中考专题复习-坐标找规律
中考总复习数学02- 第二部分 专题二 规律性问题

3
4
专题二 规律性问题—点坐标变换规律 类型三 点坐标变换规律
题型讲解
返回类型清单
点坐标变换型的题目主要考查了点的坐标规律,这类题目一般是点的坐 标在平面直角坐标系中递推变化或周期性变化.通过观察和归纳,从所给 的数据和图形中寻求规律是解答本类问题的关键.
例题 3
5
6
专题二 规律性问题—点坐标变换规律
返回类型清单
(2)若第n个图案共有基础图形2 023个,则n的值是多少? 解:当1+3n=2 023时, 解得n=674, ∴n的值为674.
例题 2
3
4
专题二 规律性问题—图形规律
返回类型清单
4.某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三 角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形 地砖为连续排列. 当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2 ); 当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3 ),以此 类推.
排列,探究图形所反映的规律;另外一种是图形的变换规律,即根据一组
相关图案的变化,从中归纳图形的变换所反映的规律.在中考中以图形为
载体的数字规律最为常见.
例题 2
3
4
专题二 规律性问题—图形规律
返回类型清单
方法点拨 数形规律题的解题关键是通过观察图形发现数量关系,并用代数式归纳 出规律,再进行验证,进而解决问题;图形变换规律题的解题关键是抓住 图形的变化特征,找出规律,进而解决问题.
例题 1
1
2
专题二 规律性问题—竖式规律 例题1
返回类型清单
( 2022·河北模拟)观察 1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25= 625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.
初中数学中考复习考点知识与题型专题讲解05 平面直角坐标系

初中数学中考复习考点知识与题型专题讲解专题05 平面直角坐标系【知识要点】考点知识一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。
【注意】a、b的先后顺序对位置的影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。
平面直角坐标系原点:两坐标轴交点为其原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。
考点知识二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;X点A 、B 的纵坐标都等于m ;2.在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b a性质六 平面直角坐标系内平移变化P (b a ,)abxy OXYABmXYCDn性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;小结: XP X-X【考点题型】考点题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键.典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列限(x,0)(0,y )(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同 x >0 y >0 x <0 y >0 x <0 y <0 x >0 y <0 (m,m) (m,-m )变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了”小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…”根据两人的对话记录,从邮局出发走到小军家应( )A.先向北直走700米,再向西走100米B.先向北直走100米,再向西走700米C.先向北直走300米,再向西走400米D.先向北直走400米,再向西走300米考点题型二求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD是正方形,O,D两点的坐标分别是()0,6,点C在第一象限,则点C的坐标是()0,0,()A .()6,3B .()3,6C .()0,6D .()6,6变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为() A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)-变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD 为菱形,点A 的坐标为()4,0,点C 的坐标为()4,4,点D 在y 轴上,则点B 的坐标为()A .(4,2)B .(2,8)C .(8,4)D .(8,2)变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是() A .()4,0B .()0,8C .()4,0-D .()0,8-变式2-4.(2021·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1)B .