镍基复合材料
《镍基复合材料的制备及其摩擦学性能研究》

《镍基复合材料的制备及其摩擦学性能研究》一、引言随着现代工业技术的快速发展,材料科学在工程应用中的地位日益凸显。
其中,镍基复合材料因其优异的物理、化学及机械性能,被广泛应用于航空、航天、能源、汽车等关键领域。
其制备工艺的优化和摩擦学性能的研究,对于提升材料的使用性能及延长使用寿命具有极其重要的意义。
本文将就镍基复合材料的制备方法及摩擦学性能进行研究探讨。
二、镍基复合材料的制备(一)原料与设备制备镍基复合材料的主要原料包括镍基合金粉末、增强相材料(如碳化硅、氧化铝等)、添加剂等。
制备设备主要包括混合设备、烧结设备、热处理设备等。
(二)制备工艺镍基复合材料的制备主要采用粉末冶金法,其基本步骤包括配料、混合、压制、烧结及热处理等。
具体过程如下:1. 配料:根据所需材料的成分比例,将原料按比例混合。
2. 混合:采用机械混合或化学混合的方式,使各组分充分混合均匀。
3. 压制:将混合后的粉末放入模具中,通过压力机进行压制,形成预成形坯。
4. 烧结:将预成形坯放入烧结炉中,在一定的温度和压力下进行烧结,使材料致密化。
5. 热处理:烧结后的材料进行热处理,以提高材料的性能。
(三)制备过程中的影响因素在制备过程中,影响镍基复合材料性能的因素主要包括粉末粒度、压制压力、烧结温度和时间等。
这些因素对材料的致密度、成分分布及机械性能等有着重要的影响。
三、镍基复合材料的摩擦学性能研究(一)摩擦学性能的基本概念及测试方法摩擦学性能是衡量材料在摩擦过程中所表现出的性能,主要包括摩擦系数、磨损率等。
测试摩擦学性能的方法主要有摩擦试验机测试、磨损试验等。
(二)镍基复合材料的摩擦学性能特点镍基复合材料具有优异的摩擦学性能,其摩擦系数低,磨损率小。
这主要得益于其良好的硬度、耐磨性及抗高温氧化性能。
此外,增强相的加入也提高了材料的硬度和耐磨性,进一步优化了材料的摩擦学性能。
(三)影响镍基复合材料摩擦学性能的因素影响镍基复合材料摩擦学性能的因素主要包括材料成分、组织结构、表面处理等。
金属基复合材料应用举例

金属基复合材料应用举例金属基复合材料是指以金属为基体,添加一种或多种增强相(如纤维、颗粒、片材等)来改善金属材料的性能和功能的一类材料。
金属基复合材料具有高强度、高韧性、高温稳定性等优点,因此在航空航天、汽车、船舶、电子等领域得到广泛应用。
以下是十个金属基复合材料的应用举例:1. 铝基复合材料:铝基复合材料由铝基体和增强相(如陶瓷颗粒、碳纤维等)构成,具有低密度、高强度、耐磨损等特点。
在航空航天领域,铝基复合材料被用于制造飞机机身、航天器传动系统等部件。
2. 镁基复合材料:镁基复合材料具有低密度、高比强度和良好的导热性能,广泛应用于航空航天、汽车、电子等领域。
例如,在汽车行业中,镁基复合材料被用于制造车身结构和发动机零部件,可以减轻车重,提高燃油效率。
3. 钛基复合材料:钛基复合材料由钛基体和增强相(如陶瓷颗粒、纤维等)构成,具有高强度、低密度和良好的耐腐蚀性能。
在航空航天领域,钛基复合材料被用于制造飞机发动机叶片、航天器外壳等高温部件。
4. 镍基复合材料:镍基复合材料由镍基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温强度和良好的耐腐蚀性能。
在航空航天领域,镍基复合材料被用于制造航空发动机涡轮叶片、燃烧室等高温部件。
5. 铜基复合材料:铜基复合材料由铜基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高导电性和高热导率。
在电子领域,铜基复合材料被用于制造高性能散热器、电子封装材料等。
6. 钨基复合材料:钨基复合材料由钨基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高密度、高熔点和高强度。
在核工业领域,钨基复合材料被用于制造核反应堆材料、高温组件等。
