浮点数1
浮点数的表示方法

第三章浮点数浮点数的表示方法
浮点数是指小数点在数据中的位置可以左右移动的数据,它通常被表示成:N=M·RE,这里,M
为浮点数的尾数,R称为阶的基数,E称为阶的阶码。
计算机中一般规定R为2、8或16,是一常数,不需要在浮点数中明确表示出来。
要表示浮点数,一是要给出尾数,通常用定点小数的形式表示,它决定了浮点数的表示精度;二是要给
出阶码,通常用整数形式表示,它指出小数点在数据中的位置,也决定了浮点数的表示范围。
浮点数一般也有
符号位。
浮点数的精度与标度-概述说明以及解释

浮点数的精度与标度-概述说明以及解释1.引言1.1 概述概述浮点数是计算机科学中一种常见的数值数据类型,用于表示实数或小数。
它的精度和标度是浮点数操作中两个重要的概念。
精度指的是数值的有效位数,而标度则表示小数点的位置。
本文将探讨浮点数的精度和标度对计算结果的影响。
首先,我们将介绍浮点数的定义和表示方式,以便读者对其有一个基本的认识。
然后,我们将详细讨论浮点数的精度和标度的定义和计算方法,并说明它们是如何相互关联的。
在正文部分,我们将重点讨论浮点数的精度。
精度取决于浮点数的位数和指数范围,它决定了浮点数能够表示的最大有效位数。
我们将探讨浮点数在计算中可能出现的精度丢失问题,并提供一些解决方案和注意事项。
接下来,我们将转向浮点数的标度。
标度表示小数点相对于浮点数的位置,决定了浮点数的大小范围。
我们将讨论标度的影响以及与精度的关系,同时介绍一些常见的浮点数运算问题,并提供一些解决方法。
最后,在结论部分,我们将总结浮点数的精度与标度的关系,并强调它们对浮点数应用的重要性。
我们还将讨论浮点数精度与标度对于科学计算和计算机图形学等领域的影响,以及在实际应用中需要注意的一些问题。
通过深入理解和掌握浮点数的精度与标度,读者将能够更好地理解和应用浮点数,在计算中避免丢失精度或产生错误结果的情况,并优化计算性能。
1.2文章结构1.2 文章结构本文主要围绕浮点数的精度与标度展开讨论。
为了清晰地呈现这个主题,本文将分为三个主要部分:引言、正文和结论。
在引言中,我们将简要介绍浮点数的概念和其在计算机中的表示方式。
我们将对浮点数的定义和表示方式进行阐述,以便读者能够更好地理解浮点数的精度与标度的概念。
接着,在正文部分,我们将详细讨论浮点数的精度。
我们将探讨浮点数的精度受限于计算机内部二进制表示的有限位数,导致浮点数在进行运算时存在舍入误差的问题。
我们还将介绍浮点数的精度与计算机体系结构、编程语言和算法选择等因素之间的关系。
浮点型数据的范围

浮点型数据的范围
1 范围
float和double的范围是由指数的位数来决定的。
float的指数位有8位,⽽double的指数位有11位,分布如下:
float:
1bit(符号位)8bits(指数位)23bits(尾数位)
double:
1bit(符号位)11bits(指数位)52bits(尾数位)
于是,float的指数范围为-127~+128,⽽double的指数范围为-1023~+1024,并且指数位是按补码的形式来划分的。
其中负指数决定了浮点数所能表达的绝对值最⼩的⾮零数;⽽正指数决定了浮点数所能表达的绝对值最⼤的数,也即决定了浮点数的取值范围。
float的范围为-2^128 ~ +2^128,也即-3.40E+38 ~ +3.40E+38;double的范围为-2^1024 ~ +2^1024,也即-1.79E+308 ~ +1.79E+308。
2 精度
float和double的精度是由尾数的位数来决定的。
浮点数在内存中是按科学计数法来存储的,其整数部分始终是⼀个隐含着的“1”,由于它是不变的,故不能对精度造成影响。
float:2^23 = 8388608,⼀共七位,这意味着最多能有7位有效数字,但绝对能保证的为6位,也即float的精度为6~7位有效数字;double:2^52 = 4503599627370496,⼀共16位,同理,double的精度为15~16位。