(3,﹣1)C .(﹣3.﹣1)D .(1,3) 考点题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律. 典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2021的坐标为()A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭B .()600,0C .12600,5⎛⎫ ⎪⎝⎭D .()1200,0考点题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可以..是( ) A .1B .32-C .43D .4或-4变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A .(),a bB .(),a b -C .(),a b --D .(),a b - 考点题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为( ) A .(0,﹣4)B .(4,0)C .(0,﹣2)D .(2,0)3.(2021·甘肃中考真题)已知点(224)P m m ,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(04),C .40)(-,D .(0,4)- 4.(2021·甘肃中考模拟)已知点P (m+2,2m ﹣4)在x 轴上,则点P 的坐标是( ) A .(4,0)B .(0,4)C .(﹣4,0)D .(0,﹣4)5.(2021·广东华南师大附中中考模拟)如果点P (m +3,m +1)在平面直角坐标系的x 轴上,则m =( )A .﹣1B .﹣3C .﹣2D .0 2.象限角的平分线上的点的坐标1. 已知点A (-3+a ,2a+9)在第二象限角平分线上,则a=_________2.(2018·广西中考模拟)若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( )A .(2,2)B .(-2,-2)C .(2,2)或(-2,-2)D .(-2,2)或(2,-2) 3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ∥y 轴,则a 的值是( ) A .1B .3C .﹣1D .52.(2018·天津中考模拟)如果直线AB 平行于y 轴,则点A ,B 的坐标之间的关系是( )A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等3.(2021·广东华南师大附中中考模拟)已知点A (5,﹣2)与点B (x ,y )在同一条平行于x 轴的直线上,且B 到y 轴的距离等于4,那么点B 是坐标是( )A .(4,﹣2)或(﹣4,﹣2)B .(4,2)或(﹣4,2)C .(4,﹣2)或(﹣5,﹣2)D .(4,﹣2)或(﹣1,﹣2)4.(2021·江苏中考模拟)若线段AB ∥x 轴且AB =3,点A 的坐标为(2,1),则点B 的坐标为( )A .(5,1)B .(﹣1,1)C .(5,1)或(﹣1,1)D .(2,4)或(2,﹣2)5.(2018·江苏中考模拟)已知点M (﹣1,3),N (﹣3,3),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交,相交B .平行,平行C .垂直,平行D .平行,垂直4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣52.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)4.(2012·江苏中考模拟)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) A.3B.-3C.4D.-45.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为() A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5)C.(1,-3)D.(-5,5)6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(﹣2,1)2.(2021·山东中考模拟)已知点P (a +1,2a ﹣3)关于x 轴的对称点在第二象限,则a 的取值范围是( )A .﹣1<a <B .﹣<a <1C .a <﹣1D .a >3.(2014·广西中考真题)已知点A (a ,2013)与点B (2014,b )关于x 轴对称,则a+b 的值为( )A .﹣1B .1C .2D .34.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a 1<-B .31a 2-<<C .3a 12-<<D .3a 2> 5.(2021·辽宁中考模拟)已知点P (m ﹣1,4)与点Q (2,n ﹣2)关于x 轴对称,则m n 的值为( )A .9B .﹣9C .﹣19D .196.(2018·四川中考模拟)平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是( )A .(﹣3,2)B .(3,﹣2)C .(﹣2,3)D .(2,3)。
中考找规律