7. 铁基复合材料:铁基复合材料由铁基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高强度和良好的耐磨性。
在机械制造领域,铁基复合材料被用于制造高性能齿轮、轴承等零部件。
8. 锆基复合材料:锆基复合材料由锆基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温稳定性和良好的耐腐蚀性能。
镍基WC复合材料熔覆

对镍基WC复合材料熔覆的研究自从20世纪80年代开始,随着激光器技术的发展,新型高功率激光器的不断出现,激光熔覆技术在工业应用上不断深入,激光熔覆技术得到了迅猛的发展,目前已成为国内外激光表面改性研究的热点。
其应用领域不断拓宽,它可以用于机械制造与维修、汽车制造、纺织机械、航海与航天和石油化工等领域。
在刀具、模具、阀体等机械部件已获得了广泛的应用。
激光熔覆技术是随着激光器技术的发展而不断壮大,因此对于激光熔覆设备中所使用的激光器就是其关键部件。
目前国内多数的生产企业主要使用的有CO2气体激光器,灯泵YAG 固体激光器。
其中CO2气体激光器,功率大,一般数千瓦甚至更高,但体积庞大,维护成本高;且CO2激光器由于结构庞大,其波长为10.6um 的激光不能通过光纤传导,灵活性受到极大限制,不容易实现三维零件复杂曲面的熔覆加工。
国内传统灯泵YAG 固体激光器,功率较小,都是百瓦级别,价格便宜,体积也相对较小,维护相对简单,但每隔段工作时间需要更换泵浦灯。
由于功率不大,其加工的效率和应用范围都受限。
目前国外流行大功率光纤耦合输出半导体激光和整形聚焦直接输出的半导体激光器来做激光熔覆工艺,其具有电光转换效率高、体积小等优势。
但存在技术门槛高,激光器成本价位昂贵等局限。
而高功率的全固态激光器是采用半导体激光阵列作为泵浦源,以YAG晶体为工作物质,综合半导体激光的高效率与YAG激光成熟技术优势,具有输出功率大(1~5kW)、光束质量好(BP值8~40mm*mrad)、输出稳定性好,电光转换效率好(~20%),柔性好,光纤传输可灵活匹配机器人与数控加工机床实现三维加工等诸多优点(如图1所示)。
3kW全固态激光器机器人熔覆加工系统图1、3kW全固态激光器机器人加工系统装备激光熔覆由于其极高的能量密度,几乎能够熔化所有的合金和陶瓷。
为进一步提高零件表面的耐磨耐蚀性能,目前国内外广泛开展了在铁、镍、钴基合金溶剂熔镶WC、TiC、SiC及B4C等陶瓷硬质相的复合涂层研究。
镍基复合材料

缺点及克服方法 (1)疲劳性能稍差、塑性较低、使用 中组织稳定性有所下降; (2)存在疏松,性能波动较大。
应用:镍基铸造高温合金用于飞机、
船舶、工业和车辆用燃气轮机的最 关键的高温部件,如涡轮机叶片、 导向叶片和整体涡轮等。
镍基复合材料在水环境中的摩擦学 性能及磨损机理研究
复合材料在水环境中的摩擦系数比干摩擦 降低了一半左右,磨损率仅为干摩擦下的 1/15,水环境中,负荷和速度的变化对 摩擦系数的影响不大,摩擦系数基本保持 在0.28~0.32之间,磨损率随负荷和滑 动速度的增加而不断增加。
镍-蓝宝石反应性质的影响
在高温下,蓝宝石和镍或 镍合金将发生反应,这种 反应与弥散强化型合金所用的 Al2O3质点的稳定性观测结果相 一致。除非这种反应能均匀地消耗材 料或在纤维表面形成一层均匀的反应产物, 否则就会因局部表面降粗糙而降低纤维的 强度。
镍基复合材料的制造和性能
制造镍基复合单晶蓝宝石纤维复合材料的主 要方法是将纤维夹在金属板之间进行加热。 这种方法通常称为扩散结合。 热压法成功的制造了Al2O3-NiCr复合材料, 其最成功的工艺是先在杆上涂一层 Y2O3(约1μm),随后再涂一层为基 体制造的。由于镍的高温性能优良, 因此这种复合材料主要是用于制造 高温下工作的零部件。
金属基复合材料最有前途的应用之一是做燃 气涡轮发动机的叶片。这类零件在高温和 接近现有合金所能承受的最高应力下工作, 因此成了复合材料研究的一个主攻方向。
镍基变形高温合金
8.3
51
63.5
8.0
48
61.3
48 23 25.4
