六年级下册图形与几何知识点总结
新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)

这些计算公式是怎样推导出来的?它们之间有什么联系?
长方形和正方形是用面积单 位量出来的。
平行四边形转化成长方形。
两个完全相同的三角形或梯形 都可以拼成平行四边形。
利用割补、转化的方 法来推导图形的面积 公式。
长方形的面积是研究其它图形面积的基础。
9.三角形三边的关系
4cm
7cm
13cm
三角形其中两条线段的和大于第三条线段时,这样的三条 线段才能组成一个三角形。
30cm
上升的水的体积就是马铃薯的体积。
在方格纸上分别画出从不同方向看到左边立体图形 的形状图。
正面
左面
上面
连一连。
一个蓄水池(如下图),长10米,宽4米,深2米。 (1)蓄水池占地面积有多大?
10×4 = 40(平方米) 答:占地面积是40平方米。 (2)在蓄水池的底面和四周抹上水泥,抹水泥的面积有多大? 10×4 +(4×2+2×10)×2= 96(平方米)
三角形
锐角三角形 直角三角形
等腰三角形
(三个角都是 (有一个角是直角) 不等边三角形 (两条边相等)
锐角) 钝角三角形
(三条边都 等边三角形 不相等) (三条边都相等)
(有一个角是钝角)
1.平面图形的分类
四边形的分类
平行四边形 长方形
正方形
四边形 梯形
等腰梯形 直角梯形
2.直线、射线和线段
名称
相同点
比例尺 1∶20000
2.辨认方向
在平面图中确定方位,通常是上北、下南、左西、右东。
北
西北
东北
西
东
西南
南
东南
3.根据方向和距离,确定物体位置的一般步骤。
小学六年级数学下册 第6单元 整理和复习2图形与几何 教学课件 人教版

周长:30+40+50=120(m) 面积:30×40÷2=600(m2)
周长:6+6+7.5+10.5=30(m) 面积:(6+10.5)×6÷2=49.5(m2)
周长: 3.14×5÷2+5×3=22.85(m) 面积: 3.14×(5÷2)2÷2+5×3=24.8125(m2)
(教材P89 练习十八T2)
观察两个平行四边形的各条边与各个角,你有什
么发现?
发现:平行四边形的对边相等,对角也相等。
(教材P87 做一做T1)
2.过一点可以画几条直线?过两点可以画几条直线?
无数条
一条
(教材P87 做一做T2)
3.有长度分别为3cm、4cm、5cm、6cm的小棒各一根。 哪三根小棒可以围成一个三角形?
三角形任意两边的和大于第三边 3cm、4cm、5cm 4cm、5cm、6cm 3cm、5cm、6cm 3cm、4cm、6cm
锐角三角形 钝角 直角 三角形 三角形
按边分
三角形 等腰三角形 等边三角形
四边形
长方形 正方形 平行四边形 梯形 你能说一说四边形之间的关系吗?
四边形
平行四边形 长方形 正方形
梯形
平行四边形有什么特征?
边:两组对边分别平行且相等。 角:两组对角分别相等。 具有容易变形的特性。
圆
圆与上面的平面图形有什么不同?圆有哪些特征?
课堂总结
通过这节课的学习, 你有什么收获?
第6单元 整理和复习 2.图形与几何
第 6 课时 图形与位置
整理复习 北
比例尺 1:20000
以学校为中心,用什么方法来确定其他地方的位置?
人教版小学六年级数学下册第六单元2《图形与几何》PPT课件

旋转 45°
放大
旋转 45°
旋转 45°
放大
二 巩固练习
1. ⑤号图形是③号长方形放大后的图形,它 是按( 3 )∶( 1 )放大的。
二 巩固练习
2.
二 巩固练习
3.