浮点数在计算机内存中的表示(IEEE754规定1位是符号位,8位是指数,剩下的23位为有效数字)

浮点数在计算机内存中的表⽰(IEEE754规定1位是符号位,8位是指数,剩下的23位为有效数字)1.前⼏天,我在读⼀本C语⾔教材,有⼀道例题: #include <stdio.h> void main(void){ int num=9; /* num是整型变量,设为9 */ float* pFloat=# /* pFloat表⽰num的内存地址,但是设为浮点数 */ printf("num的值为:%d\n",num); /* 显⽰num的整型值 */ printf("*pFloat的值为:%f\n",*pFloat); /* 显⽰num的浮点值 */ *pFloat=9.0; /* 将num的值改为浮点数 */ printf("num的值为:%d\n",num); /* 显⽰num的整型值 */ printf("*pFloat的值为:%f\n",*pFloat); /* 显⽰num的浮点值 */ }运⾏结果如下: num的值为:9 *pFloat的值为:0.000000 num的值为:1091567616 *pFloat的值为:9.000000我很惊讶,num和*pFloat在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这么⼤?要理解这个结果,⼀定要搞懂浮点数在计算机内部的表⽰⽅法。
我读了⼀些资料,下⾯就是我的笔记。
2.在讨论浮点数之前,先看⼀下整数在计算机内部是怎样表⽰的。
int num=9;上⾯这条命令,声明了⼀个整数变量,类型为int,值为9(⼆进制写法为1001)。
普通的32位计算机,⽤4个字节表⽰int变量,所以9就被保存为00000000 00000000 00000000 00001001,写成16进制就是0x00000009。
那么,我们的问题就简化成:为什么0x00000009还原成浮点数,就成了0.000000?3.根据国际标准IEEE 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式: (1)(-1)^s表⽰符号位,当s=0,V为正数;当s=1,V为负数。
浮点数的运算方法

阶码位 尾数数码位 总位数
1 1 1
8 11 15
23 52 64
32 64 80
浮点数的阶码的位数决定数的表示范围, 浮点数的阶码的位数决定数的表示范围, 阶码的位数决定数的表示范围 尾数的位数决定数的有效精度 的位数决定数的有效精度。 尾数的位数决定数的有效精度。
浮点数在计算机内的格式
X = MX * 2
负数 正数
[X]补 = X 2n+1 + X 0 ≤ X < 2n -2n ≤ X ≤ 0 0
机器数
浮点数格式:关于移码的知识 浮点数格式:关于移码的知识 移码
8 位的阶码能表示 位的阶码能表示-128~+127,当阶码为 ,当阶码为-128时,其补码表 时 示为 00000000,该浮点数的绝对值 -128,人们规定此浮点数的 ,该浮点数的绝对值<2 人们规定此浮点数的 值为零, 机器零。 值为零,若尾数不为 0 就清其为 0,并特称此值为机器零。 ,并特称此值为机器零 位数值位组成的移码, 其定义为; 一位符号位和 n 位数值位组成的移码 其定义为; [E]移 = 2n + E -2n<=E<2n 负数 正数 +127 0 -128 机器数 表示范围: 00000000 ~ 11111111 表示范围: 8 位移码表示的机器数为数的真值 向右平移了 在数轴上向右平移 在数轴上向右平移了 128 个位置
(2)尾数相除:MX/MY = 0.1011/(-0.1101) )尾数相除: = -0.1101 (3) (4) (5) 已是规格化数 不必舍入 也不溢出 已是规格化数, 不必舍入, 最众的商 [MX]移 = 1 0110 1101, , 即 2-2 *(-0.1101) ( )