1.在平面内直角坐标系中,正方形A1B1C1D1、D 1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C 2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2017B2017C2017D2017的边长是2.如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地点的坐标是3.如图,点A(0,1),点B(﹣,0),作OA1⊥AB,垂足为A1,以OA1为边作Rt△A 1OB1,使∠A1OB1=90°,∠B1=30°,作OA2⊥A 1B1,垂足为A2,再以OA2为边作Rt△A2OB2,使∠A2OB2=90°,∠B2=30°,…,以同样的作法可得到Rt△An OBn,则当n=2017时,点A 2017的纵坐标为4.如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线OA1为边作正方形OAA1B 再以正方形OA1A2B1的对角线OA2作正方形OA2A3B2,…,依此规律,则点A8的坐标是5.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2016次运动后,动点P的坐标是6.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在()A .点 A B.点B C.点C D.点D 7.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第17次碰到矩形的边时,点P的坐标为8.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是9.在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1现把这两步操作规定为一种变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(1,1)、(3,1),把三角形经过连续5次这种变换得到三角形△A5B5C5,则点A的对应点A5的坐标是10.如图所示,在平面直角坐标系中,已知点A (1,2),B (﹣2,2),C (﹣2,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→D→C→B→A…的顺序紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是11.如图,在平面直角坐标系xOy中,点P (1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是12.在平面直角坐标系xOy中,对于点P(x,y ),我们把点P′(﹣y+1,x+1)叫做点P 伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 2017的坐标为13.下列依次给出的点的坐标(0,3),(1,1),(2,﹣1),(3,﹣3),…,依此规律,则第2017个点的坐标为 13.如图,点A 1的坐标为(1,0),A 2在y 轴的正半轴上,且∠A 1A 2O=30°,过点A 2作A 2A 3⊥A 1A 2,垂足为A 2,交x 轴于点A 3;过点A 3作A 3A 4⊥A 2A 3,垂足为A 3,交y 轴于点A 4;过点A 4作A 4A 5⊥A 3A 4,垂足为A 4,交x 轴于点A 5;过点A 5作A 5A 6⊥A 4A 5,垂足为A 5,交y 轴于点A 6;…按此规律进行下去,则点A 2017的横坐标是14.如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2017的坐标为15.如图,矩形BCDE 的各边分别平行于x 轴与y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是16.对有序数对(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(x+y ,x ﹣y ),且规定P m (x ,y )=P 1(P m﹣1(x ﹣y ))(n 为大于1的整数).如P 1(1,2)=(3,﹣1),P 2(1,2)=P 1(P 1(1,2))=P 1(3,﹣1)=(2,4),P 3(1,2)=P 1(P 2(1,2))=P 1(2,4)=(6,﹣2).则P 2010(1,﹣1)的坐标为17.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是18.如图,矩形ABCD 的两边BC 、CD 分别在x 轴、y 轴上,点C 与原点重合,点A (﹣1,2),将矩形ABCD 沿x 轴向右翻滚,经过一次翻滚点A 对应点记为A 1,经过第二次翻滚点A 对应点记为A 2…依此类推,经过5次翻滚后点A 对应点A 5的坐标为19.在平面直角坐标系中,对于平面内任一点(x ,y ),规定以下两种变换:(1)f (x ,y )=(x ,﹣y ),如f (2,3)=(2,﹣3);(2)g (x ,y )=(x ﹣2,y+1),如g (2﹣2,3+1)=(0,4);依此变换规律,若f[g (a ,b )]=(2,1),则( )A .a=4,b=﹣2B .a=2,b=﹣1C .a=0,b=﹣2D .a=0,b=020.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0),…,则点P 2017的坐标是21.