二 巩固练习
二 巩固练习
二 巩固练习
人教版小学六年级数学下册
第六单元 整理和复习 2. 图形与几何
第5课时 图形与位置
一 复习导入
一 复习导入
平面图形的测量
周长 面积
一 复习导入
周长
围成一个图形所有边长 的总和,叫做这个图形 的周长。
一 复习导入
常见的周长公式
图形
长方形
正方形
周长 (长+宽)×2 边长×4
圆
2πr
一 复习导入
面积
物体的表面或 围成的平面图 形的大小。
一 复习导入
常见的面积公式
图 形
正方形
长方形
平行四 边形
立体图形的表面积和体积
表面积
一个立体图形所有面的 面积的总和,叫做它的 表面积。正方体的表面 积是它6个面的面积和。 用平方单位表示。
一 复习导入
立体图形的表面积和体积
体积
一个立体图形所占空间的 大小叫做它的体积。正方 体的体积用底面积×高。 用立方单位表示。
一 复习导入
二 巩固练习
1.在一个长60㎝、宽32㎝、高22㎝的长方体 箱子里,最多可以装多少个棱长为4㎝的 正方体物品?
沿长的方向一行能摆60÷4=15(个) 沿宽的方向一行能摆32÷4=8(个) 沿高的方向一行能摆22÷4≈5(个) (去尾法) 15×8×5=600(个) 答:最多能装600个棱长为4㎝的正方体物品。
几何与图形知识点六年级

几何与图形知识点六年级几何与图形是数学中的一个重要分支,它研究了各种形状和空间的性质以及它们之间的相互关系。
作为六年级学生,我们需要掌握几何与图形的一些基本知识点。
本文将介绍一些六年级几何与图形的知识点,并给出相应的示例和解析。
一、平面图形1. 点:点是几何中的基本概念,它没有大小和形状,用大写字母表示,例如A、B、C等。
2. 线段:线段是两个端点之间的部分,用小写字母表示,例如AB、CD等。
3. 直线:直线是无限延伸的线段,用小写字母表示,例如l、m、n等。
4. 射线:射线是一个起点在一端而另一端无限延伸的部分,用小写字母表示,例如pq、rs等。
5. 角:角是由两条射线共享一个公共端点所形成的图形,用大写字母表示,例如∠ABC、∠DEF等。
6. 三角形:三角形是由三条线段组成的封闭图形,用大写字母表示,例如△ABC、△DEF等。
7. 四边形:四边形是由四条线段组成的封闭图形,用大写字母表示,例如ABCD、EFGH等。
二、图形的性质1. 直角:当两条线段互相垂直交叉时,所形成的角称为直角,用符号“∟”表示。
示例:在△ABC中,∠ABC是一个直角。
2. 直线的种类:直线可以分为水平线、垂直线和倾斜线。
示例:在平面直角坐标系中,x轴是一条水平线,y轴是一条垂直线。
3. 边界:图形的边界是由各条边组成的,它决定了图形的形状。
示例:在△ABC中,边界由线段AB、线段BC和线段CA组成。
4. 对称:当一个图形可以通过某条线分割成两个完全相同的部分时,我们称该图形具有对称性。
示例:正方形具有对称性,对角线可以将其分为两个完全相同的部分。
5. 平行线:平行线是在同一个平面内永不相交的直线。
示例:在平面直角坐标系中,x轴和y轴是两条互相垂直且平行的线。
6. 线段与直线的关系:线段可以与直线相交、平行或重合。
示例:线段AB与直线l相交于点C。
三、计算图形的面积和周长1. 面积:面积是指图形所占的平面区域大小,常用单位有平方厘米(cm^2)和平方米(m^2)。
专题七:图形与几何《图形与位置》(知识清单)六年级数学下学期期末核心考点集训(人教版)

2023-2024学年期末核心考点集训专题讲义专题07:图形与几何——图形与位置考点01 位置与方向考点02 数对考点03方向和距离考点01 位置与方向知识点一:位置与方向1.生活中辨认方向的方法借助太阳辨认方向。
早晨,面向太阳,前面是东,后面是西,左面是北,右面是南。
傍晚,面向太阳,前面是西,后面是东,左面是南,右面是北。
2.地图上辨认方向的方法上北下南,左西右东。
东——西、南——北、东北——西南、东南——西北。
3.方向是相对的4.辨认东北、西北、东南、西南四个方向的方法①利用指南针辨认。
②只要知道东、南、西、中的任意一个方向, 其余的七个方向就可以确认了。
5.位置的相对性观察点(中心)不同,方向的确定就不同。
6.确定物体位置的两个要素:方向和距离注意:东偏北30°也可说成北偏东60°,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。
【例题1】如图,下列说法正确的是( B) 。