双精度浮点数与单精度浮点数转换公式

双精度浮点数与单精度浮点数是计算机中常用的数据类型,用于表示实数。
在计算机科学和工程领域,需要经常进行双精度浮点数与单精度浮点数之间的转换。
本文将对双精度浮点数与单精度浮点数的转换公式进行详细介绍,以帮助读者更好地理解和运用这些转换公式。
一、双精度浮点数与单精度浮点数的定义1. 双精度浮点数双精度浮点数是一种用于表示实数的数据类型,通常由符号位、指数位和尾数位组成。
在IEEE 754标准中,双精度浮点数占64位,其中1位用于表示符号,11位用于表示指数,52位用于表示尾数。
2. 单精度浮点数单精度浮点数也是一种用于表示实数的数据类型,与双精度浮点数相比,单精度浮点数占用的位数更少。
在IEEE 754标准中,单精度浮点数占32位,其中1位用于表示符号,8位用于表示指数,23位用于表示尾数。
二、双精度浮点数转换为单精度浮点数的公式双精度浮点数转换为单精度浮点数的公式如下:1. 将双精度浮点数的符号位、指数位和尾数位分别提取出来。
2. 根据IEEE 754标准中规定的单精度浮点数的符号位、指数位和尾数位的位数,进行相应的截断或舍入操作,使其符合单精度浮点数的表示要求。
3. 将上一步得到的符号位、指数位和尾数位组合起来,即可得到单精度浮点数的表示。
三、单精度浮点数转换为双精度浮点数的公式单精度浮点数转换为双精度浮点数的公式如下:1. 将单精度浮点数的符号位、指数位和尾数位分别提取出来。
2. 根据IEEE 754标准中规定的双精度浮点数的符号位、指数位和尾数位的位数,进行相应的扩展操作,使其填充满双精度浮点数占用的64位。
3. 将上一步得到的符号位、指数位和尾数位组合起来,即可得到双精度浮点数的表示。
四、双精度浮点数与单精度浮点数转换公式的应用双精度浮点数与单精度浮点数转换公式在实际应用中有着广泛的用途,特别是在计算机编程和计算机仿真领域。
通过这些转换公式,可以实现不同精度浮点数之间的数据传递和计算,使得计算机程序能够更加高效地处理各种复杂的数学和科学计算问题。
为什么单精度浮点数的阶码取值范围是1-254

为什么单精度浮点数的阶码取值范围是1-254在定点数表⽰中存在的⼀个问题是,难以表⽰数值很⼤的数据和数值很⼩的数据。
例如,电⼦的质量(9×10-28克)和太阳的质量(2×1033克)相差甚远,在定点计算机中⽆法直接表⽰,因为⼩数点只能固定在某⼀个位置上,从⽽限制了数据的表⽰范围。
为了表⽰更⼤范围的数据,数学上通常采⽤科学计数法,把数据表⽰成⼀个⼩数乘以⼀个以10为底的指数。
例如,在计算机中,电⼦的质量和太阳的质量可以分别取不同的⽐例因⼦,以使其数值部分的绝对值⼩于1,即:9×10-28= 0.9×10-272×1033= 0.2×1034这⾥的⽐例因⼦10-27和1034要分别存放在机器的某个单元中,以便以后对计算结果按此⽐例增⼤。
显然,这要占⽤⼀定的存储空间和运算时间。
浮点表⽰法就是把⼀个数的有效数字和数的范围在计算机中分别予以表⽰。
这种把数的范围和精度分别表⽰的⽅法,相当于数的⼩数点位置随⽐例因⼦的不同⽽在⼀定范围内⾃由浮动,改变指数部分的数值相当于改变⼩数点的位置。
在这种表⽰法中,⼩数点的位置是可以浮动的,因此称为浮点表⽰法。
浮点数的⼀般表⽰形式为:⼀个⼗进制数N可以写成:N = 10e×M⼀个⼆进制数N可以写成:N = 2e×M其中,M称为浮点数的尾数,是⼀个纯⼩数;e是⽐例因⼦的指数,称为浮点数的指数,是⼀个整数。
在计算机中表⽰⼀个浮点数时,⼀是要给出尾数M,⽤⼩数形式表⽰;⼆是要给出指数e,⽤整数形式表⽰,常称为阶码。
尾数部分给出有效数字的位数,因⽽决定了浮点数的表⽰精度;阶码部分指明了⼩数点在数据中的位置,因⽽决定了浮点数的表⽰范围。
浮点数也是有符号数,带符号的浮点数的表⽰如图2-2所⽰。
215.gif其中,S为尾数的符号位,放在最⾼⼀位;E为阶码,紧跟在符号位之后,占m位;M为尾数,放在低位部分,占n位。
浮点数的表示方法

浮点数的表示方法
一、浮点数表示
