论正负性.4.A解析:A 【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A . 考点:同类项的概念.5.D解析:D 【解析】 【详解】根据题意得到n ﹣3=3,即可求出n 的值. 解:由题意得:n ﹣3=3, 解得:n=6. 故选D6.A解析:A 【解析】 【分析】根据线段中点的性质,可得MC ,NC 的长,根据线段的和差,可得答案.【详解】解:(1)由点M 、N 分别是线段AC 、BC 的中点,得MC=12AC=12×4=2,NC=12BC=12×6=3. 由线段的和差,得: MN=MC+NC=2+3=5; 故选:A. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出MC ,NC 的长是解题关键.7.C解析:C 【解析】 【分析】分两种情况讨论,①甲乙没有相遇过;②甲乙相遇过后,根据题意结合这两种情况分别列出关于t 的一元一次方程求解即可. 【详解】解:甲车行驶的路程为110t 千米,乙车行驶的路程为90t 千米 ①当甲乙没有相遇过时,根据题意得550(11090)50t t -+= 解得 2.5t =②当甲乙相遇过时,根据题意得(11090)55050t t +-= 解得3t =综合上述,t 的值为2.5或3. 故选:C 【点睛】本题主要考查了一元一次方程的应用,正确理解题意是解题的关键,难点在于要从相遇前和相遇后两方面去考虑,涉及到了分类讨论的数学思想.8.A解析:A 【解析】 【分析】根据倒数的概念求解即可. 【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A9.B解析:B 【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B 不能围成.考点:棱柱的侧面展开图.10.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC,且A,B,C三点共线时,则点C是线段AB的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A.【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.11.B解析:B【解析】试题分析:A.∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B.∠1、∠2是对顶角,根据其定义;故本选项正确;C.根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D.根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B.考点:对顶角、邻补角;平行线的性质;三角形的外角性质.12.B解析:B【解析】【分析】先由∠1=27°40′,求出∠CAE的度数,再根据∠CAE+∠2=90°即可求出∠2的度数.【详解】∵∠1=27°40′,∴∠CAE=60°-27°40′=32°20′,∴∠2=90°-32°20′= 57°40′.故选B.【点睛】本题考查了角的和差及数形结合的数学思想,认真读图,找出其中的数量关系是解答本题的关键.13.C解析:C【解析】【分析】【详解】试题分析:直接利用直线的性质以及两点确定一条直线的性质分析得出答案.解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选C.考点:直线的性质:两点确定一条直线.14.D解析:D【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,结合选项即可得出答案.【详解】A、2x+3x=5x,故原题计算错误;B、3a和2b不是同类项,不能合并,故原题计算错误;C、5ac﹣2ac=3ac,故原题计算错误;D、x2y﹣yx2=0,故原题计算正确;故选:D.【点睛】此题考查了同类项的合并,属于基础题,掌握同类项的合并法则是关键.15.C解析:C【解析】【分析】观察数轴根据点B与点A之间的距离即可求得答案.【详解】观察数轴可知点A与点B之间的距离是5个单位长度,点B在点A的右侧,因为点A表示的数是-2,-2+5=3,所以点B表示的数是3,故选C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.二、填空题16.45【解析】【分析】根据补角定义直接解答.【详解】的补角等于:180°−=143°45′.故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题解析:45【解析】【分析】根据补角定义直接解答.【详解】︒'=143°45′.︒'的补角等于:180°−36153615故答案为:143;45.【点睛】此题属于基础题,较简单,本题考查补角的概念,解决本题的关键是熟记补角的概念.17.北偏东【解析】【分析】根据平行线的性质与方位角的定义即可求解.【详解】如图,依题意得∠CBD=50°,∴∠CBE=80°-50°=30°,故此时的航行方向为:北偏东故答案为:北偏东.解析:北偏东30【解析】【分析】根据平行线的性质与方位角的定义即可求解.【详解】如图,依题意得∠CBD=50°,∴∠CBE=80°-50°=30°,故此时的航行方向为:北偏东30故答案为:北偏东30.【点睛】此题主要考查方位角,解题的关键是熟知方位角的定义及平行线的性质. 18.﹣1【解析】【分析】直接利用同类项的定义,得出方程组,求解即可得出答案. 【详解】∵2amb4与-3ab2n是同类项,∴m=1,2n=4,解得:m=1,n=2,则m﹣n=1﹣2=﹣1.解析:﹣1【解析】【分析】直接利用同类项的定义,得出方程组,求解即可得出答案.【详解】∵2a m b4与-3ab2n是同类项,∴m=1,2n=4,解得:m=1,n=2,则m﹣n=1﹣2=﹣1.故答案为:﹣1.【点睛】本题考查了同类项,正确把握同类项的定义是解题的关键.19.3或5【解析】【分析】正确画出图形,有两种情形,根据图形进行求解即可.【详解】当点M在点O右边时,如图,∵O是AB中点,AB=8,∴OB=AB=4,∵OM=1,∴BM=OB﹣OM解析:3或5【解析】【分析】正确画出图形,有两种情形,根据图形进行求解即可.【详解】当点M在点O右边时,如图,∵O是AB中点,AB=8,∴OB=12AB=4,∵OM=1,∴BM=OB﹣OM=3,当点M在点O左边时,如图,∵O是AB中点,AB=8,∴OB=12AB=4,∵OM=1,∴BM=OB+OM=5,故答案为3或5.