A.学校在公园南偏东45°方向上B.公园在学校东偏南45°方向上C.学校在公园南偏西45°方向上解析:本题考查的是用方向来确定位置。
我们首先要明确图中正北方向的指向,然后再用方向来描述位置。
本题中学校在公园北偏西45°方向上,而公园在学校南偏东或东偏南45°方向上。
所以正确答案是B。
以广场为观察点,学校在北偏西30度的方向上,下图中正确的是( )。
考点02 数对知识点一:数对用数对表示物体的位置先列(竖排)后行(横排),用小括号把列数和行数相对应的数字括起来,并用逗号隔开,即(列数,行数)。
注:确定第几列一般从左往右数,确定第几行一般从前往后数。
【例题1】下图是南苑小区的平面示意图。
(1)用数对表示各场所的位置。
小超市( 2 ,2 ) A幢( 3 ,4 )大 门 ( 6 ,0 ) B幢( 5 ,7 )(2)车库的位置(6,3)、篮球场的位置(9,6),请在图中标出来。
苏教版六年级下册数学课内+小升初专题讲义-第9讲 图形与几何(总复习)

第9讲图形与几何(总复习)【考点1】巧数图形【例1】数一数,下图中有()条直线,()条射线,()条线段。
【考点2】图形与格点【例1】如图是用橡皮筋在钉子板上围成的一个三角形,计算它的面积是多少?(每相邻两个小钉之间的距离都等于1个单位长度)【例2】右图中有28个点,其中每相邻的三点“∵”或“∴”所形成的三角形都是面积为1的等边三角形,试计算四边形ABCD的面积。
【规律总结】1.正方形格点多边形面积公式:2.三角形格点多边形面积公式:【实战练习】1.如图,每个小方格都是边长为1的正方形,求图中格点四边形ABCD的面积。
2.如图,每相邻三个点构成的三角形的面积都是1平方厘米,求阴影格点多边形的面积。
【考点3】用底高倍数法接图形题【例1】如图所示,三角形ABC的每边长都是96cm,用折线把这个三角形分割成面积相等的4个三角形,求线段CE与CF的长度之和。
【例2】如图,三角形ABC的面积为10厘米,AD与BF交于点E,且AE=ED,BD=CD,求图中阴影部分的面积和。
【例3】如图,把四边形ABCD的各边延长,使得AB=AE,BC=BF,CD=CG,DA=DH,得到一个大的四边形EFGH,若四边形ABCD的面积是5,试求四边形EFGH的面积。
【实战练习】1.如图,△ABC中,BD:DF:FC=2:3:4,已知△AFC的面积为48平方厘米,E为AF的中点。
求四边形ABDE的面积。
2.如图所示,=1,==,则=( )A. B. C. D.3.如图所示,直线DE把大三角形分成甲、乙两部分,甲与乙的面积比是。
4.如图所示,已知梯形ABCD的上底CD=3cm,下底AB=9cm,CF=2cm,.求梯形ABCD的面积。
【考点4】活用公式解图形问题【例1】用一块面积为36平方厘米的大圆铝板下料,如图,裁出7个同样大小的小圆形铝板,则余下的边角料的总面积是多少平方厘米?【例2】如图,等边△ABC的边长是1,现依次以A、C、B为圆心,以AB,CD,BE为半径画扇形,则阴影部分的面积为多少?(结果保留π)【实战练习】1.如图,半圆的直径为50厘米,阴影部分的周长是多少厘米?(结果保留π)2.如图,半圆的面积是14.13平方厘米,圆的面积是19.625平方厘米,那么长方形(阴影部分)的面积是多少平方厘米?课后巩固一、求下面各图中阴影部分的面积二.填空题1.经过一点可以画()条直线。
六年级下数学总复习资料-图形与几何(二)_人教新课标版(无答案)

六年级下数学总复习资料-图形与几何(二)_人教新课标版(无答案)12.一个正方体的棱长扩大3倍,那么它的表面积(),体积()。
13.一根木料的横截面的面积是28平方分米,长5米,它的体积是()。
1. 这个图形从上面、正面、左面看到的图形是一样的。
()26厘米的正方体的体积和表面积相等。
()3.长方体的6个面中,至少有4个面是长方形。
()4.一个物体的体积是1m³,这个物体的形状一定是正方体。
()5.把一个正方体切成两部分,它的体积和表面积都不变。
()6.木箱的体积就是木箱的容积。
()7.因为正方体的每个面都是正方形,所以长方体的每个面一定是长方形。
()8.长方体和正方体的底面积相等,高也相等,它们的体积一定相等。
()9.钟表的指针从12绕O逆时针旋转90°到3。
()10.体积相等的两个正方体,它们的表面积也一定相等。
()三、选择1.下列图形中,不一定是轴对称的图形是()。