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1,以M 1A 1为对角线作第二个正方形A 2A 1B 2M 1,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2和A 3B 3交于点M 3;…依此类推,第n 个正方形对角线交点M n 的坐标为22.如图,一个实心点从原点出发,沿下列路径(0,0)→(0,1)→(1,0)→(1,1)→(1,2)→…每次运动一个点,则运动到第2017次时实心点所在位置的横坐标为23.如图,一个机器人从点O 出发,向正西方向走2m 到达点A 1;再向正北方向走4m 到达点A 2,再向正东方向走6m 到达点A 3,再向正南方向走8m 到达点A 4,再向正东方向走10m 到达点A 5,…按如此规律走下去,当机器人走到点A 2017时,点A 2017的坐标为24.已知点E (x 0,y 0),F (x 2,y 2),点M (x 1,y 1)是线段EF 的中点,则x 1=,y 1=.在平面直角坐标系中有三个点A(1,﹣1),B (﹣1,﹣1),C (0,1),点P (0,2)关于A 的对称点为P 1(即P ,A ,P 1三点共线,且PA=P 1A ),P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称点重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是25.在一单位为1的方格纸上,有一列点A 1,A 2,A 3,…,A n ,…,(其中n 为正整数)均为网格上的格点,按如图所示规律排列,点A 1(2,0),A 2(1,﹣1),A 3(0,0),A 4(2,2),…,则A 2017的坐标为26.如图,点A (1,0)第一次跳动至点A 1(﹣1,1),第二次跳动至点A 2(2,1),第三次跳动至点A 3(﹣2,2),第四次跳动至点A 4(3,2),…,依此规律跳动下去,点A 第102次跳动至点A 102的坐标是27.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、…根据这个规律,第2016个点的坐标为28.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2015的坐标为29.如图,在直角坐标系中,以原点O 为圆心的同心圆的半径由内向外依次1,2,3,4,…,同心圆与直线y=x 和y=﹣x 分别交于A 1,A 2,A 3,A 4,…,则点A 2015的坐标是30.如图,在平面直角坐标系xOy 中,点A (1,0),B (2,0),正六边形ABCDEF 沿x 轴正方向无滑动滚动,保持上述运动过程,经过的正六边形的顶点是()A.C或E B.B或DC.A或C D.B或F31.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为32.如图:有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A 3、A4…表示,其中A1A2与x轴、底边A1A2与A 4A5、A4A5与A7A8、…均相距一个单位,则顶点A91的坐标是33.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转8次,点P依次落在点P、P 2、P3、P4、…Px的位置,则点P9的横坐标是34.在直角坐标系中点A1的坐标为(1,0),过点A1作x轴的垂线交直线y=2x于A2,过点A2作直线y=2x的垂线交x轴于A3,过点A3作x轴的垂线交直线y=2x于A4…,依此规律,则A10的坐标为35.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M3处,第二次从M3跳到OM3的中点M2处,第三次从点M2跳到OM2的中点M1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为36.如图,电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上的P点,BP=4.第一步跳蚤跳到AC边上P1点,且CP1=CP;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第n次落点为Pn(n为正整数),则点B与P2012之间的距离为图2图1O E 2D 2E 1D 1OE 11A AD 3图3E 3E 2OD 2D 1E 1CBA OF 3A 3E 3F 2D 2E 21C 3B 3C 2B 22F 1D 3C 1B 11M 1M 2M 3A 3A 2xyA 1OlOxy A 2A 1B 137.下面是一个按某种规律排列的数阵: 根据数阵排列的规律,第n (n 是整数,且n >3)行从左向右数第n -2个数是______________. 38.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,……,按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为39.设△ABC 的面积为1,如图1将边BC ,AC 分别2等分,BE 1,AD 1相交于点O ,△AOB 的面积记为S 1;如图2将边BC ,AC 分别3等分,BE 1,AD 1相交于点O ,△AOB 的面积记为S 2;……,依此类推,则S n 可表示为__________(用含n 的代数式表示,其中n 为正整数).40.