【点睛】本题考查了线段中点的定义、线段的和差,正确画图是解题的关键.注意点M可以在点O 的左、右两种情形.20.【解析】【分析】表示出两方程的解,由两方程为同解方程,求出m的值,进而确定出方程的解.【详解】解:方程,解得:x=1-2m,方程,解得:x=,由题意得:1-2m=,去分母得:3-6m解析:1x =-【解析】【分析】表示出两方程的解,由两方程为同解方程,求出m 的值,进而确定出方程的解.【详解】解:方程4231x m x +=+,解得:x=1-2m ,方程3265x m x +=+,解得:x=253m -, 由题意得:1-2m=253m -, 去分母得:3-6m=2m-5,移项合并得:8m=8,解得:m=1,代入得:4x+2=3x+1,解得:x=-1.故答案为:x=-1【点睛】此题考查了同解方程,同解方程即为两方程解相同的方程,正确计算是本题的解题关键.21.【解析】【分析】无理数就是无限不循环小数,由此即可解答.【详解】解:在,,,(每两个之间依次增加个),中,无理数有,,(每两个之间依次增加个)两个,故答案是:2.【点睛】此题主要考查解析:2【解析】【分析】无理数就是无限不循环小数,由此即可解答.【详解】 解:在2π,3.14,0,0.1010010001(每两个1之间依次增加1个0),23中,无理数有2π,0,0.1010010001(每两个1之间依次增加1个0)两个,故答案是:2.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.22.2【解析】【分析】根据绝对值的意义,即可得到答案.【详解】解:;故答案为:2.【点睛】本题考查了绝对值的意义,解题的关键是熟记绝对值的意义进行解题.解析:2【解析】【分析】根据绝对值的意义,即可得到答案.【详解】-=;解:22故答案为:2.【点睛】本题考查了绝对值的意义,解题的关键是熟记绝对值的意义进行解题.23.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.24.-3【解析】【分析】由可得:x+2y=2,运用整体思想将x+2y代入即可.【详解】解:∵∴∴故答案为:-3.【点睛】本题考查了整式的整体代入思想,掌握式子的变形是解题的关键.解析:-3【解析】【分析】由220x y +-=可得:x+2y=2,运用整体思想将x+2y 代入即可.【详解】解:∵220x y +-=∴2=2x y +∴()12412x+2y x y --=-⨯=1-22=-3故答案为:-3.【点睛】本题考查了整式的整体代入思想,掌握式子的变形是解题的关键.25.6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.解析:6【解析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,得-6的相反数是-(-6)=6.三、解答题26.(1)30,30,∠EOD ;(2)87°【解析】【分析】(1)根据13BOE EOC ∠=∠,即可得到∠BOE ,然后求出∠AOB ,利用角平分线的定义求出∠BOD ,再然后根据求出∠EOD 的度数,与∠AOB 相等;(2)根据角平分线的定义求出∠AOB ,再求出∠BOC ,然后求解即可.【详解】解:(1)∵OE AC ⊥,O 是直线AC 上一点∴∠EOC=∠AOE=90° 又∵13BOE EOC ∠=∠ ∴190303BOE ∠=⨯=∴∠AOB=90°-30°=60° ∵OD 平分AOB ∠ ∴1302BOD AOB ∠=∠= ∵∠EOD=∠BOD+∠BOE=60°所依∠AOB=∠EOD 故答案为:30,30,∠EOD ;(2)因为OD 平分∠AOB ,所以∠AOB=2∠AOD.因为∠AOD=32°,所以∠AOB=64°.所以∠COB=180°-∠AOB =116°.因为∠BOE=13∠EOC , 所以∠EOC=34∠COB=31164⨯︒=87°. 【点睛】本题考查了垂直的定义,角平分线的定义,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键. 27.109【解析】【分析】根据整式的运算法则即可求出答案.【详解】原式2222623a b ab ab a b =-+-[1,3]x ∈-当1a =-,13b =时, 原式()22111103(1)1()13399=⨯-⨯--⨯=+=. 【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,属于基础题型.28.(1)乙车出发2小时追上甲车;(2)乙车出发、、与甲车相距【解析】【分析】(1)设乙车出发x 小时追上甲车,由此时甲车走了(x+1)小时,根据两车所走的路程相等,列出方程进行求解即可;(2)分乙车没追上甲车、乙车追上甲车、乙车到达B 地而甲车没到达B 地三种情况分别解即可.【详解】(1)设乙车出发x小时追上甲车,由此时甲车走了(x+1)小时,由题意得60(x+1)=90x,解得:x=2,答:乙车出发2小时追上甲车;(2)①(小时),②(小时),③4小时后,甲距离地60千米,乙到达地等甲,还有可能相距50米,(小时),答:乙车出发2小时追上甲车;乙车出发、、与甲车相距.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解(1)的关键,分情况讨论是解(2)的关键.29.﹣5ab2,﹣20.【解析】【分析】先将原式去括号、合并同类项化简,再将a和b的值代入计算可得.【详解】原式=2a2b﹣3ab2﹣2a2b﹣2ab2=﹣5ab2,当a=1,b=﹣2时,原式=﹣5×1×(﹣2)2=﹣5×4=﹣20.【点睛】本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.30.(1)∠AOE和∠DOE;(2)30°;(3)OF平分∠AOC,理由见解析.【解析】【分析】(1)根据补角的定义可以得出结果,另外注意∠BOE=∠COE,不要漏解;(2)根据∠COE与∠COF互余,以及∠COF=2∠COE,可以求出∠COE的度数,又OE为∠BOC的平分线可以得出结果;(3)根据邻补角的性质、角平分线的定义解答.【详解】解:(1)∵OE平分∠BOC,∴∠BOE=∠COE,∵∠COE+∠DOE=180°,∴∠BOE+∠DOE=180°.