一个数的浮点形式(设基数是2)可写成:
N = M × 2E
其中:M代表尾数,E代表阶码。
计算机中浮点数只用尾数和阶码表示,其形式如下:
浮点数的精度由尾数决定,数的表示范围由阶码的位数决定。
为了最大限度提高精度,尾数采用规格化形式,既1/2≤M<1。
采用二进制表示时,若尾数大于零,则规格化数应该是01XXXX的形式;若尾数小于零,则规格化数应为10XXXX的形式。
二、机器零
当浮点数的尾数为0或阶码为最小值时,计算机通常把该数当作零,因此程序中进行浮点运算时,判断某数是否为零,通常可以用小于某个极小值来代替。
三、实例
【例1】设X=×23 ,用补码、浮点数形式表示阶码为X j=011,尾数为00110,这时由于X尾数不符合01XXXX的形式,因此不是规格化数,必须先进行规格化处理。
方法:若尾数小于1/2,把尾数左移一位(不包括符号位),观察结果是否满足规格化条件,满足则在把阶码减1即可,否则继续左移和调整阶码;若尾数大于1,则把尾数右移一位(不包括符号位),观察结果是否满足规格化条件,满足则在把阶码加1即可,否则继续右移和调整阶码。
上例中,00110左移一位为01100,符合规则化标准,此时阶码减1,为010即得到浮点表示形式。
这个数具体在计算机中如何表示要看计算机中规定的阶码和尾数的位数,若阶码和尾数均为16位,则上面的数X在计算机内部表示就是0000000000000000000 ,不足均用零填充。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浮点数在计算机中用以近似表示任意某个实数。
具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学记数法。
浮点计算是指浮点数参与的运算,这种运算通常伴随着因为无法精确表示而进行的近似或舍入。
一个浮点数a由两个数m和e来表示:a = m × be。
在任意一个这样的系统中,我们选择一个基数b(记数系统的基)和精度p(即使用多少位来存储)。
m(即尾数)是形如±d.ddd...ddd的p位数(每一位是一个介于0到b-1之间的整数,包括0和b-1)。
如果m的第一位是非0整数,m称作规格化的。
有一些描述使用一个单独的符号位(s 代表+或者-)来表示正负,这样m必须是正的。
e是指数。
这种设计可以在某个固定长度的存储空间内表示定点数无法表示的更大范围的数。
例如,一个指数范围为±4的4位十进制浮点数可以用来表示43210,4.321或0.0004321,但是没有足够的精度来表示432.123和43212.3(必须近似为432.1和43210)。
当然,实际使用的位数通常远大于4。
此外,浮点数表示法通常还包括一些特别的数值:+∞和−∞(正负无穷大)以及NaN('Not a Number')。
无穷大用于数太大而无法表示的时候,NaN则指示非法操作或者无法定义的结果。
大部份计算机采用二进制(b=2)的表示方法。
位(bit)是衡量浮点数所需存储空间的单位,通常为32位或64位,分别被叫作单精度和双精度。
有一些计算机提供更大的浮点数,例如英特尔公司的浮点运算单元Intel8087协处理器(以及其被集成进x86处理器中的后代产品)提供80位长的浮点数,用于存储浮点运算的中间结果。
还有一些系统提供128位的浮点数浮点数的表示在实际应用中,往往会使用实数,例如下面的一些十进制实数:179.2356=0.1792356x10^30.000000001=0.1x10^83155760000=0.215576x10^6很明显,上述第一个数既有整数也有小数,不能用定点数格式化直接表示,后两个数则可能超出了定点数的表示范围,所以计算机引入了类似与科学表示法来标示实数。
(1)典型的浮点数格式在机器中,典型的浮点数格式如图所示浮点数代码由两部分组成:阶码E和尾数M。
浮点数真值为:N=+/-(R^E)xMR是阶码的底。
在机器中一般规定R为2,4,8或16,与尾数的基数相同。