用途:镍基变形高温合金广泛地用来 制造航空喷气发动机、各种工业燃气 轮机的热端部件,如工作叶片,导向
镍基合金复合板的制造及应用

镍基合金复合板的制造及应用镍基合金复合板的制造及应用由于镍基合金具有很好的耐腐蚀性能,其在海洋工程、制盐设备、化工设备、核工业、航天工业、治污工程等方面有着广泛的应用。
但是,镍基合金的价格昂贵,在一定程度上限制了其使用。
镍基合金复合板的研发,大大降低了使用镍基合金的成本。
本文就镍基合金复合板的制造及应用进行简要的论述,主要阐述镍基合金复合板的爆炸复合、热处理等关键环节。
标签:镍基合金复合钢板爆炸焊接热处理一、镍基合金的种类及应用按照合金的主要性能,可以把镍基合金分为镍基耐热合金、镍基耐蚀合金、镍基耐磨合金等;按照成分进行分类,可以分为Ni-Cu合金、Ni-Cr合金、Ni-Mo 合金、Ni-Cr-Mo合金、Ni-Cr-Mo-Cu合金等。
下面列举了几种常见牌号的镍基合金。
Monel 400(UNS N04400),一种Ni-Cu合金,在海水、稀氢氟酸、稀硫酸等腐蚀环境中具有优异的耐腐蚀性能。
广泛应用于海洋工程、制盐设备、化工设备等领域。
Inconel 600(UNS N06600,简称600合金),一种Ni-Cr-Fe 合金,具有很好的耐应力腐蚀开裂,耐碱腐蚀等性能。
广泛用于石油化工、核工业等领域。
Inconel 625(UNS N06625,簡称625合金),一种Ni-Cr-Mo 合金,用于苛刻性腐蚀环境,尤其是存在缝隙腐蚀、点腐蚀及高温氧化环境中。
广泛用于航天工程、化工设备、石油天然气开发、治污工程等领域。
Incoloy 825(UNS N08825,简称825合金),一种Ni-Fe-Cr-Mo-Ti合金,具有优异的耐硫酸和磷酸腐蚀性能,很好的耐点腐蚀、应力腐蚀开裂和晶间腐蚀性能。
广泛用于化工设备、石油工程、治污工程等领域。
Hastelloy C-276(UNS N10276,简称C-276合金),具有优异的耐点腐蚀和应力腐蚀开裂性能,特别是在含氯离子的烟气脱硫环境中的耐蚀性能。
广泛用于烟气脱硫工程、治污工程、化工设备等领域。
镍基复合材料焊条电弧焊打底及填充盖面焊接工艺

镍基复合材料焊条电弧焊打底及填充盖面焊接工艺氩弧焊打底加手弧焊填充盖面的焊接工艺,经过各专业公司多年的理论指导和实践研发已经能够熟练掌握,合格率高,焊接设备简单,相对于现场的施工条件能够更好的接受和使用。
不过对于一些返修无法进行背面充气保护的位置,就增大了氩弧焊焊接工艺的难度和易出现缺陷的几率。
对此为了能够更好地适应现场焊接环境的多变性和不可确定性,提出使用焊条电弧焊打底的焊接工艺,并进行试验。
1.镍基材料分析镍基材料具有良好的高温和低温强度以及优良的耐腐蚀性能,多用于管道设备、石油化学设备、热力锅炉设备、电力行业等高温高压、腐蚀强度较大且需在持续高温或低温下运行的运输管道及设备中。
但由于镍基合金导热性差、线膨胀系数大、冷却速度较快、熔合性能不好、铁液流动性差,所以焊接过程中保护不当会产生熔池氧化等缺陷。
简析:据奥维云网(AVC)零售监测数据显示,线下消毒柜市场监测销量2.7万台,同比下降26.4%,其中立式同比下降24.4%,嵌入式同比下降27.1%,卧式同比下降26.4%。
由于复层与基层的材料不同,会因材料的导热性和热膨胀系数不同而出现材料稀释等现象,这些不利因素更增加了焊接难度,所以应当制定严谨的焊接操作工艺,并严格按照工艺进行焊接。
镍基材料的化学成分如表1所示,常温下力学性能如表2所示。
2.焊接材料的选择根据标准规范SH/T3523/SH/T3527进行焊接材料筛选,确定ENiCrMo-3为焊接填充材料。
根据选定的填充材料采购了三个厂家的焊条,分别为smc、山特维克、林肯,并对三种焊条的操作性能和焊缝成形做比较。
经试验对比,smc厂家焊条焊接过程中电弧稳定,脱渣性能好,产生飞溅少,焊条过热受损量小,能够满足焊接需要。