又∵∠AOE+∠BOE=180°,所以∠BOE 的补角为∠AOE 和∠DOE;(2)∵OE OF ⊥,∴∠COE+∠COF=90°,又∠COF =2∠COE ,∴∠COE=30°.∴∠BOE=∠COE=30°;(3)∵OE ⊥OF ,∴∠EOF=90°,∴∠COF=90°-∠COE .又∵∠AOF=180°-∠EOF-∠BOE=90°-∠BOE ,又∠BOE=∠COE ,∴∠COF=∠AOF ,∴OF 平分∠AOC .【点睛】本题主要考查角度的相关计算,关键是要掌握余角、补角的定义与性质,以及角平分线的定义.31.(1)AOC BOD ∠=∠,对顶角相等;(2)20°.【解析】【分析】(1)根据对顶角相等填空即可; .(2)首先根据直角由已知角求得它的余角,再根据角平分线的概念求得∠AOE,再利用角的关系求得∠AOC,根据上述结论,即求得了∠BOD.【详解】(1)AOC BOD ∠=∠ 对顶角相等(2)解:因为OE CD ⊥,所以90COE ∠=︒,所以903555EOF COE COF ∠=∠-∠=︒-︒=︒.因为OF 平分AOE ∠,所以55AOF EOF ∠=∠=︒,所以553520AOC AOF COF ∠=∠-∠=︒-︒=︒.所以20BOD AOC ∠=∠=︒.【点睛】本题考查了邻补角的概念,角平分线、角的和差关系,正确求得一个角的余角,熟练运用角平分线表示角之间的倍分关系,以及角之间的和差关系是解题的关键.32.40【解析】【分析】【详解】解:设该商店共购进了x 盏节能灯25(x-2)-20x=150解得:x=40答:该商店共购进了40盏节能灯考点:本题考查了列方程求解点评:此类试题属于难度较大的一类试题,考生解答此类试题时务必要学会列方程求解的基本方法和步骤33.(1)2a b -1;(2)a=-2,b=12;1. 【解析】试题分析:(1)首先根据去括号的法则将括号去掉,然后再进行合并同类项化简;(2)根据非负数的性质求出a 和b 的值,然后代入化简后的式子进行计算,得出答案. 试题解析:(1)原式=22a b +22ab -22ab +1-2a b -2=2a b -1(2)根据非负数的性质可得:2b -1=0,a+2=0 解得:a=-2,b=12 ∴原式=2a b -1=4×12-1=2-1=1. 考点:(1)化简求值;(2)非负数的性质四、压轴题34.(1)8;(2)4或10;(3)t 的值为167和329【解析】【分析】(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C 到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6∴AB =6﹣(﹣2)=8答:AB 的值为8.(2)设点C 表示的数为x ,由题意得|x ﹣(﹣2)|=3|x ﹣6|∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x∴x =10或x =4答:点C 表示的数为4或10.(3)∵点C 位于A ,B 两点之间,∴点C 表示的数为4,点A 运动t 秒后所表示的数为﹣2+t ,①点C 到达B 之前,即2<t <3时,点C 表示的数为4+2(t ﹣2)=2t∴AC =t +2,BC =6﹣2t∴t +2=3(2t ﹣6)解得t =167②点C 到达B 之后,即t >3时,点C 表示的数为6﹣2(t ﹣3)=12﹣2t∴AC =|﹣2+t ﹣(12﹣2t )|=|3t ﹣14|,BC =6﹣(12﹣2t )=2t ﹣6∴|3t ﹣14|=3(2t ﹣6)解得t =329或t =43,其中43<3不符合题意舍去 答:t 的值为167和329 【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.35.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】【分析】(1)利用题中的新定义计算即可求出值;(2)利用题中的新定义计算即可求出值;(3)将原式变形即可得到结果;(4)根据题意确定出所求即可;(5)原式变形后,计算即可求出值.【详解】(1)3111111222222⎛⎫=÷÷=÷= ⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14; (2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意.(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯- 21()3=-; 611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯45=; 故答案为:21()3-,45;(4)由(3)得到规律:21()n n a a -=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a -, 故答案为:21()n a -;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 11186=-- 29=-. 【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序.36.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或18011或1807,使得∠POQ =12∠AOQ . 【解析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t≤15时,2t +40+6t=120, t=10;当15<t≤20时,2t +6t=120+40, t=20;当20<t≤30时,2t=6t-120+40, t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=12(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=12(120 -6t),t=18011.当20<t≤30时,2t–(6t -120)=12(6t -120),t=1807.答:存在t=12或18011或1807,使得∠POQ=12∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.37.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】。