A 正方形 B三角形 C 圆 D 线段2.一种汽车上的油箱可装汽油60()。
A 升B 毫升C 立方米 D方3.一个长方体水箱的容积是150升,这个水箱底面是一个边长为5分米的正方形,则水箱的高是()(水箱厚度忽略不计)A 30分米B 10分米C 4分米D 6分米4.汽车公路上行驶是()现象,风车的运动是()现象。
A 平移B 旋转 C移动 D转动5.两个长方体拼成一个正方体后,它的体积(),表面积()。
A 变大,变大B 变小,变小C 不变,变大 D不变,变小6.我们在画长方体时一般只画出三个面,这是因为长方体()。
A 只有三个面B 只能看到三个面C 最多只能看到三个面7.一个棱长为8分米的正方体鱼缸,水面距缸口3分米,则鱼缸里装水()。
A 320升B 192升C 512升D 24升8.把一个长方体切成两个正方体,表面积增加了60平方分米,已知原长方体长3米,则它的体积是()。
A 180立方分米B 900立方分米C 1800立方分米D 90立方分米四、按要求画图1.2. 画出下图关于直线的轴对称图形。
图形的认识知识点六年级

图形的认识知识点六年级一、图形的基本概念图形是我们日常生活中经常遇到的一种几何形状。
它们可以是平面图形或立体图形,组成了我们所见到的世界。
图形可以通过各种几何属性进行分类和描述,深入了解图形的认识知识,有助于我们更好地理解和应用它们。
二、平面图形1. 点点是平面上最基本的图形,它没有长度、宽度和高度。
点用字母表示,如A、B、C等。
2. 线段线段是由两个端点所确定的直线部分,可以直接测量其长度。
线段用两个点的名字表示,如AB,BC等。
3. 直线直线是无限延伸的线段,没有端点。
直线用两个点上面加一撇表示,如AB。
4. 射线射线是由一个端点和与它直线性质相同、并在另一端射出去的线段所组成的图形。
射线用一个点和一个字母上面加一撇表示,如OA。
5. 角角是由两条射线公共端点构成的图形。
角可以用弧度或度数来度量,最常用的表示方法是使用字母。
6. 三角形三角形是由三条线段连接成的围成的一个封闭图形。
三角形可以根据边长和角的大小进行分类,如等边三角形、等腰三角形等。
7. 四边形四边形是由四条线段组成、并围成一个封闭图形的图形。
常见的四边形包括矩形、正方形、菱形和平行四边形等。
8. 多边形多边形是由多条线段连接而成、并围成一个封闭图形的图形。
多边形可以根据边的数量进行命名,如五边形、六边形等。
三、立体图形1. 立方体立方体是由六个相等的正方形组成的立体图形。
它具有六个面、八个顶点和十二条边。
2. 正四面体正四面体是由四个等边三角形构成的立体图形。
它具有四个面、四个顶点和六条边。
3. 正方体正方体是由六个相等的正方形构成的立体图形。
它具有六个面、八个顶点和十二条边。
4. 圆柱体圆柱体有两个底面和一个侧面组成,底面为圆形。
它具有三个面、两个顶点和一个侧面。
5. 圆锥体圆锥体有一个底面和一个侧面组成,底面为圆形。
它具有两个面、一个顶点和一个侧面。
6. 球体球体是由无数个点离一个确定点的距离都相等所组成的立体图形。
它具有无边界、无面、一个顶点和一个体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册数学复习专题图形与几何图形的认识、测量量的计量一、长度单位是用来测量物体的长度的。
常用的长度单位有千米、米、分米、厘米、毫米。
二、长度单位:1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米1米=1000毫米三、面积单位是用来测量物体的表面或平面图形的大小的。
常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。
边长100米的正方形土地,面积是1公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。
边长1000米的正方形土地,面积是1平方千米。
六、面积单位:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米七、体积单位是用来测量物体所占空间的大小的。
常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。
八、体积单位:(1000)1立方米=1000立方分米1立方分米=1000立方厘米1升=1000毫升九、常用的质量单位有:吨、千克、克。
