概率统计 A卷(2008)(答案)
概率论与数理统计

重庆交通大学继续教育学院2008--2009学年第一学期考试A 卷《概率论与数理统计(经管类)》课程考核形式:闭卷 考试需用时间:120分钟在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列各函数中,可作为某随机变量概率密度的是( ) A .⎩⎨⎧<<=其他,0;10,2)(x x x fB .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f2.设随机变量X~N(1,4),5.0)0(,8413.0)1(=Φ=Φ,则事件{13X ≤≤}的概率为( ) A.0.1385 B.0.2413 C.0.2934 D.0.34133.则P{XY=0}=( ) A. 41 B.125 C.43 D.14.某种电子元件的使用寿命X (单位:小时)的概率密度为⎪⎩⎪⎨⎧<≥=,100,0;100,100)(2x x x x f 任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41 B .31 C .21 D .325.设E (X ),E (Y ),D (X ),D (Y )及Cov(X,Y )均存在,则D (X-Y )=( ) A .D (X )+D (Y ) B .D (X )-D (Y ) C .D (X )+D (Y )-2Cov(X,Y ) D .D (X )-D (Y )+2Cov(X,Y )7.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( )A .-13B .15C .19D .238.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=( )A .6B .22C .30D .46 9.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( ) C .2xD .x2110.设n 1X ,,X 为正态总体N(2,σμ)的样本,记∑=--=ni i x x n S 122)(11,则下列选项中正确的是( ) A.)1(~)1(222--n S n χσB.)(~)1(222n S n χσ-C.)1(~)1(22--n S n χD.)1(~22-n S χσ二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
秘籍08统计与概率(原卷版)

秘籍08 统计与概率统计与概率是全国中考的必考内容!但总有一部分学生,因为粗心,因为混淆概念等的小错误就丢了分数。
1.从考点频率看,统计与概率是高频考点,通常考查条形统计图、扇形统计图和树状图。
2.从题型角度看,选择题、填空题较多,同时考查多个考点的综合性题目以解答题为主,分值9分左右!中考数学关于统计与概率的知识点考察分析1.平均数2.中位数:几个数据按从小到大的顺序排列时,处于最中间的一个数据(或是中间两个数据的平均数)是这组数据的中位数.3.众数:一组数据中出现次数最多的那个数据.4.方差典例1.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康,某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭进行一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品.现将有关数据呈现如图:①m=,n=;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期参加四个社团活动人数扇形统计图请根据以上信息,回答下列问题:(1)抽取的学生共有人,其中参加围棋社的有人;(2)若该校有3200人,估计全校参加篮球社的学生有多少人?(3)某班有3男2女共5名学生参加足球社,现从中随机抽取2名学生参加学校足球队,请用树状图或列表法说明恰好抽到一男一女的概率.中考统计与概率是基础题。
条形统计图和扇形统计图的结合经常考查求总量、画条形统计图、求扇形度数和估计等。
数据整理和分析常考的知识点有众数、中位数、平均数和方差。
有时也会考查频率和频数。