七年级上册期末试卷试卷(word版含答案)

七年级上册期末试卷试卷(word版含答案)

七年级上册期末试卷试卷(word 版含答案)一、选择题1.下列图形中,线段PQ 的长度表示点P 到直线L 的距离的是( )A .B .C .D .2.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 3.下列各式中与a b c --的值不相等的是( ) A .()a b c -+B .()a b c --C .()()a b c -+-D .()()c b a ---4.下列各组中的两个单项式,属于同类项的一组是( ) A .23x y 与23xyB .3x 与3xC .22与2aD .5与-35.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -6.2020的相反数是( ) A .2020 B .﹣2020C .12020D .﹣120207.方程1502x --=的解为( ) A .4-B .6-C .8-D .10-8.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元. A .100B .140C .90D .1209.下列立体图形中,俯视图是三角形的是( )A .B .C .D .10.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个11.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .112.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30713.下列各式进行的变形中,不正确的是( ) A .若32a b =,则3222a b +=+ B .若32a b =,则3525a b -=- C .若32a b =,则23a b = D .若32a b =,则94a b =14.下列计算正确的是( ) A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab +=15.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( )A . 1.5(7020)x x =-+B .70 1.5(20)x x +=+C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.17.若a -2b =1,则3-2a +4b 的值是__.18.把一张长方形纸条ABCD 沿EF 折叠,若∠AEG =62°,则∠DEF =_____°.19.如图,AB ,CD 相交于点O ,EO AB ⊥,则1∠与2∠互为_______角.20.若∠1= 42°36’,则∠1 的余角等于___________°.21.三味书屋推出售书优惠方案:(1)一次性购书不超过100元,不享受优惠;(2)一次性购书超过100元但不超过200元一律打九折;(3)一次性购书超过200元及以上一律打八折。