表1 镍基复合材料化学成分(质量分数)(%)化学成分 C Si Mn P S Cr Ni Mo Cu Fe Ti Al规范值≤0.05 ≤0.5 ≤1.00 ≤0.02 ≤0.005 19.5~23.5 38.0~46.0 2.5~3.5 1.5~3.0 ≥22.00.6~1.2 ≤0.2实测值 0.019 0.211 0.53 0.011 0.001 22.69 38.86 3.221.90 29.98 0.81 0.110表2 镍基复合材料常温下力学性能力学性能屈服极限/MPa 抗拉强度/MPa 伸长率(%) 剪切硬度(HBW)规范值≥415 ≥457 ≥20 ≤250实测值 354 473 53.5 414 3.电源极性的筛选和对比(1)直流正接打底直流正接断弧焊接时,电弧偏吹现象严重,根部出现单边未熔合现象,焊缝正面出现较严重坠瘤,因此不能满足质量要求(见图1)。
稀疏颗粒增强镍基复合材料的应力场及损伤分析

Sr s eda d d a ee ouin a ay i f h p l p rih enoc d c mp st tesf l n 锄 g v lt n lsso te 8 a' a t i o l  ̄ e r ifr e o o i e
Y O Z a -u , H N in, I i- u A h n jn Z E G J a N n ha X
r i o c d p a e a d t e mar ,S t h s b e d l s d i h n i e rn .Co o i s we e smp i e s r p e e t t e en r e h s n h t x O i a e n wi ey u e n t e e g n e g f i i mp st r i l d a e r s n ai e i f v v l me c l i e p p  ̄ a d i r e o su y t e i tr c in o h a t ls a h c l i c u e w e a c p rils Th n o u el n t a e h n n o r t t d h n e a t ft e p r ce ,e c el n l d s t o c r mi a ce . e d o i t ANS s u e o c n t c e c l mo e ,s l t e tn i t s ed n lz h t s it b t n a d t e ma e a YS wa s d t o s u tt el r h d l i ae t e sl sr sf l ,a ay e t e sr s d sr ui n h t r mu h e e i e i o i l p o e i s h e rs l h w a h t s s u e e n t e c l a d t e ee n s n a e p ri ls wi i h si n s i r p r e .T e u t s o t tt e sr s i n v n i h el n lme t e r t a t e t h g t f e s w l t s h e h h c h f l d ma e f s.Atl tt e s e s c a g n a g v l t n r u e a e smu ae e h a g a p n sn h lme t a g rt i a h t s h n e a d d ma e e o u i o t i ltd wh n te d ma e h p e s u i g t e ee n s r o r b r n e t c n l g . e w r ft e p p rc n b f r n e o rh re p r n n e r t a n y i. i h a d d a t h oo y T o k o a e a ea r e e c f t e x e me t d t o e i l a ss t h e h h e f u i a h c al
高温合金基复合材料.