例如尾数为二进制,则R也为2。
同一种机器的R值是固定不变的,所以不需要在浮点数代码中表示出来,他是隐含约定的。
因此,机器中的浮点数只需表示出阶码和尾数部分。
E是阶码,即指数值,为带符号整数,常用移码或补码表示。
M是尾数,通常是纯小数,常用原码或补码表示。
S是尾数的符号位,安排在最高位。
它也是整个浮点数的符号位,表示该浮点数的正负。
浮点数表示范围主要由阶码决定,精度则主要由尾数决定。
为了充分利用尾数的有效位数,同时也使一个浮点数具有确定的表示形式,通常采用浮点数规格化形式,即将位数的绝对值限定在某个范围之内。
如果阶码的底位2,则规格化浮点数的尾数应满足条件:1/2=<|M|<1.尾数作为定点数小数,其绝对值应小于1;由于利用了最高位,其绝对值应大于或等于(0.1)2,即1/2。
从形式上看:对于正数,规格化尾数最高数位m1=1,这意味着尾数的有效位数被充分利用了。
对于负数补码,一般情况下尾数最高位数m1=0,但有一种特殊情况除外,即M=-1/2(此时m1=1)。
(这时它讨论的前提是位数是用补码表示)例:某浮点数长12位,其中阶码4位用补码表示;尾符1位,尾数7位用补码表示。
写出二进制(-101.011)2的规格化浮点数代码。
(-101.011)2=(-0.101011)2x2^3其浮点数代码为| 1| 0 | 011|0101010 |尾符阶码尾数这个题你要小心的是尾数是7位,你把-0.101011换成补码时要先补满7位。
(2)移码(增码)浮点数的阶码是带符号定点整数,常用移码表示。
若浮点数阶码为n+1(包括阶符),则移码定义如下:[x]移=2^n+x -2^n=<x=<2^n-1上式中x表示真值,[x]移表示x的移码,移码的一些性质a移码其实就是把真值映射到0~255正数域,若将移码视作无符号数,则移码的大小就反映了真值的大小,这讲便于两个浮点数的阶码比较。
b最高位为符号位,表示形式与原码和补码相反,1表示正,0表示负。
c移码与补码的关系:[x]补=2^(n+1)+x(mod 2^(n+1))=2^n+2^n+x=2^n+[x]移。
从形式上看,[x] 移与[x]补符号位相反外,其余各位相同。
d移码表示中,0有唯一的编码,即[+0]移=[-0]移=100……0。
e[x]移位全0时,表示阶码最小(3)浮点数表示范围浮点数的表示范围和阶码的底有关,也与阶码和尾数的位数以及采用的机器数表示形式有关。
-------------------------------------------------------------------------典型值阶码尾数真值-------------------------------------------------------------------------最大整数11……1 0.11……1 2^(2^k-1)x(1-2^(-n))-------------------------------------------------------------------------绝对值最大负数11……1 1.00……0 2^(2^k-1)x(-1)-------------------------------------------------------------------------非0最小正数00……0 0.10……0 2^(-2^k)x2^(-1)-------------------------------------------------------------------------绝对值最小负数00……0 1.0……0 2^(-2^k)x(-2^(-1))-------------------------------------------------------------------------(4)使用浮点数格式举例按IEEE标准,常用的浮点数的格式为:数符阶码尾数总位数短实数 1 8 23 32长实数 1 11 52 64临时实数 1 15 64 80下面以32位浮点数(短实数)为例,讨论浮点代码与其真值之间的关系,其浮点格式如下31 30 23 22 0| s | | | | | | |数符|…… 阶码…………||………… 阶码…………|最高位是数符s,其后8位阶码,以2为底,阶码偏置位127。