七年级上册期末试卷综合测试(Word版 含答案)

七年级上册期末试卷综合测试(Word版 含答案)

七年级上册期末试卷综合测试(Word 版 含答案)一、选择题1.如图,AB ∥CD ,∠BAP =60°-α,∠APC =50°+2α,∠PCD =30°-α.则α为( )A .10°B .15°C .20°D .30°2.下列各组中的两个单项式,属于同类项的一组是( )A .23x y 与23xyB .3x 与3xC .22与2aD .5与-33.已知23a +与5互为相反数,那么a 的值是( )A .1B .-3C .-4D .-14.若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >335.下列平面图形不能够围成正方体的是( )A .B .C .D .6.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .7.下列语句错误的是( )A .两点确定一条直线B .同角的余角相等C .两点之间线段最短D .两点之间的距离是指连接这两点的线段8.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D . 9.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( )A .-3B .3C .-2D .210.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤ 11.把方程213148x x --=-去分母后,正确的结果是( ) A .2x -1=1-(3-x ) B .2(2x -1)=1-(3-x )C .2(2x -1)=8-3+xD .2(2x -1)=8-3-x 12.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣1202013.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( )A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯ 14.单项式24x y 3-的次数是( ) A .43- B .1 C .2 D .3 15.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .球体D .棱锥二、填空题16.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.17.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.18.若5x =是关于x 的方程2310x m +-=的解,则m 的值为______.19.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.20.按照下图程序计算:若输入的数是 -3 ,则输出的数是________21.在 -2 、-3 、4、5 中选取2个数相除,则商的最小值是________.22.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.23.单项式345ax y -的次数是__________. 24.有下列三个生活、生产现象:①用两个钉子就可以把木条固定在干墙上;②把弯曲的公路改直能缩短路程;③植树时只要定出两颗树的位置,就能确定同一行所在的直线.其中可用“两点之间,线段最短”来解释的现象有_____(填序号).25.4215='︒ _________°三、解答题26.解方程:(1)-5x +3=-3x -5;(2)4x -3(1-x )=11.27.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-、28.解方程:(1)5(2)1x x --=;(2)21101211364x x x -++-=-. 29.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点 A , B 表示的数分别为 a , b ,则 A , B 两点之间的距离AB=a-b ,线段 AB 的中点M 表示的数为2a b +.如图,在数轴上,点A,B,C 表示的数分别为-8,2,20.(1)如果点A 和点C 都向点B 运动,且都用了4秒钟,那么这两点的运动速度分别是点A 每秒_______个单位长度、点C 每秒______个单位长度;(2)如果点A 以每秒1个单位长度沿数轴的正方向运动,点C 以每秒3个单位长度沿数轴的负方向运动,设运动时间为t 秒,请问当这两点与点B 距离相等的时候,t 为何值? (3)如果点A 以每秒1个单位长度沿数轴的正方向运动,点B 以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C 点时就停止不动,设运动时间为t 秒,线段AB 的中点为点P ;① t 为何值时PC=12;② t 为何值时PC=4.30.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P 和图形M ,点B 是图形M 上任意一点,我们把线段PB 长度的最小值叫做点P 与图形M 之间的距离.例如,以点M 为圆心,1cm 为半径画圆如图1,那么点M 到该圆的距离等于1cm ;若点N 是圆上一点,那么点N 到该圆的距离等于0cm ;连接MN ,若点Q 为线段MN 中点,那么点Q 到该圆的距离等于0.5cm ,反过来,若点P 到已知点M 的距离等于1cm ,那么满足条件的所有点P 就构成了以点M 为圆心,1cm 为半径的圆.(初步运用)(1)如图2,若点P 到已知直线m 的距离等于1cm ,请画出满足条件的所有点P . (深入探究)(2)如图3,若点P 到已知线段的距离等于1cm ,请画出满足条件的所有点P . (3)如图4,若点P 到已知正方形的距离等于1cm ,请画出满足条件的所有点P .31.先化简,再求值:22225(3)4(3)a b ab ab a b ---+,其中a 、b 满足21(1)2a -与12b +互为相反数. 32.先化简,再求值:若x =2,y =﹣1,求2(x 2y ﹣xy 2﹣1)﹣(2x 2y ﹣3xy 2﹣3)的值.33.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOC =50°.求∠BOE 的度数.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|.根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.36.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 37.综合与实践问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.40.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .41.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.42.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年义务教育三年制初级中学教科书(修订本)配套试卷初一第一学期期末考试试卷(开卷) 政 治 …………综合能力和应用创新能力………… 晋江侨中 苏晓萍 时间:90分钟,满分:100分亲爱的同学,祝贺你又完成了一学期的学习任务!学了这学期新开设的思想政治课,你一定有颇多的收获吧,现在让我们在“你问我答”中来算算我们共收获了多少。