• 主要强化纤维有金属纤维,SiC纤维、碳纤维、Al2O3纤维 等
这种材料明显提高了抗张强度、抗冲击、抗蠕变性能和比持久强度。 抗热疲劳方面十分优异
金属丝/Ni合金基复合材料
• 常用金属:钨,钍钨丝
a. 优点:可提高工作温度100度以上。 大幅度提高其高温持久性能和高温蠕变性能,一 般可以提高100h 持久强度 1 到3倍,主要用于高 性能航空发动机叶片等重要部件
• 应用于:先进空气喷气发动机,火箭发动机
原位反应法:将金属及氧化物或碳化物混合体烧结,利用金属与氧元素或碳元素结
合能力的差异,一种金属将另外一种金属从其氧化物或碳化物中置换出来,从而形成的金属/陶瓷复合材料。 粉末冶金法(P/M):将陶瓷颗粒和铁合金粉末混合后压制成坯体,在略高于金属熔
陶瓷/铁基合金复合材料 点的温度下进行液相烧结
高温合金基复合材料
高温合金
• 泛指能在600℃以上高温抗氧化或腐蚀、并在一 定应力下可长期使用的一类金属材料,又叫超合 金,主要是镍基、铁基合金。
• 使用在航空发动机,航天火箭发动机以及工业燃 气轮机上的各种高温部件的关键材料上。航空发 动机中,高ቤተ መጻሕፍቲ ባይዱ合金用量达40%-60%
• 传统Ni基合金缺点:比重大
• 潜在问题:铁及铁合金对陶瓷材料的润湿性能差
• 四种常用陶瓷:SiC,Al2O3,TiC, ZrO2
• 常用制备方法:原位生长法,粉末冶金法,自蔓延高温合 成法,浸渍法等。
SiC陶瓷具有硬度高、耐磨性及耐腐蚀好 但是高温下SiC与Fe合金熔体反应,生成复杂的中间产物,可改善润湿性,但部分反应产物也破坏了两者的结合强度 SiC在1100℃左右存在严重氧化现象,对材料最终使用性能有较大限制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镍
基
复
合
材
料
的
应
用
10级金属(1)班
1007024101
镍基复合材料的应用
镍基复合材料是以镍及镍合金为基体制造的。
由于镍的高温性能优良,因此这种复合材料主要是用于制造高温下工作的零部件。
镍基复合材料主要用于液体火箭发动机中的全流循环发动机。
这种发动机的涡轮部件要求材料在一定温度下具有高强度、抗蠕变、抗疲劳、耐腐蚀、与氧相容。
在目前正在研制的系统中这些部件选用镍基高温合金。
虽然用SiC 颗粒或纤维增强的复合材料可以达到高强度、高刚度和抗蠕变。
但在全流循环发动机的富氧驱动气体环境下,这些材料不能兼顾与氧的相容性。
发动机起动瞬变过程的热冲击环境,排除了涡轮叶片采用加涂层的材料系的可能。
因此,用整体材料制作的涡轮叶片,必须经受住富氧燃烧产物所形成的环境。
因为涡轮部件和涡轮盘在大约9min 运行中一般不用冷却,所以在短时运行中,整体材料温度达到730℃是正常的。
对某些设计,希望密度低于6.5g/cm3 的材料的强度要大于1040MPa。
应力、温度和化学环境都十分苛刻,要延长维修平均间隔时间(MTBR)使这些材料性能目标更难达到。