典例4.教育部在《大中小学劳动教育指导纲要(试行)》中明确要求:初中生每周课外生活和家庭生活中,劳动时间不少于3小时.某走读制初级中学为了解学生劳动时间的情况,对学生进行了随机抽样调查,并请根据所给信息解答下列问题:a____________,②b=____________,③θ=____________度;(1)填空:①=(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?1.(2023·甘肃张掖·校联考一模)中国古典长篇小说四大名著是指《水浒传》、《三国演义》、《西游记》、《红楼梦》这四部巨著,它们承载着无数文化精华,代表了中国古典小说的巅峰,是悠悠中国文学史上灿烂辉煌的一笔.甲、乙两人从四大名著中随机选择一本进行研读,假设选择时不受四本名著封面厚度等影响,且每一本被选到的可能性相同.(1)求甲选择研读《三国演义》的概率;(2)若甲先从四本名著中随机选择一本(不放回),乙从剩余三本中随机选择一本,求甲、乙两人选到的是《三国演义》和《红楼梦》的概率. 2.(2023·广东广州·统考一模)为锻炼学生的社会实践能力,某校开展五项社会实践活动,要求每名学生在规定时间内必须且只能参加其中一项活动,该校从全体学生中调查他们参加活动的意向,将收集的数据整理后,绘制成如下两幅不完整的统计图(五个综合实践活动分别用A B C D E ,,,,表示):(1)扇形统计图中的%n =________%,B 项活动所在扇形的圆心角的大小是________︒.(2)甲同学想参加A 、B 、C 三个活动中的一个,乙同学想参加B 、C 、E 这三个活动中的一个,若他们随机抽选其中一个活动的概率相同,请用列表法或画树状图法,求他们同时选中同一个活动的概率. 3.(2023·安徽宿州·统考二模)自2023年3月1日起,《安徽省电动自行车管理条例》正式实施.某校为了解本校学生对该条例的知晓情况,对本校所有的学生进行了知识测试,并随机抽取了m 名学生的成绩,将测试成绩进行整理,分成以下六组(得分用x 表示):A .7075x ≤<,B .7580x ≤<,C .8085x ≤<,D .8590x ≤<,E .9095x ≤<;F .95100x ≤<. 根据统计的结果将成绩制成如下统计图,部分信息如图:已知测试成绩F 组的全部数据为96,95,97,96,99,98.请根据图表中的信息,解答下列问题:(1)填空:b = ,抽取的学生竞赛成绩的中位数落在 组;(2)补全频数分布直方图,并求此次抽取的学生竞赛成绩的平均数;(3)若学校规定此次竞赛成绩在90分(含90分)以上为“优秀”,请你估计全校1800名学生中,此次竞赛成绩为“优秀”的学生人数.5.(2023·江苏徐州·统考一模)校园安全问题受到全社会的广泛关注,教育局要求各学校加强对学生的安全教育,某中学为了了解学生对校园安全知识的了解程度(程度分为:A.十分熟悉、B.了解较多、C.了解较少、D.不了解),随机抽取了该校部分学生进行调查,统计整理并绘制成如下两幅不完整的统计图.根据以上信息解答下列问题:(1)本次接受调查的学生共有人,扇形统计图中A部分所对应的扇形圆心角是;(2)请补全条形统计图;(3)若该中学共有学生1800人,估计该校学生中对校园安全知识的了解程度达到A和B的总人数.6.(2023·江苏苏州·统考二模)2023年春节假期,苏州文旅全面复苏,接待人次、旅游收入双创新高:重点景区人气爆棚,持续高位运行.据统计,2023年1月21日到1月27日期间,苏州共接待游客约221万人次.其中著名打卡景区有,A:穹窿山景区,B:虎丘景区,C:灵岩山景区,D:西山景区,E:东山景区,F:其他.小志为了解哪个景区最受欢迎,随机调查了自己学校的部分同学,并根据调查结果绘制了两幅不完整的统计图.请你根据统计图中的信息,解决下列问题:(1)这次调查一共抽取了___名同学:扇形统计图中,旅游地点D所对应的扇形圆心角的度数____,并补全条形统计图.(2)若小志所在学校共有3000名学生,请你根据调查结果估计该校最喜爱“穹窿山景区”与“灵岩山景区”的学根据以上信息,回答下列问题:(1)表中m=______,n=______;(2)下列推断合理的是______;①样本中两个年级数据的平均数相同,八年级数据的方差较小,由此可以推断该校八年级学生成绩的波动程度较小;②若八年级小明同学的成绩是84分,可以推断他的成绩超过了该校八年级一半以上学生的成绩.(3)竞赛成绩80分及以上记为优秀,该校七年级有600名学生,估计七年级成绩优秀的学生人数.13.