十、质量单位:1吨=1000千克1千克=1000克十一、常用的时间单位有:世纪、年、季度、月、旬、日、时、分、秒。
十二、时间单位:(60)1世纪=100年1年=12个月1年=4个季1个季度=3个月1个月=3旬大月=31天小月=30天平年二月=28天闰年二月=29天1天=24小时1小时=60分1分=60秒十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。
十四、常用计量单位用字母表示:千米:km 米:m 分米:dm 厘米:cm 毫米:mm 吨:t 千克:kg 克:g 升:l 毫升:ml平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
过一点可以画无数条直线、过两点只能画一条直线。
二、从一点引出两条射线,就组成了一个角。
角的大小与两边叉开的大小有关,与边的长短无关。
角的大小的计量单位是(°)。
三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。
四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。
同一平面内的两条直线有两种位置关系:平行和相交(垂直是相交的特殊情况)过直线上(外)一点只能画一条直线和已知直线垂直。
五、三角形是由三条线段围成的图形。
围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。
三角形有三条高。
六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。
按边分,可以分为等腰三角形和任意三角形(等边三角形是等腰三角形的特殊情况)。
七、三角形的内角和等于180度,四边形的内角和是360°,多边形的内角和=(边数-2)×180°。
八、在一个三角形中,任意两边之和大于第三边。
九、在一个三角形中,最多只有一个直角或最多只有一个钝角,最少有两个锐角。
十、四边形是由四条边围成的图形。
常见的特殊四边形有:平行四边形、长方形、正方形、梯形。
十一、圆是一种曲线图形。
圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
通过圆心并且两端都在圆的线段叫做圆的直径。
两个圆,半径比=直径比=周长比,面积比等于它们平方的比。
圆周率π是无限不循环小数。
圆周率最早是有我国的祖冲之发现的。
同圆或等圆中:所有的半径相等、所有的直径相等。
周长相等的两个圆,面积相等周长相等的情况下:圆的面积﹥正方形的面积﹥长方形的面积长方形和正方形都是特殊的平行四边形,长方形对边相等,正方形四边相等。
半径2厘米的圆,周长和面积不相等圆的半径扩大2倍,周长和直径都分别扩大2倍,面积则扩大4倍。
十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。
这条直线叫做对称轴。
正方形有4条对称轴、长方形有2条对称轴、等边三角形有3条对称轴、等腰三角形有一条对称轴、等腰梯形有一条对称轴、圆有无数条对称轴、半圆有1条对称轴,扇形有1条对称轴,平行四边形没有对称轴。
十三、围成一个图形的所有边长的总和就是这个图形的周长。
十四、物体的表面或围成的平面图形的大小,叫做它们的面积。
十五、平面图形的面积计算公式推导:【1】平行四边形面积公式的推导过程?①把平行四边形通过剪切、平移可以转化成一个长方形。
②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。
③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。
即:S=ah。
把一个长方形拉成平行四边形,周长不变,面积变小(高变小,底不变)。
【2】三角形面积公式的推导过程?①用两个完全一样的三角形可以拼成一个平行四边形。
②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。
即:S=ah÷2。
三角形的底=面积×2÷高三角形的高=面积×2÷底【3】梯形面积公式的推导过程?①用两个完全一样的梯形可以拼成一个平行四边形。
②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。