如图,抛物线y =x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3,…,A n .将抛物线y =x 2沿直线l :y =x 向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M 1,M 2,M 3,…,M n 都在直线l :y =x 上;②抛物线依次经过点A 1,A 2,A 3,…,A n .则顶点M 2 014的坐标为(________,________)l :1y x =--,双曲线1y x =,在l 上取一点A 1,过A 1作x 轴的垂线交双曲线于点B 1,过B 1作y 轴的垂线交l 于点A 2;请继续操作并探究:过A 2作x 轴的垂线交双曲线于点B 2,过B 2作y 轴的垂线交l 于点A 3;…;这样依次得到l 上的点A 1,A 2,A 3,…,A n .记点A n 的横坐标为a n ,若a 1=2,则a 2=____,a 2 013=_____;若要将上述操作无限次地进行下去,则a 1不能取的值是_____42.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运Pxy OO 3O 2O 1xyCBO动,速度为每秒π2个单位长度,则第2 015秒时,点P 的坐标是43.如图,已知△OBC 是直角三角形,边OB 在x 轴正半轴上,∠OBC =90°,且OB =1,BC =3.将△OBC 绕原点O 逆时针旋转60°,再将其各边扩大为原来的m 倍,使OB 1=OC ,得到△OB 1C 1;将△OB 1C 1绕原点O 逆时针旋转60°,再将其各边扩大为原来的m 倍,使OB 2=OC 1,得到△OB 2C 2;……;如此继续下去,得到△OB 2 014C 2 014,则点C 2 014的坐标是______.44.如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y=kx+b 和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…都是等腰直角三角形,如果A 1(1,1),A 2(,),那么点A 3的纵坐标是 ,点A n 的纵坐标是 .45.如图,在平面直角坐标系中,∠AOB=30°,点A 坐标为(2,0),过A 作AA 1⊥OB ,垂足为点A 1;过点A 1作A 1A 2⊥x 轴,垂足为点A 2;再过点A 2作A 2A 3⊥OB ,垂足为点A 3;则A 2A 3= ;再过点A 3作A 3A 4⊥x 轴,垂足为点A 4…;这样一直作下去,则A 2017的纵坐标为 .46.如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y=﹣x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y=﹣x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为 .47.如图,已知A 1,A 2,A 3,…A n 是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n =1,分别过点A 1,A 2,A 3,…A n 作x 轴的垂线交反比例函数y=(x >0)的图象于点B 1,B 2,B 3,…B n ,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2…,记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2…,△B n P n B n+1的面积为S n ,则S 1+S 2+S 3+…+S n = .。
平面直角坐标系找规律100题

以下是关于在平面直角坐标系中寻找规律的100道题目:1. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并继续这个规律。
2. 连接点(-1, 0), (0, 1), (1, 0), (0, -1), (-1, 0) 形成一个图形。
这个图形是什么?3. 找到缺失的坐标:(2, 5), (4, 10), (6, ?)。
4. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并继续这个规律。
5. 连接点(1, 1), (2, 2), (3, 3), (4, 4), ... 形成一条直线。
这条直线的斜率是多少?6. 找到缺失的坐标:(3, 6), (5, ?), (7, 14)。
7. 绘制点(-1, 0), (-2, 0), (-3, 0), (-4, 0), ... 并继续这个规律。
8. 连接点(0, 1), (1, 0), (0, -1), (-1, 0), (0, 1) 形成一个图形。
这个图形是什么?9. 找到缺失的坐标:(2, 4), (4, ?), (6, 12)。
10. 绘制点(1, 1), (2, 4), (3, 9), (4, 16), ... 并找出这个规律的方程。
11. 连接点(1, 2), (2, 4), (3, 6), (4, 8), ... 形成一条直线。
这条直线的斜率是多少?12. 找到缺失的坐标:(2, 5), (4, ?), (6, 11)。
13. 绘制点(-1, -1), (0, 0), (1, 1), (2, 2), ... 并继续这个规律。
14. 连接点(-1, 1), (-2, 2), (-3, 3), (-4, 4), ... 形成一条直线。
这条直线的斜率是多少?15. 找到缺失的坐标:(3, 6), (5, ?), (7, 13)。