(2023·四川成都·统考二模)2019年11月,联合国教科文组织将每年的3月14日定为“国际数学日”,也被许多人称为“π节”.我区某校在今年的“数学π节”活动中开展了如下四项活动:A.趣味魔方;B.折纸活动;C.数独比赛;D.唱响数学.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有_______人;(2)请补全条形统计图;(3)在数独比赛项目中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中随机选取两名参加数独决赛,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.14.(2023·四川成都·统考一模)某学校在推进新课改的过程中,开设的体育社团活动课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了如图所示的两幅不完整的统计图.(1)则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是______度;(2)补全条形统计图;(3)该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这4人中选2人了解他们对体育社团活动课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.15.(2023·浙江金华·统考一模)某校为提高九年级学生的体育成绩,针对跳绳项目进行了专门训练.为了解训练效果,在训练前后各组织了一次测试,并从中抽取了50名学生的数据制成了如下条形统计图,请回答下列问题:某校九年级50名学生训练前后跳绳成绩条形统计图(1)训练前成绩的中位数是分,训练后成绩的众数是分.(2)训练后比训练前平均分增加了多少分?(3)如果该校九年级有400名学生,那么估计训练后成绩为满分的人数有多少人?。
《概率统计》期终考题(A卷)

6.若随机变量 X 的数学期望存在,则X 的方差也存在. ( )
7.样本二阶中心矩不是总体方差的无偏估计. ( )
8.假设检验中,样本容量确定时,犯弃真错误和取伪错误的概率不能同时减小. ( )
(2) 求铅中毒患者脉搏均值的0.95的置信区间.
以下分位数全部为下侧?--分位数:
?(0.50)=0.6915; ?(0.55)=0.7088; ?(1.00)=0.8413; ?(1.05)=0.8531; ?(1.65)=0.95;
?(1.95)=0.9744; ?(1.96)=0.9750; ?(2.00)=0.9772; ?(2.05)=0.9798; ?(3)=0.9987;
2. (15分) 设二维随机变量( X, Y )的联合密度函数为:
试求 (1) 系数c; (2) X和Y各自的边缘密度函数;
(3) P( X<Y ) ; (4) X与Y相互独立吗?为什么?
3. (10分) 某工厂有100台机器,各台机器独立工作,每台机器的开工率为0.8,工作时各需要1kw电力,问供电局至少要供应多少电力,才能以97.5%的把握保证正常生产?
(); ().
3. 人的体重为随机变量,,,10个人的平均体重记为,则 .
(); ();
(); ().
4. 设的联合概率密度为
则与为 的随机变量.
2.如果P(A) = P(B) = 0.5, 则P( AB ) = P(). ( )
3.设 n 次独立重复试验中, 事件 A 出现的次数为X, 则 4 n 次独立重复试验中,A出现的次数为 4 X. ( )
4.如果随机变量 X ? N ( ? , ?2 ), 则 (? ?X) /? ? N (0, 1) . ( )
概率统计试卷和答案08.01.16

概率统计(54学时)试卷(080116)一、 单项选择(共21分,每小题3分)1. 设A 、B 是任意两个事件,则P (A - B )= ( ) A. ()()P A P AB - B. ()()()P A P B P AB -+ C. ()()()P A P B P A B +- D. ()()()P A P B P AB +-2. 对于随机变量X ,Y ,若E (XY )=E (X )E (Y ),则 ( )A. DY DX XY D ⋅=)(B.DY DX Y X D +=+)(C. X 与Y 独立D. X 与Y 不独立3.任何一个连续型随机变量的概率密度)(x ϕ一定满足( )。