③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。
即:S=(a+b)h÷2。
梯形的高=面积×2÷(上底+下底)梯形的(上底+下底)=面积×2÷高【4】画图说明圆面积公式的推导过程①把圆分成若干等份,剪开后,拼成了一个近似的长方形。
②长方形的长相当于圆周长的一半,宽相当于圆的半径。
③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr²。
即:S=πr²。
十六、平面图形的周长和面积计算公式:长方形周长=(长+宽)× 2 长方形面积= 长×宽正方形周长= 边长× 4 正方形面积= 边长×边平行四边形面积= 底×高三角形面积= 底×高÷ 2圆的面积,我国的刘徽的《割圆术》十七、常用数据:常用π值2π=6.283π=9.424π=12.565π=15.76π=18.847π=21.988π=25.1 29π=28.2610π=31.412π=37.6815π=47.116π=50.2418π=56.5220π=62.825π=78.532π=100.48 6.25π=19.625 2.25π=7.065立体图形【认识、表面积、体积】一、长方体、正方体都有6个面,12条棱,8个顶点。
正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。
容器所能容纳其它物体的体积叫做容器的容积。
六、圆柱和圆锥三种关系:①等底等高,圆锥的体积是圆柱的13,圆柱的高是圆锥的3倍。
②等底等体积:圆锥的高是圆柱高的3倍。
③等高等体积:圆锥的底面积是圆柱的3倍。
七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的13,②圆柱体积是圆锥的3倍,③圆锥体积比圆柱少23,④圆柱体积比圆锥多2倍。
八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。
九、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)①圆柱的侧面展开后一般得到一个长方形。
②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。
④圆柱的侧面展开后还可能得到一个正方形。
正方形的边长=圆柱的底面周长=圆柱的高。
【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体。
②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。
即:V=Sh。
【3】请画图说明圆锥体积公式的推导过程?①找来等底等高的空圆锥和空圆柱各一只。
②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。
③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。
即:V=13 Sh。
十、立体图形的棱长总和、表面积、体积计算公式:长方体棱长总和= (长+宽+高)× 4长方体表面积=(长×宽+长×高+宽×高)×2长方体体积=长×宽×高正方体棱长总和=棱长×12 正方体表面积=棱长×棱长×6 正方体体积=棱长×棱长×棱长圆柱体侧面积=底面周长×高圆柱体表面积=侧面积+底面积×2圆柱体体积=底面积×高圆锥体体积=底面积×高×1 3(二)图形与变换一、变换图形位置的方法有对称、平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。
二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。
三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。
(三)图形与位置一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。
二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。
再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。