第八章 液压系统控制元件
第八章液压基本回路(二)讲解

第八章液压基本回路(二)§4 速度控制回路在很多液压装置中,要求能够调节液动机的运动速度,这就需要控制液压系统的流量,或改变液动机的有效作用面积来实现调速。
一、节流调速回路在采用定量泵的液压系统中,利用节流阀或调速阀改变进入或流出液动机的流量来实现速度调节的方法称为节流调速。
采用节流调速,方法简单,工作可靠,成本低,但它的效率不高,容易产生温升。
1.进口节流调速回路(如下图)节流阀设置在液压泵和换向阀之间的压力管路上,无论换向阀如何换向,压力油总是通过节流之后才进入液压缸的。
它通过调整节流口的大小,控制压力油进入液压缸的流量,从而改变它的运动速度。
2.出口节流调速回路(如下图)节流阀设置在换向阀与油箱之间,无论怎样换向,回油总是经过节流阀流回油箱。
通过调整节流口的大小,控制液压缸回油的流量,从而改变它的运动速度。
3.傍路节流调速回路(如下图)节流阀设置在液压泵和油箱之间,液压泵输出的压力油的一部分经换向阀进入液压缸,另一部分经节流阀流回油箱,通过调整傍路节流阀开口的大小来控制进入液压缸压力油的流量,从而改变它的运动速度。
4.进出口同时节流调速回路(如下图)在换向阀前的压力管路和换向阀后的回油管路各设置一个节流阀同时进行节流调速。
5.双向节流调速回路(如下图)在单活塞杆液压缸的液压系统中,有时要求往复运动的速度都能独立调节,以满足工作的需要,此时可采用两个单向节流阀,分别设在液压缸的进出油管路上。
图(a)为双向进口节流调速回路。
当换向阀1处于图示位置时,压力油经换向阀1、节流阀2进入液压缸左腔,液压缸向右运动,右腔油液经单向阀5、换向阀1流回油箱。
换向阀切换到右端位置时,压力油经换向阀1、节流阀4进入液压缸右腔液压缸向左运动,左腔油液经单向阀3、换向阀1流回油箱。
图(b)为双向出口节流调速回路。
它的原理与双向进口节流调速回路基本相同,只是两个单向阀的方向恰好相反。
6.调速阀的桥式回路(如下图)调速阀的进出油口不能颠倒使用,当回路中必须往复流经调速阀时,可采用如图所示的桥式联接回路。
液压控制元件

第4章液压控制元件在液压系统中,除需要液压泵供油和液压执行元件来驱动工作装置外,还要配备一定数量的液压控制元件,液压控制阀就是用来对液流的流动方向、压力的高低以及流量的大小进行预期的控制,以满足负载的工作要求的控制元件。
因此,液压控制阀是直接影响液压系统工作过程和工作特性的重要元件。
在液压系统中,液压控制阀(简称液压阀)是用来控制系统中油液的流动方向、调节系统压力和流量的控制元件。
借助于不同的液压阀,经过适当的组合,可以达到控制液压系统的执行元件(液压缸与液压马达)的输出力或力矩、速度与运动方向等的目的。
4.1 液压控制阀概述4.1.1液压阀的分类液压阀的分类方法很多,根据不同的用途和结构,液压阀主要分为以下几类:(1)按用途可以分为:压力控制阀(如溢流阀、顺序阀、减压阀等)、流量控制阀(如节流阀、调速阀等)、方向控制阀(如单向阀、换向阀等)三大类。
(2)按控制方式可以分为:定值或开关控制阀、比例控制阀、伺服控制阀。
(3)按操纵方式可以分为:手动阀、机动阀、电动阀、液动阀、电液动阀等。
(4)按安装形式可以分为:管式连接、板式连接、集成连接等。