一、单项选择题(每小题2分,共36分) 1.有人说:“心理健康是人的健康的一半”,可见健康应该包括( ) A .心理健康、精神健康 B .身体健康、心理健康 C .身体健康、智力正常 D .情绪健全、性格开朗 2.“天下难事,必作于易;天下大事,必作于细。

”老子的话给你的启示是( ) A .只要做容易和细小的事情就一定能克服困难,成就大事 B .锻炼良好的心理品质,要从小事做起 C .天下没有难事、大事,只有易事、小事 D .这句话只适用于鼓励人们磨炼意志 3.诗句“朝辞白帝彩云间,千里江陵一日还。

两岸猿声啼不住,轻舟已过万重山”是诗人 的情绪反应() A .悲哀 B .喜悦 C .愤怒 D .恐惧 4.我们在生活中应学会表达不满。

如果有人背着我说三道四,我应该( ) A .以牙还牙,我也暗地里说他的坏话 B .把他揍一顿 C .一辈子不和他做朋友,他有了困难,我也不帮他 D .找他好好谈一次,告诉他背后说我坏话我很不高兴,如果我有什么缺点,请当面指出,我会改正的 5.考试前夕比较理想的情绪状态是( )A .兴奋得不能入睡B .悠闲自得,不放在心上C .适度兴奋紧张,进入备战状态D .恐惧6.西班牙伟大文学家塞万提斯一生遭受的挫折数不胜数,他在服役期间,左手受伤致残,情绪坏透了,但是也不愿让坏的情绪主宰自己的一生,于是他全身心投入写作,终于创作出了世界名著——《堂吉诃德》,他用来调节情绪的方法是()A.注意转移法B.认识改变法C.心理换位法D.情绪升华法7.小飞心爱的文曲星没有了,可难过了。

放学时一位同学不小心踩到了他的脚,于是气头上的小飞与同学大打一番“口水仗”。

唉,这一天可真是糟透了!对于小飞的所作所为,我认为()A.很好,有了不良的情绪,就是要把它发泄出来B.不好,不管怎样,文曲星也找不回来了,还是一个人默默地承受痛苦吧C.较好,这样可以同学们知道小飞不高兴,别去烦他D.不妥,小飞没有合理发泄不良情绪,伤害了无辜的同学,也使自己更不愉快了。