16. 绘制点(0, 0), (1, 1), (2, 4), (3, 9), ... 并找出这个规律的方程。
坐标规律知识点总结

坐标规律知识点总结一、直角坐标系直角坐标系是平面几何中最常用的坐标系,它是由两条互相垂直的坐标轴组成的。
一般来说,我们约定横轴为 x 轴,竖轴为 y 轴,它们的交点作为原点 O,两者的单位长度分别为1。
我们以原点为中心,向右为 x 轴正方向,向上为 y 轴正方向,建立直角坐标系。
在直角坐标系中,任意一点 P 的坐标可用有序偶数 (x, y) 表示。
其中,x 为横坐标,y 为纵坐标。
对于直角坐标系,有以下一些重要知识点:1. 点的对称性:关于 x 轴、y 轴和原点的对称性,可以用来求解坐标对称点的坐标。
2. 距离公式:在直角坐标系中,两点之间的距离公式为d = √((x₂-x₁)² + (y₂-y₁)²)。
3. 中点坐标:在直角坐标系中,可以根据两点的坐标求出其中点坐标,即((x₁+x₂)/2,(y₁+y₂)/2)。
4. 直线方程:在直角坐标系中,通过两点的坐标,可以确定一条直线的方程,通常以 y = kx + b 或 Ax + By + C = 0 的形式表示。
二、极坐标系极坐标系是另一种常用的坐标系,它是由极轴和极角组成的。
极轴通常是 x 轴,极角通常用θ 表示,它是与极轴的顺时针夹角。
在极坐标系中,任意一点 P 的坐标由有序偶数(r, θ) 表示。
其中,r 为极径,表示点 P 到极点 O 的距离,θ 为极角,表示点 P 在极坐标系中的方向。
对于极坐标系,也有一些重要的知识点:1. 坐标变换:极坐标系和直角坐标系是可以相互转换的,需要用到的公式为x = r*cos(θ) 和y = r*sin(θ)。
2. 极坐标系中的直线方程:在极坐标系中,直线的方程通常以r = f(θ) 的形式表示,其中f(θ) 为一个函数。
3. 极坐标系中的距离公式:两点间的距离公式为d = √(r₁² + r₂² - 2*r₁*r₂*cos(θ₂-θ₁))。
三、空间直角坐标系空间直角坐标系是直角坐标系的延伸,它是由三条相互垂直的坐标轴组成的。
中考数学复习专题——找规律(含答案)

中考数学试复习专题——找规律1、如图所示,观察小圆圈的摆放规律,第一个图中有5个小圆圈,第二个图中有8个小圆圈,第100个图中有__________个小圆圈.(1) (2) (3)2、 找规律.下列图中有大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,则第4幅图中有 个菱形,第n 幅图中有 个菱形.3、用同样大小的黑色棋子按下图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).4、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为______________.5、如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案, 则其中完整的圆共有 个.1 2 3n … … 第1个图 2个图 3个图 …6、 如下图,用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示,并写成最简形式).○ ○ ○ ○ ○ ○ ○ ○ ○○ ○ ○ ○ ● ● ○ ○ ● ● ● ○○ ● ○ ○ ● ● ○ ○ ● ● ● ○○ ○ ○ ○ ○ ○ ○ ○ ● ● ● ○○ ○ ○ ○ ○7、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第334个图形需 根火柴棒。
8、将正整数按如图5所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .9、如图 2 ,用n 表示等边三角形边上的小圆圈,f(n)表示这个三角形中小圆圈的总数,那么f(n)和n 的关系是10、观察图4的三角形数阵,则第50行的最后一个数是 ( )1-2 3-4 5 -67 -8 9 -10。
专题 坐标系中的找规律-讲义

坐标系中找规律主讲教师:傲德我们一起回顾1、动点找规律2、图形运动找规律重难点易错点解析动点找规律题一:如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为.(用n表示)图形运动找规律题二:如图,将边长为1的正方形OAPB沿x轴正方向连续翻转48次,点P依次落在点P1,P2,P3,P4,…,P48的位置,则P48的坐标是.金题精讲题一:一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.题二:如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第n次变换后得到的三角形A n的坐标是,B n的坐标是.题三:如图,在平面直角坐标系中,已知点A(-3,0)、B(0,4),且AB=5,对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2014的直角顶点的坐标为.题四:如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)思维拓展题一:如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时角度均为45°,当点P第2015次碰到长方形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)学习提醒重点:动点找规律——分析横、纵坐标与运动次数n的关系图形运动找规律——先分析图形整体位置,再看所研究点的位置坐标系中找规律讲义参考答案重难点易错点解析题一:(2n, 1)点拨:动点找规律,分析横、纵坐标与运动次数n的关系题二:(47, 1)点拨:图形运动找规律:先分析图形整体位置,再看所研究点的位置金题精讲题一:(5, 0) 题二:(2n, 3),(2n+1, 0)题三:(8052, 0) 题四:B思维拓展题一:A。