为了减少液压系统中元件的数目和缩短管道长度尺寸,有时常将两个或两个以上的阀类元件安装在一个阀体内,制成结构紧凑的独立单元,这样的阀称为组合阀,如单向顺序阀、单向节流阀等。
4.1.2 对液压阀的基本要求1. 液压阀的共同点各类液压阀虽然形式不同,控制的功能各异,但各类液压阀之间总还是保持着一些基本的共同点:(1)在结构上,所有的阀都是由阀芯、阀体和驱动阀芯动作的元部件组成;(2)在工作原理上,所有的阀都是通过改变阀芯与阀体的相对位置来控制和调节液流的压力、流量及流动方向的;(3)所有阀中,通过阀口的流量与阀口通流面积的大小、阀口前后的压差有关,它们之间的关系都符合流体力学中的孔口流量公式()q∆=),只是各种阀控制的参数各pKa(m不相同而已。
可以说,各类阀在本质上是相同的,仅仅是由于某一特点得到了特殊的发展,才演变出了各种不同类型的阀来。
液压基本回路(二)

第八章液压基本回路(二)§4 速度控制回路在很多液压装置中,要求能够调节液动机的运动速度,这就需要控制液压系统的流量,或改变液动机的有效作用面积来实现调速。
一、节流调速回路在采用定量泵的液压系统中,利用节流阀或调速阀改变进入或流出液动机的流量来实现速度调节的方法称为节流调速。
采用节流调速,方法简单,工作可靠,成本低,但它的效率不高,容易产生温升。
1.进口节流调速回路(如下图)节流阀设置在液压泵和换向阀之间的压力管路上,无论换向阀如何换向,压力油总是通过节流之后才进入液压缸的。
它通过调整节流口的大小,控制压力油进入液压缸的流量,从而改变它的运动速度。
2.出口节流调速回路(如下图)节流阀设置在换向阀与油箱之间,无论怎样换向,回油总是经过节流阀流回油箱。
通过调整节流口的大小,控制液压缸回油的流量,从而改变它的运动速度。
3.傍路节流调速回路(如下图)节流阀设置在液压泵和油箱之间,液压泵输出的压力油的一部分经换向阀进入液压缸,另一部分经节流阀流回油箱,通过调整傍路节流阀开口的大小来控制进入液压缸压力油的流量,从而改变它的运动速度。
4.进出口同时节流调速回路(如下图)在换向阀前的压力管路和换向阀后的回油管路各设置一个节流阀同时进行节流调速。
5.双向节流调速回路(如下图)在单活塞杆液压缸的液压系统中,有时要求往复运动的速度都能独立调节,以满足工作的需要,此时可采用两个单向节流阀,分别设在液压缸的进出油管路上。
图(a)为双向进口节流调速回路。
当换向阀1处于图示位置时,压力油经换向阀1、节流阀2进入液压缸左腔,液压缸向右运动,右腔油液经单向阀5、换向阀1流回油箱。
换向阀切换到右端位置时,压力油经换向阀1、节流阀4进入液压缸右腔液压缸向左运动,左腔油液经单向阀3、换向阀1流回油箱。
图(b)为双向出口节流调速回路。
它的原理与双向进口节流调速回路基本相同,只是两个单向阀的方向恰好相反。
6.调速阀的桥式回路(如下图)调速阀的进出油口不能颠倒使用,当回路中必须往复流经调速阀时,可采用如图所示的桥式联接回路。
液压元件与系统设计

风冷式冷却器
利用空气作为冷却介质, 适用于较低温度的冷却, 结构简单,但冷却效果相 对较差。
热管式冷却器
利用热管原理进行热量传 递,具有高效、紧凑的特 点,但制造成本较高。
过滤器的选择与应用
过滤器精度
根据液压系统对油液清洁 度的要求,选择合适精度 的过滤器,以保证油液的 清洁度。