8.新年到了,同学们在互赠的贺卡上常常写到“万事如意”“心想事成”等祝福语,这从一个侧面说明了()A.人生难免有挫折B.祝福可以消除挫折C.人生可以避免挫折D.经历挫折就会成功9.东东个头是班上最小的,对此很他苦恼,很自卑,东东产生这种挫折感的原因()A.家庭因素B.社会因素C.学校因素D.个人因素10.杂交水稻之父袁隆平为研究水稻的增产、高产,不断探索,勇于实践,取得了突破性的进展,在成就和荣誉面前从不满足,永不止步,他成功的关键在于()A.有好的运气B.国家重视C.前人的宝贵经验D.开拓进取的精神11.制定磨炼意志的目标,应注意的是()A.目标越高越好B.目标要简单易行,容易实现C.从自己的实际出发,切实可行,难易适当D.不要求目标明确,可随时变动12.在青少年时期,几乎人人都萌发过成功的欲望,勾画过理想的蓝图。

可是为什么不是每个人都能如愿以偿呢?一个很重要的原因就在于()A.是否具有丰富的知识B.是否具有科学的方法C.是否具有坚强的意志D.是否具有远大的理想13.为了专心致志地搞好学习,不少同学凭着毅力放弃了自己迷恋的一些活动,如下棋、玩游戏机等。

说明了意志对人的行动具有()A.激励作用B.克制作用C.阻碍作用D.推动作用14.抗日战争时期,著名京剧演员梅兰芳留了胡须,拒绝为日本侵略者演出,这体现了他()A.高傲的性格B.自信心C.民族自信心D.倔强的性格15.“八仙过海,各显神通”的故事给我们的启示是:在培养自尊自信时应该()A.找到正确的参照标准B.好高骛远C.扬长避短D.多创造成功的记录16.持久的自尊自信来自于()A.不自卑B.不自傲C.不自负D.正确地看待成功与失败17.“不畏人知畏已知”说明了()A.经常磨砺自己B.害怕别人瞧不起自己C.懂得尊重他人D.有强烈的荣辱观18.升入初中以后,冬冬开始注重外表的修饰、言谈举止的文明,在意老师、同学的评价,这是因为他开始()A.希望别人了解自己B.希望他人尊重自己C.关注自己的形象D.渴望取得成功二.判断题(每小题1分,共10分)1.在同一社会里,人们的心理的品质各不相同,说明心理品质是天生的。

()2.21世纪对人才的要求是健壮的体魄、丰富的知识。

()3.中国有句老话:“困难象弹簧,看你强不强”,这里的“强”指的是精力旺盛。

()4.任何时候发出愉快的笑声都是精神健康的标志。

()5.人们承受挫折的精神支柱、强大动力是丰富的生活阅历。

()6.只要具备了科学知识,就是开拓进取的新一代。

()7.创造成功的记录要克服自卑的心理。

()8.人应该自尊,也应该自信,但不能自视过高,更不可狂妄自傲。

()9.探索创新是开拓进取的重要“发源地”。

()10.如果发现眼前的困难实在难于克服,于是放弃原有的目标、确定新的追求,这也是一种积极进取的态度。

()三、问答题(共54分)1.美国著名的作家、慈善家、演讲家——海伦·凯勒从小又盲又聋,但她面对人生的厄运,不甘沉沦,以常人难以想象的毅力学习、奋力拼搏、进取,终于成才成功。

⑴根据你的理解,海伦良好的心理有何表现?(5分)⑵海伦的人生经历给你什么启示?(5分)2.巴尔扎克说,“世界上的事情永远不是绝对的,结果完全因人而异,苦难对于天才是一块垫脚石……对于能干的人是一笔财富,对于弱者是一个万丈深渊。

”⑴从巴尔扎克这句话中我们可以体会出什么道理?(5分)⑵你认为要战胜人生中难以避免的苦难关键是什么?(2分)⑶学了初一政治,你准备怎样对待今后生活中出现的大大小小的苦难?(5分)3.说说做做(8分)情绪就象“神奇果”,会对人产生神奇的作用。

⑴回忆你经历过的情绪体验最深的一次事件,并描述一下你当时的感受。

(3分)⑵当时它对你产生了什么样的影响?(3分)⑶请你用一句话来经常提示自己主动控制不良情绪,保持乐观心态。

(2分)4.想一想,做一做(11分)本学期我市倡导“立现代观念、建现代城市、做现代人”,在我们同学中有些人出口成“脏”,受到老师严厉的批评,他们很不服气说,“这是小事,老师真是小题大做”。