其它非旋转部件也必须经受住极端运行环境的考验。
喷注器面板、喷注壳体和预燃烧器在高温下都必须抗氧化、耐腐蚀、抗氢脆。
喷嘴调节和控制流入主燃烧室的推进剂流量。
预燃烧室是个小型燃烧室。
在这个燃烧室里,产生涡轮驱动气体。
在目前一些系统(其中一些被有效冷却)中,这些部件使用钴合金。
未来发动机的这些部件,预计有极端的热环境(气体温度接近918℃)和高达62MPa 的压力。
Si3N4 整体材料正在用作喷嘴壳体,但陶瓷壳体与金属推力室的匹配困难还没有解决。
由于喷嘴壳体的形状是轴对称的,所以早就有人建议这种壳体采用连续纤维增强的复合材料,但部件的匹配条件向连续纤维增强的复合材料提出挑战。
以下为两种比较典型的镍基复合材料及其主要性能:
(一)、镍基变形高温合金
以镍为主要基体成分的变形高温合金。
镍基变形高温合金以汉语拼音字母“GH”加序号表示,如GH36、GH49、GH141等。
它可采用常规的锻、轧和挤压等冷、热变形手段加工成材。
按强化方式可分为固溶强化镍基变形高温合金,弱时效强化镍基变形高温合金和强时效强化镍基变形高温合金3类。
用途:镍基变形高温合金广泛地用来制造航空喷气发动机、各种工业燃气轮机的热端部件,如工作叶片,导向叶片、涡轮盘和燃烧室等。
合金元素的作用:
铬在镍基变形高温合金中的主要作用:增加抗氧化及耐蚀能力。
20世纪40~50年代发展的镍
基变形高温合金中铬含量高达18%~20%,在60年代,为了提高高温强度,将铬含量降低到8%~12%。
过度降铬有损抗氧化、耐蚀能力
固溶强化镍基变形高温合金中加入较多的钨、钼、钴等元素。
弱时效强化镍基变形高温合金可添加一定量的铝、钛、铌等时效强化元素。
强时效强化镍基变形高温合金中则可以加入多量的铝、钛、铌元素,但其总量不能超过7.5%。
也加入硼、铈、镁等晶界强化元素。
组织特点:
主要的强化相是γ´(Ni3Al)相,含量达20%~55%左右。
另一类强化相是γ″(Ni3Nb)相,在700℃以下对强度的贡献远大于γ´相,特别显著地提高屈服强度,是涡轮盘材料中有名的强化相。
加工方法:变形高温合金塑性较低,变形抗力大,特别是含γ´相很高的强时效强化镍基变形高温合金,使用普通的热加工手段变形有一定困难,往往需采取一些特殊的加工工艺,如钢锭直接轧制、钢锭包套直接轧制和包套镦饼等新工艺。
也采用加镁微合金化和弯曲晶界热处理工艺来提高塑性。
镍基铸造高温合金
以镍为主要成分的铸造高温合金,以“K”加序号表示,如K1、 K2等。
随着使用温度和强度的提高,高温合
金的合金化程度越来越高,热加工成形越来越困难,必须采用铸造工艺进行生产。
另外,采用冷却技术的空心叶片的内部复杂型腔,只能采用精密铸造工艺才能生产。
这样,镍基变形高温合金就转化为镍基铸造高温合金。
添加元素及作用:
镍基铸造高温合金以γ相为基体,添加铝、钛、铌、钽等形成γ´相进行强化,γ´相数量较