A 、1)(0≤≤x ϕ B 、在定义域内单调不减 C 、1)(=⎰+∞∞-dx x ϕ D 、1)(>x ϕ4. n X X X ,,,21 为总体X 的简单随机样本,是指( )。
A 、n X X X ,,,21 相互独立;B 、n X X X ,,,21 中任一i X 与X 分布相同;C 、n X X X ,,,21 相互独立且n X X X ,,,21 中任一i X 与X 分布相同;D 、n X X X ,,,21 相互独立或n X X X ,,,21 中任一i X 与X 分布相同。
5.设21,X X 为取自总体)1,(~μN X 的简单随机样本,其中μ为未知参数,下面四个关于μ的估计量中为无偏估计的是( )。
A 、213432X X +B 、214241X X +C 、214143X X -D 、215352X X +6.如果(Y X ,)的密度函数,21),(22)1(2)1(-+--=y x e y x f π则X 与Y ( )。
A 、均服从N (0,1) B 、一定相互独立 C 、不一定相互独立 D 、一定不相互独立 7.设)2,0(~N X ,)(~2n Y χ,且X 与Y 独立,则统计量nY X /2服从( )。
概率、统计(A卷)

的方 差 为 (
A.0 . 8
图1
观测数据 4 0 4 l 4 3 4 3 4 4 4 6 4 7 4 8
)
B. 1 . 6
4 .一 个 总 体 中 有 1 0 0 个个体 , 随机编号0 , 1 , 2 , …, 9 9 , 依 从 小 到 大 的 编号 顺 序 平 均 分成 1 0 个小组 。 组 号依 次 为
)
)
D.8 0
5 .图2 是某 学 校 学 生 体重 的频 率 分 布 直方 图 .已 知 图 中
从 左 到右 的前 3 个 小组 的频 率 之 比为 1 : 2 : 3 , 第2 小 组 的
C.6
D 7
频数 为 l O , 则 抽取 的学 生人 数是 (
A.2 0
率 为
.
图5
( 1 ) x = l 的概率 为 多少 ?
8 3 2 7 6 5 4 2 O 0 1 2
3
9 1 3 4 8 9 O 1 1 3
G
_ 文
( A卷 )
一
、
选 择题 :
j 小
, j 1 5; , , J { 4 ( ) .
随机按1 ~ 2 0 0 编号 , 并按编号顺序平 均分为4 0 组( 1 ~ 5 号, 6 ~ 1 0 号 ,… , 1 9 6 ~ 2 0 0 号) .若 第 5 组 抽 出 的 号 码 为 2 2 , 则第8 组 抽 出 的号 码 应 是 ( ) ; 若 用 分 层 抽 样 方
£
)
D.5 0
图4
B.3 0
C.4 0
随米-武汉理工大学2009~2010学年第一学期《概率论与数理统计》期末试卷(A卷)及参考答案

武汉理工大学考试试题纸(A 卷)课程名称概率论与数理统计专业班级全校本科2008级备注:学生不得在试题纸上答题(含填空题、选择题等客观题)一、填空题、)4283('=⨯'1. 已知()0.3P A =,()0.4P B =,()0.25P AB =,则=)(B A P . 2. 设二维随机变量),(Y X 满足{}30,07P X Y ≥≥=,且{}{}3007P X P Y <=<=,则{}max(,)0P X Y ≥=.3. 设二维随机变量),(Y X 的概率密度(2)2,0,0,(,)0,.x y e x y f x y -+⎧>>=⎨⎩其它则{}P Y X ≤=.4. 已知随机变量X 服从参数为1的泊松分布,则{}2()P X E X ==.5. 已知~(0,36)X N ,~(Y U ,相关系数0.5XY ρ=-,则ov(,)C X Y =.6. 1234,,,X X X X 是来自总体),(~2σμN X 的样本,2343X X X Y ++=,()422*212i i S X Y ==-∑,则1*X S μ-服从的分布是. 7. 设12,,,n X X X 为总体X 的一个随机样本,2(),()E X D X μσ==,要使()12211ˆn i i i a X X σ-+==-∑是2σ的无偏估计,则常数=a .8. 设921,,,X X X 为正态总体),(~2σμN X 的样本,其中29σ=,样本均值8.52x =,则总体均值μ的置信度为%95的置信区间为.