⑴对上述同学的表现,我认为:____________________________________________(3分)⑵我提议以“净化我们的语言”为主题,开展一项活动,改掉说脏话的坏习惯。

①活动形式(具体的):________________________________________________(1分)②活动意义:____________________________________________________(2分)③活动准备:____________________________________________________(3分)⑶除此之外,你认为彻底改掉说脏话坏习惯的决窍是___________________(1分)还必须具备优秀的心理品质是___________________________________(1分)5.探究与活动(13分)1 23 4⑴上面四个漫画,你认为属于自尊自信应该是哪一个?(1分)⑵你如何看待其它漫画中人物的表现?(6分)⑶如果你身边有这样的同学或者你有这方面的心理障碍,请你暂时充当一回心理专家,给他们、给自己诊治。

(6分)初一第一学期期末考试试卷(开卷)答案一、单项选择题1.B2.B3.B4.D5.C6.D7.D8.A9.D10.D11.C12.C 13.B14.C15.C16.D17.D18.C二、判断题1.×2.×3.×4.×5.×6.×7.×8.√9.√10.√三、问答题1.⑴海伦良好的心理表现在:她意志坚强,有自制力,有良好的社会适应能力,智力正常,乐观开朗,自尊自信等。

⑵启示:良好的道德和健康的心理能使我们更好地发掘聪明才智,能使我们增添战胜困难的信心、勇气和力量,能使我们充分感受生活的美好和有意义,能使我们更好地适应社会生活,成为对社会有用的人。

我们要向海伦学习,培养起健康的心理和良好的道德,做一个有益于社会的人。

2.⑴道理:挫折具有双重性,它是坏事,给人以身体和心理上的打击和压力,造成精神上的烦恼和痛苦,给生活道路造成曲折。

但是在一定条件下可以变成好事,使人经受考验,得到锻炼,积累经验教训,催人奋发进取,变困难为顺利,变挫折为成功,可见挫折也有积极作用。

⑵关键是树立正确的生活目标,培养积极的生活态度。

⑶掌握战胜挫折的方法:冷静对待,自我疏导,请求帮助,积累经验,树立正确的人生目标,发展高尚的志趣,激发探索创新的热情,多接触新鲜事物,多学习先进人物,多用脑,多动手,多读好书,多参加社会实践活动,多参加美育活动等等。

3.⑴(略,可以是积极情绪的体验,也可以是消极情绪的体验,根据个人实际情况来作答)⑵积极情绪的影响:可以使人精神焕发,干劲倍增,使人积极行动,有利于人的身体健康、智力发展、正常水平的发挥。

消极情绪的影响:会使人无精打采,萎靡不振,削弱人的活动能力,不利于人的身心健康、智力发展、正常水平的发挥。

(根据个人的实际情况来答)⑶我能行,我很棒!要冷静,沉住气!爱拼就会赢!明天会更好!没有过不去的坎!等4.⑴我认为:说脏话会影响中学生的自身形象,不利于我们身心健康发展,还严重影响社会精神文明建设,不利于我们建设现代城市。

⑵活动形式:演讲比赛、辨论会、手抄报评比、班会等。

活动意义:能使同学们认识到不文明语言的危害,有助于他们养成文明用语的好习惯,提高自身文明形象等。

活动准备:宣传、组织同学们积极报名参加演讲比赛,合理分组,明确分工,选择主持人、评委、相关的服务人员,制定评分标准,确定好比赛时间等。

⑶决窍:勇于战胜自己优秀的心理品质:坚强的意志5.⑴第4个漫画⑵第一个漫画中的人物很自卑,对自己失去信心,自暴自弃;第二个漫画中的人物自傲自大,高估了自己,太过于自信;第三个漫画中的人物虚荣、嫉妒,不能正确认识自己,过于自尊却缺乏自信。

⑶面对三种心理障碍,青少年要自觉地进行自尊自信品格的修养,在学习、工作、生活中要正确认识自己,全面发展地看待自己,善于发挥自己的优势,勇于正视自己的不足,选准适当的目标,勇敢地行动,多创造成功的记录;要有正确的方向,把个人的自尊自信上升为集体、国家、民族的自尊自信,增强自己的民族自尊心和自信心。

相关文档
最新文档