其余23位是尾数,为了尾数部分能表示更多一位的有效值,IEEE754采用隐含尾数最搞数位1(即这一位1不表示出来)的方法,因此尾数实际上是24位。
应注意隐含的1是一位整数(即位权位2^0),在浮点格式中表示出来的23位尾数是纯小数并用原码表示,尾数的真值为:1+尾数。
这样,上述格式的非0浮点数真值为(-1)x2^(阶码-127)x(1+尾数)根据上式,可得出上述格式的浮点数表示范围位-2^128x(2-2^(-23))~2^128x(2-2^(-23)),所能表示的最小绝对值位2^(-127).例:若采用IEEE短实数格式,试求出32位浮点数代码(CC968000)16的真值。
解:以上代码转换位2进制如下:1,10011001,00101101000000000000000阶码尾数由于数符是1,所以该数是负数。
阶码真值=10011001-(127)10=(153)10-(127)10=(26)10尾数真值=1+0.00101101=1+(0.00101101)2=1+(0.17578125)10=(1.17578125)10故该浮点数的真值=-2x1.17578125 。
例:试将-(0.11)2用IEEE短实数浮点数格式表示出来。
解:(-0.11)2=-0.11x2^0=-1.1x2^(-1)=-(1+0.1)x2^(-1)该数为负数,所以数符为1.阶码=阶码真值+127=-1+127=126=(01111110)2尾数=0.1000 0所以浮点数代码为1,01111110,10000000000000000000000注意:IEEE标准尾数采用的是原码现在来看一个10进制转换为16进制以IEEE为标准:float共计32位,折合4字节由最高到最低位分别是第31、30、29、 031位是符号位,1表示该数为负,0反之。
30-23位,一共8位是指数位。
22-0位,一共23位是尾数位。
每8位分为一组,分成4组,分别是A组、B组、C组、D组。
每一组是一个字节,在内存中逆序存储,即:DCBA一步步的将float型浮点数12345.0f转换为十六进制代码。
在处理这种不带小数的浮点数时,直接将整数部转化为二进制表示:1 11100010 01000000也可以这样表示:11110001001000000.0然后将小数点向左移,一直移到离最高位只有1位,就是最高位的1:1.11100010010000000一共移动了16位,在布耳运算中小数点每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样:1.11100010010000000 * ( 2 ^ 16 )好了,现在我们要的尾数和指数都出来了。
显而易见,最高位永远是1,因为你不可能把买了16个鸡蛋说成是买了0016个鸡蛋吧!所以这个1我们还有必要保留他吗?好的,我们删掉他。
这样尾数的二进制就变成了:11100010010000000最后在尾数的后面补0,一直到补够23位:11100010010000000000000 再回来看指数,一共8位,可以表示范围是0 - 255的无符号整数,也可以表示-128 - 127的有符号整数。
但因为指数是可以为负的,所以为了统一把十进制的整数化为二进制时都先加上127,在这里,我们的16加上127后就变成了143,二进制表示为:1000111112345.0f这个数是正的,所以符号位是0,那么我们按照前面讲的格式把它拼起来:0 10001111 1110001001000000000000001000111 11110001 00100000 00000000再转化为16进制为:47 F1 20 00,最后把它翻过来,就成了:00 20 F1 47。