类型
方向控制阀包括单向阀、换向阀等,其中换向阀是最常用的方向控制阀。
压力控制阀的选择与应用
选择
压力控制阀的选择应根据系统的压力和流量需求,以及使用环境和工况条件等因 素综合考虑。
应用
压力控制阀在液压系统中主要用于调节和稳定液压系统的压力,以保护系统中的 元件并确保系统的正常运行。
05 液压辅件与附件
油箱的设计与制作
油箱容量
根据系统需求,确定合适的油箱容量,既要满足 系统运行需求,也要避免过大容量造成的浪费。
结构设计
油箱应设计合理,便于安装、维护和清洗,同时 要保证足够的强度和稳定性。
通风设计
为了防止油温过高,油箱应设计通风口,以便于 散热和空气流通。
冷却器的种类与特点
01
02
03
水冷式冷却器
01
总结词
系统方案的制定
03
总结词
系统性能的仿真与优化
05
02
详细描述
在开始设计液压系统之前,需要进行需求分 析、确定技术要求和参数,并选择合适的液 压元件。
06
04
详细描述
根据需求和技术要求,制定合理的液 压系统方案,包括确定液压元件的型 号、规格和数量,以及系统的布局和 连接方式。
第八章 液压系统控制元件

✵二位二通电磁阀
✵三位四通电磁阀
④液动换向阀 液动换向阀利用控制油路的压力油来推动阀芯实现 换向,它适用于流量较大的阀。 ⑤电液动换向阀
2.多路换向阀 多路换向阀是将两个以上手动换向阀组合在一起的 阀组,用以操纵多个执行元件的运动。为了适应多个执 行元件运动的配合或互锁要求,这种阀比通常的四通阀 增加两个油口,所以多路阀往往由若干个三位六通手动 换向阀组合而成。 ✵并联油路:多路换向阀内各单阀可以独立操作,如 果同时操纵两个或两个以上的阀时, 负载轻的先动作,此时分配到各执行 元件的油液仅为泵流量的一部分。
与油泵连接);A、B-工作 油口(与执行元件连接); T-回油口(与油箱连接)。 根据进、出油口的数目 可分为二通、三通、四通、 五通等。 ✵阀芯 带凸肩的圆柱体,按阀 芯的可变位臵可分为二位、 三位和多位。 ②工作原理与职能符号: 换向阀都有两个或两个 以上的工作位臵,其中有一 个常态位,即阀芯未受到操 纵它的外部作用时所处的位
8.2 方向控制阀(DIRECTIONAL CONTROL VALVES) 一、单向阀(CHECK VALVE) ✵功用:使液体只能单向通过。 ✵性能要求:压力损失小,反向截止密封性好。 ✵分类:普通单向阀,液控单向阀。 1.普通单向阀(CHECK VALVE) ⑴结构:由阀体、阀芯和复位弹簧等组成。 ⑵工作原理:
✵串联油路:各单阀之间的进油路串联,上游换向阀 的工作回油为下游换向阀的进油。该油路可以实现两个 或两个以上工作机构的同步动作,泵的出口压力等于各 工作机构负载压力的总和。 ✵串并联油路:各单阀之间的进油路串联,回油路并 联,操纵上游阀时下游阀不能工作。但上游阀在微调范 围内操纵时,下游阀尚能控制该路工作机构的动作。
臵,这是阀的原始位臵。绘制液压系统图时,油路一般 应连接在换向阀的常态位上。 滑阀式换向阀主体部分的结构原理与职能符号
液压传动第8章-调速回路new

10
(三)、回路速度刚性:活塞运动速度受负 载影响旳程度,它是回路对负载变化抗 衡能力旳一种阐明。