多,有的合金高达60%;加入钴能提高γ´相的溶解温度,提高合金的使用温度;钼、钨、铬具有强化固溶体的作用,铬、钼、钽还能形成一系列对晶界产生强化作用的碳化物;铝和铬有助于抗氧化能力,但铬降低γ´相的溶解度和高温强度,因此铬含量应低些;铪:改善合金中温塑性和强度;为了强化晶界,添加适量硼、锆等元素。
缺点及克服方法
(1)疲劳性能稍差、塑性较低、使用中组织稳定性有所下降;
(2)存在疏松,性能波动较大。
应用:镍基铸造高温合金用于飞机、船舶、工业和车辆用燃气轮机的最关键的高温部件,如涡轮机叶片、导向叶片和整体涡轮等。
镍基复合材料在水环境中的摩擦学性能及磨损机理研究
复合材料在水环境中的摩擦系数比干摩擦降低了一半左右,磨损率仅为干摩擦下的1/15,水环境中,负荷和速度的变化对摩擦系数的影响不大,摩擦系数基本保持在0.28~0.32之间,磨损率随负荷和滑动速度的增加而不断增加。
磨损表现为机械微切削;摩擦副表面吸附水的边界润滑作用以及水的冷却作用使材料容易耗散摩擦热,塑性变形减小,严重粘着磨损明显减轻。
水的存在使不锈钢偶件更容易发生氧化,同时暴露于磨损表面的SiC以及由于水的渗透而导致与基体脱粘的SiC,易被氧化生成SiO2,进而SiO2发生水合反应在磨擦对偶表面生成不均匀的SiO2·nH2O水合反应膜,起到了一定的减磨润滑作用,显著降低摩擦系数和磨损率。
镍基纳米SiC复合镀层的摩擦学性能
为研究镍基纳米SiC复合镀层的摩擦学性能,在A3钢板上制备了该镀层,利用扫描电镀对镀层显微组织进行观察,通过纳米显微力学探针测量镀层微区硬度,在MM-200摩擦磨损试验机上对镀层进行磨损试验,研究阴极电流密度,温度和镀液中SiC浓度等主要工艺参数对镀层耐磨性能的影响。
结果表明:SiC颗粒在镀层中分布均匀:SiC颗粒附近镀层的硬度是纯镍镀层的3倍,但随着远离SiC,复合镀层硬度明显下降;复合镀层的耐磨性能与普通镍镀层相比有较大幅度的提高,在油润滑条件下磨损体积为普通镍镀层的1/8。
(二)、蓝宝石晶须蓝宝石杆
以单晶氧化铝为镍基复合材料的增强物具有高弹性模量,低密度,纤维形态的高强度、高熔点、良好的高温强度和抗氧化性。
镍-蓝宝石反应性质的影响在高温下,蓝宝石和镍或镍合金将发生反应,这种反应与弥散强化型合金所用的Al2O3质点的稳定性观测结果相一致。
除非这种反应能均匀地消耗材料或在纤维表面形成一层均匀的反应产物,否则就会因局部表面降粗糙而降低纤维的强度。
镍基复合材料的制造和性能
制造镍基复合单晶蓝宝石纤维复合材料的主要方法是将纤维夹在金属板之间进行加热。
这种方法通常称为扩散结合。
热压法成功的制造了Al2O3-NiCr复合材料,其最成功的工艺是先在杆上涂一层Y2O3(约1μm),随后再涂一层钨(约0.5μm厚)。
除了热压法制得的镍基复合材料外,人们还研究了其他方法制造的镍基复合材料的性能。
对粉末冶金法制得的材料进行的研究结果表明,在粉末压实过程中晶须因排列不当而大量断裂。
测得的性能很差,晶须体积比为23%的复合材料的室温强度最高只有690MPa。
其他方法制得的镍基复合材料的性能也不理想。