初三坐标知识点总结

初三坐标知识点总结1. 坐标系的概念坐标系是一个平面上的一种度量系统,它是以水平和垂直的两条直线为标准的度量系统。
根据这个度量系统,我们可以确定平面上任意一点的位置。
2. 直角坐标系直角坐标系是我国常见的坐标系,由横坐标和纵坐标组成。
横坐标通常用字母x表示,纵坐标通常用字母y表示。
横坐标和纵坐标的交叉点称为原点,它的坐标表示为(0,0)。
在直角坐标系中,我们可以用有序数对(x, y)来表示平面上的任意一点。
3. 坐标系的四象限直角坐标系将整个平面划分为四个象限:第一象限 (+, +),第二象限 (-, +),第三象限 (-, -),第四象限 (+, -)。
根据象限,我们可以判断出点所在的位置。
4. 点的坐标点的坐标是指平面上任意一个点在坐标系中的位置。
用有序数对(x, y)表示。
其中x为横坐标,y为纵坐标。
点的坐标能够准确的表示一个点在坐标系中的位置。
5. 线段的长度在坐标系中,两点之间的距离称为线段的长度。
可以通过两点坐标以及勾股定理来计算线段的长度。
勾股定理表示为:a² + b² = c²,其中a,b分别为两点纵坐标的差值和横坐标的差值,c即为线段长度。
6. 斜率的概念在直角坐标系中,两点之间的连线被称为直线。
直线的斜率是指其倾斜程度的度量。
根据两点坐标可以计算出直线的斜率。
斜率的计算公式为(y₂ - y₁)/(x₂ - x₁)。
斜率为正表示直线向上倾斜,斜率为负表示直线向下倾斜。
7. 点与直线之间的关系在坐标系中,点和直线之间存在一定的关系,可以通过直线的方程和点的坐标来判断点与直线的位置关系。
当点的坐标满足直线的方程时,这个点在直线上;当点的坐标不满足直线的方程时,这个点在直线的一侧。
8. 长度的计算在坐标系中,我们可以通过两点坐标来计算线段的长度。
根据两点坐标的纵坐标和横坐标的差值,并用勾股定理来计算线段的长度。
9. 点到直线的距离点到直线的距离是指平面上一个点到某一直线的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学找规律(5)--坐标类一、选择题1、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A、(13,13)B、(﹣13,﹣13)C、(14,14)D、(﹣14,﹣14)第2题第1题2、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()【列举找规律】A、(16,16)B、(44,44)C、(44,16)D、(16,44)第n圈0 1 2 3 ……n每圈移动次数 1 3 5 7 2n+1中点所在轴y X Y X总的运动次数为S=1+3+5+7+……+2n+1=(n+1)2,452=2025,n+1=45,n=44,终点落在y 轴上,后退17到2008步。
3、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:(1)、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)、g(a,b)=(b,a).如:g(1,3)=(3,1);(3)、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A、(﹣5,﹣3)B、(5,3)C、(5,﹣3)D、(﹣5,3)4、在直角坐标系中,一只电子青蛙每次向上或向下或向左或向右跳动一格,现知这只青蛙位于(2,﹣3),则经两次跳动后,它不可能跳到的位置是()A、(3,﹣2)B、(4,﹣3)C、(4,﹣2)D、(1,﹣2)5、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为 (14,8) .6、如图,已知A l (1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),….则点A 2007的坐标为 .【除A1外,四步一循环,一定要和圈数建立函数关系列举A 4n (-n,-n)A 4n-1(-n,n) A 4n-2(n,n),A 4n-3(n,-n+1)】7、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2出发再按甲方式运动到点P 3,第4次从点P 3出发再按乙方式运动到点P 4,….依此运动规律,则经过第11次运动后,动点P 所在位置P 11的坐标是 .第100次运动后P 100点的坐标是 第2013点的坐标P 2013【提示:两次合起来结果如何 (x,y) →(x+2,y+1)→(x+2-3,y+1-2) →(x-1,y-1)】8、一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是 (5,0) . 9、如图,在平面直角坐标系上有个点P (1,0),点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P 第100次跳动至点P 100的坐标是 .