某处旳斜率↓→kv↑→机械特征越硬→活塞 运动速度受负载变化旳影响↓→活塞在负载下 旳运动越平稳。
11
影响kv旳原因: 1、当AT1不变时,F↓→kv↑ 2、当F不变时,AT1↓→kv↑ 3、pp↑或A1↑或φ↓→ kv↑ (pp,A1,φ旳变化受其他条件旳限制)
25
29
三、节流调速回路工作性能旳改善
使用节流阀旳节流调速回路,机械 特征都比较软,变载下旳运动平稳性都 比较差。为了克服这一缺陷,回路中旳 流量控制元件能够改用调速阀或溢流节 流阀。
上述这些性能上旳改善都是以加大 整个流量控制阀旳工作压差为代价旳 (一般工作压差至少须0.5MPa,高压调 速阀则须1MPa)。
46
§7-4 三类调速回路旳比较和选用
一、调速回路旳比较 液压系统中旳调速回路应能满足如下旳某
些要求,这些要求是评选调速回路旳根据。 1、能在要求旳调速范围内调整执行元件旳工作
速度。 2、在负载变化时,已调好旳速度变化愈小愈好,
并应在允许旳范围内变化。 3、具有驱动执行元件所需旳力或转矩。 4、使功率损失尽量小,效率尽量高,发烧尽量
式中:Rp — 变量泵旳调整范围; q — tmax 变量泵旳最大理论流量。
34
(二)、泵 — 缸式闭式容积调速回路
1、辅助泵 2、溢流阀 3、换向阀 4、液动阀 5、单向阀 6、安全阀 7、变量泵 8、安全阀 9、单向阀
37
35
某些元件在回路中旳作用
1、双向变量泵:除了给液压缸供给所需旳 油液外,还能够变化输油方向,使液压 缸运动换向(换向过程比使用换向阀平稳, 但换向时间长)。
液压系统指出图中1-7各元件名称

液压系统指出图中1-7各元件名称
1、先导式止逆阀——防止液压缸内的液压油回流;
2、三位四通手动换向阀——控制液压缸的往复移动方向;
3、溢流阀——控制系统压力;
4、液压泵——将原动机(如电动机、内燃机等)的机械能转换成液压能的能量转换装置,是液压传动系统的动力元件,其作用是向液压系统提供压力油;
5、液压缸(油缸)——是把液压能转换成机械能并做直线往复运动的执行元件。
1动力元件
动力元件指的是各种液压泵及其原动机,作用为将原动机(电动机或内燃机)供给的机械能转变为流体的压力能,输出具有一定压力的油液。
1)齿轮油泵和串联泵(包括外啮合与内啮合)两种结构型式。
2)叶片油泵(包括单级泵、变量泵、双级泵、双联泵)。
3)柱塞油泵,又分为轴向柱塞油泵和径向柱塞油泵,轴向柱塞
泵有定量泵、变量泵、(变量泵又分为手动变量与压力补偿变量、伺服变量等多种)从结构上又分为端面配油和阀式配油油两种配油方式,而径向柱塞泵的配油型式,基本上为阀式配油。
2控制元件
控制元件主要指各种压力、流量、方向控制阀及其控制元件等,作用为控制调节系统中从动力源到执行元件的液体压力、流量和方向,从而控制执行元件输出的力、速度和方向,以确保执行元件驱动的主机工作机构完成预定的运动规律。
提升机液压系统工作原理

16 2DT
15 1DT
13 14
21 -2
底图号
1
描图
描校
8
9
8
7
7
6
5
5
6
M
M
2
3
4
3
2
1DT 2D T 3D T 4 DT
- ---
+ ++-- -+
- ---
- ---
+ ---
- ---
A
+ ---
B
- ++-
1.
2.
3.
JP1
(
)
JP2
(
)
JP3
(
)
4.
2 3 2 4 D2 - 25 B 2 2 2 2 D2 - 25 B 2 1 K F -L 8 / 2 0 E 2 0 D 5 05 / 1 8 D 1 9 2 2 E2 - 10 B H 1 8 N X Q- L 1 . 6 / 1 0- A 1 7 Y K 10 0 1 6 2 3 D2 - 25 B 1 5 2 3 D2 - 25 B 1 4 Y X K1 5 0 1 3 Y - 25 B 1 2 J F -B 1 0 G 1 1 I - 10 B 1 0 2 2 E2 - 10 B 9 T Y 00 1 . 1 . 1 8 T Y 00 1 . 2 7 Z U I- E 2 5 X 1 0 DL P 6 PV2R1-10-F-RAB
第八章 液压系统工作原理及安装
提升机一般有两个液压站,一个是润滑站, 另一个是制动液压站。
一、润滑站
润滑站是用来给减速器齿轮、减速器轴承 及滑动轴承提供润滑油源的。圆柱齿轮减速器 一般把减速器的箱体作为油箱,输出油压一般 在0.2—0.3 mpa。行星齿轮减速器由于减速 器箱体较小不能储存足够的油量,而专门设计 一个润滑站,它的各项功能比前者全,输出压 力根据减速器的不同而不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机能 代号
O
H
三位四通换向阀中位滑阀机能
结构原理图
中位图 形符号
机能特点和作用
泵不能卸荷;系统 能保压;换向冲击大; 换向精度好;启动平稳; 液压缸能停止;但不能 浮动。
泵能卸荷;系统不 能保压;换向冲击小; 换向精度差;启动平稳 性差;立式缸不能停止; 卧式缸能停止;缸能浮 动。
机能 代号
P
Y
方向控制阀在回路内部确定流动路线。例如,它们 确定液压缸或液压马达的工作方向。控制流动路线的元 件主要有单向阀、梭形阀和二位、三位、四位换向阀。
压力控制阀防止系统超载,它可能是由于流体需要 压缩而逐渐形成的可能是由于阀开启或关闭所产生的突 然冲击。逐渐形成的压力是由溢流阀、减压阀、顺序阀、 卸荷阀和平衡阀来控制的。当然,压力反馈的油泵也能 用于防止超载。压力冲击能瞬时产生比正常系统压力高 四倍的压力。吸震器是用来消除压力冲击和衰减液压震 动的液压装置。
滑阀式换向阀主体部分的结构原理与职能符号
名称
结构原理图
职能符号
二位二通阀
二位三通阀
名称 二位四通阀
结构原理图
二位五通阀 三位四通阀
职能符号
名称 三位五通阀
结构原理图
职能符号
③滑阀机能: 在常态位置(原始位置)上ห้องสมุดไป่ตู้油口的连通方式就是
这个阀的滑阀机能。由于滑阀机能主要是针对三位换向 阀,而三位阀的常态位往往是其中间位置,因此也称为 滑阀的中位滑阀机能。采用不同滑阀机能的换向阀,会 影响到阀在常态位时执行元件的工作状态:如停止还是 运动,前进还是后退,快速还是慢速,卸荷还是保压等 等。
了解各种控制元件的主要功能和工作原理是很重要 的。这类知识对于功能完善的系统是需要的,而且导致 改进指定用途的流体传动系统革新方法的发现。这是面 对流体传动系统设计者最大的挑战之一。
8.2 方向控制阀(DIRECTIONAL CONTROL VALVES)
一、单向阀(CHECK VALVE) ✵功用:使液体只能单向通过。 ✵性能要求:压力损失小,反向截止密封性好。 ✵分类:普通单向阀,液控单向阀。 1.普通单向阀(CHECK VALVE) ⑴结构:由阀体、阀芯和复位弹簧等组成。 ⑵工作原理:
按阀的安装方式分 管式(省略代号)、板式(B)、 法兰式(F)等
1.滑阀 通过阀芯在阀体内轴向移动来实现油路启、闭和换
向的方向阀,由主体和操纵定位机构两部分组成。 ⑴主体部分 ①结构:由阀体和滑动阀