点P 第2009次跳动至点P 2009的坐标是 (503,1003) . 【跳动四次一变化】P0(1,0) P1(1,1) P2(-1,1) P3(-1,2) P4(2,2) P5(2,3) P6(-2,3) P7(-2,4) P8(3,4) P9(3,5) P10(-3,5) P11(-3,6) P12(4,6) …… ………………P4n-3(n,2n-3)P4n-2(-n,2n-10P4n-1(-n ,2n ) P4n(n+1,2n)第8题 第5题第6题10、如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,0)→(1,0)→(1,1)→(2,2)→(2,1)→(2,0)…根据这个规律探索可得,第100个点的坐标是___(13,8)______.11、如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是(503,-503) .【易错】第11题第12题12、电子跳蚤游戏盘为△ABC(如图),AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上P0点,BP0=4,第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规定跳下去,第2008次落点为P2008,则点P2008与A点之间的距离为4.13、以0为原点,正东,正北方向为x轴,y轴正方向建立平面直角坐标系,一个机器人从原点O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2,再向正西方向走9米到达A3,再向正南方向走12米到达A4,再向正东方向走15米到达A5,按此规律走下去,当机器人走到A6时,A6的坐标是.A1(3,0) A2 (3,6) A3 (-6, 6) A4 (-6,-6) A5 (9,-6)A6 (9,12) A7 (-12,12) A8 (-12,-12) A9 (15,-12)……………………A4n-2 (6n-3,6n)A4n-1 (-6n,6n) A4n (-6n,-6n) A4n+1(6n+3,-6n) 14、观察下列有规律的点的坐标:依此规律,A11的坐标为,A12的坐标为.【析:观察图中数据,分下标为奇数和偶数两种情况分析解答.解答:解:观察点的坐标可以得到以下规律:点的横坐标的值就等于对应的点下标的数值;纵坐标,当下标是奇数时是正数,后一偶数项的纵坐标依次比前一偶数项的纵坐标多3,故A11的坐标为(11,16),当下标是偶数时纵坐标是负数,后一偶数项的纵坐标依次为前一偶数项的纵坐标的、、…,故A12的坐标为(12,﹣).故答案分别为:(11,16)、(12,﹣).】15、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳动1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方案共有种.【注意列举】16、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为.第16题第17题17.(2013•湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是_________,A92的坐标是_________.18在平面直角坐标系中,一动点从原点0出发,按向上,向右,向下,向右的方向不断移动,每次移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),……那么点A(4n﹢1)(n 为自然数)的坐标为什么?19、(2012•泰安)如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为第18题【解:根据图形,以最外边的正方形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,】练习1(综合题)如图,在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),若点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点第19题C有若干个.(1)请在坐标系中把所有这样的点C都找出来,画上实心点,这些点用C1,C2,…表示;(2)写出这些点C1,C2,…对应的坐标.【问题解决的大致步骤已经知道,只是想问一下,根据A、B两点的坐标特点,直线AB∥x 轴,则到直线AB的距离为4的点在平行于直线AB的直线上且距离为4,有两条直线,根据直角三角形斜边上的中线等于斜边的一半,以AB的中点为圆心,半径5画弧与两直线的交点即为直角三角形的第三个顶点,这样的作法的理论依据是什么。
若AB是直角边,则满足条件的有4个点(1,5),(1,-3),(11,5)(11,-3)若AB是斜边,设C(x,5),过C作AB边上的高,由射影定理,得,42=(x-1)(11-x)若AB是斜边,设C(x,5),过C作AB边上的高CE,由△ACE∽△CBE,得,AE/CE=CE/BE,即CE2=AE*BE解得x1=3,x2=9所以有(3,5),(9,5)根据对称性,得另外两点(3,-3)(9,-3)所以共有8个点符合要求】2、如图,有一系列有规律的点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A 8(3,3)…,依此规律,点A20的坐标为()• A. (7,0) B. (0,7) C. (7,7) D. (8,8)。