芯组成。 ✵阀体 P-进油口(压力油口、
与油泵连接);A、B-工作 油口(与执行元件连接); T-回油口(与油箱连接)。
根据进、出油口的数目 可分为二通、三通、四通、 五通等。
✵阀芯 带凸肩的圆柱体,按阀
芯的可变位置可分为二位、 三位和多位。
②工作原理与职能符号: 换向阀都有两个或两个
以上的工作位置,其中有一 个常态位,即阀芯未受到操 纵它的外部作用时所处的位
置,这是阀的原始位置。绘制液压系统图时,油路一般 应连接在换向阀的常态位上。
第八章 液压系统控制元件 (Control Components in Hydraulic Systems)
8.1概述(INTRODUCTION) 在任何液压传动系统中最重要的条件之一是控制。 如果控制元件选择不正确,整个系统起不到所需要的作 用。液压传动主要是通过称为液压阀的控制元件来实现 控制的。控制元件的选择不仅涉及到它的类型而且还要 考虑其尺寸大小,操纵技术和远控能力。控制元件有三 种基本类型: ✵方向控制阀; ✵压力控制阀; ✵流量控制阀。
此外,对液压回路的各管道中的流量也必须进行控 制。例如,控制决定于流量的执行元件的速度。这类控 制是通过使用流量控制阀来实现的。变量泵也能用来控 制执行元件的速度除非系统包含每一个都必须以不同的 速度工作的几个执行元件。在这种情况下就需要独立式
的流量控制阀。不平衡的流量控制阀用于不需精确的速 度控制,此时由于经过流量控制阀的压降而使流量发生 变化。压力平衡流量控制阀自动调节压降的大小以保持 恒定的流量。
⑶职能符号: ⑷性能参数: ✵开启压力:0.035~0.05MPa; ✵压力损失:Δp<0.1~0.3MPa;
作背压阀时,其背压力为0.2~0.6MPa调节。 2.液控单向阀(PILOT-OPERATED CHECK VALVE) ⑴结构:由阀体、阀芯、控制活塞、顶杆和复位弹簧 等组成。 ⑵工作原理: ⑶职能符号:
中位图 形符号
机能特点和作用
泵卸荷时有一定压 力;换向冲击小;换向 精度差;启动平稳性较 差;立式缸不能停止; 卧式缸能停止;缸浮动 有一定阻力。
②机动(行程)换向阀 它利用行程挡块或凸
轮推动阀芯实现换向。 ③电磁换向阀 电磁换向阀是借助于电磁铁吸力推动
⑷性能参数 控制压力:pk≈30~40%p,p-主油路压力。
⑸应用: 双向液压锁。
二、换向阀(DIRECTIONAL CONTROL VALVE)
✵功用:利用阀芯和阀体的相对运动来改变油液的方 向,接通或关闭油路。
✵性能要求:压力损失小;断开时,泄漏小;阀芯换 位时,操纵力小和换位平稳。
✵分类
分类方式
型式与代号
按阀的运动方式分 滑动(称滑阀)、旋转(称转阀)、 提动(称截止阀)
按阀的操纵方式分
手动(S)、行程(C)(亦称机 动)、电动〔交流电磁(D)、直流 电磁(E)〕、液动(Y)、电液动
〔交流电磁(DY)、直流电磁 (EY)〕
分类方式
型式与代号
按阀的工作位置数分 二位、三位等
按阀的通道数分
二通、三通、四通、五通等
结构原理图
中位图 形符号
机能特点和作用
泵能卸荷;系统不 能保压;换向冲击较大; 换向精度较差;启动平 稳性较差;缸能停止; 缸不能浮动。
泵能卸荷;系统不 能保压;换向冲击大; 换向精度好;启动平稳 性好;缸能停止;缸不 能浮动。
机能 代号
结构原理图
X
⑵操纵定位机构 ①手动换向阀
利用手动来推动 阀芯实 现换向。
结构原理图
中位图 形符号
机能特点和作用
泵不能卸荷;系统 能保压;换向冲击较大; 换向精度较好;启动平 稳性好;单杆式缸不能 停止而形成差动;双杆 式缸能停止,且缸能浮 动。
泵不能卸荷;系统 能保压;换向冲击小; 换向精度差;启动平稳 性差;立式缸不能停止; 卧式缸能停止;缸能浮 动。
机能 代号
K
M