(小数点后保留两位)二、)01('已知甲乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中装有2件合格品和1件次品,现从甲箱中任取2件放入乙箱,然后再从乙箱中任取一件产品,求该产品为次品的概率及该次品是在从甲箱中没取到次品的情况下取得的概率(结果用分数形式表示).三、)01('一箱子装有6个球,其中红,白,黑球的个数分别为1,2,3个;现从箱中随机的取出2个球,设X 为取出的红球个数,Y 为取出的白球个数.试求随机变量),(Y X 的联合分布律及Y X ,的边缘分布律(要求画出分布律表格且结果用分数形式表示),并判断,X Y 是否相互独立.四、)01('设连续型随机变量X 的分布函数为:0,1,()ln ,1,1,.x F x A x x e x e <⎧⎪=≤<⎨⎪≥⎩试求:①常数A;②概率{0P X <≤;③X 的概率密度函数()f x .五、)01('设随机变量X 的概率密度为()14,1112,120,X x f x x -<<⎧⎪=≤<⎨⎪⎩其他,令2Y X =,求Y 的分布函数()Y F y .六、)01('某高校图书馆阅览室共有940个座位,该校共10000名学生,已知每天晚上每个学生到阅览室去自习的概率为10%.试估算阅览室晚上座位不够用的概率(小数点后保留三位).七、)01('设总体X 的概率密度函数为11()0,1x x f x x θθ--⎧>=⎨≤⎩,,其中1θ>是未知参数,12n,...,X X X 为来自该总体的一个样本,该样本取值为12,...,n x x x .求θ的矩估计量和极大似然估计量.八、)01('假定某车间生产的电子元件的寿命(小时h )服从正态分布2(,)N μσ,已知技术改变前的平均寿命为1000h ,现在随机测试9个革新以后的电子元件的寿命,计算得样本均值1124x =h ,样本标准差152S h =. 请问在显著性水平05.0=α下, 是否有理由认为技术革新改变了产品质量?九、)6('设连续型随机变量(0,1)X N ,Y 表示对X 的5次观测中事件{}||1X >发生的次数,试判断Y 的分布,并求Y 的方差(小数点后保留三位).查表数据:(1.00)0.8413Φ=975.0)96.1(=Φ95.0)645.1(=Φ9332.0)50.1(=Φ8595.1)8(05.0=t 3060.2)8(025.0=t 8331.1)9(05.0=t 2622.2)9(025.0=t2009~2010学年第一学期《概率论与数理统计》期末试卷(A 卷)参考答案一、填空题:(每空5分,共25分)(1)、0.4 (2)、57 (3)、1/3 (4)、1e- (5)、-3(6)、(2)t (7)、12(1)n - (8)、(6.56, 10.48)二、(共10分)解:设i A 表示“从甲箱中取了i 件次品放入乙箱”,0,1,2i =; B 表示“从乙箱中取到的是次品”。
2007—2008学年概率论第一学期期终考试及参考答案
¯ ∼ N (0, 1), X ¯ − 1 ∼ N (−1, 1). (2) X 7. (1) E (X ) =
θ , θ +1
ˆ MM = θ
¯ X ¯; 1−X n i =1
(2) ln L(θ) = n ln θ + (θ − 1)
ln Xi , θ MLE = −
n i=1
n . ln Xi
1
上
专业
海
班级
海
事
姓名
大
学
学号
试
卷
得分
概率论与数理统计(卷A): 20080114
本试卷共8大题(第1, 2, 5, 6题每题10分, 第3, 4, 7, 8题每题15分) 可能用到的分位点表如下: z0.05 = 1.645 z0.0025 = 1.960 t0.025 (27) = 2.0518 t0.05 (27) = 1.7033 t0.025 (28) = 2.0484 t0.025 (29) = 2.0452 t0.05 (29) = 1.6991 t0.05 (13) = 1.7709 F0.025 (11, 16) = 211) = 3.28 F0.025 (7, 6) = 5.70 F0.025 (6, 7) = 5.12 1. 设A, B为两事件, 已知P(A) = 0.3, P( B) = 0.5, 计算: (1) 若A, B相互独立, 求P(A ∪ B); ¯ ). (2) 若P(A| B) = 0.4, 求P(A| B
3 8. 某厂利用两条自动化流水线灌装番茄酱, 从两条自动化流水线上分别抽取样 本(X1 , · · · , X12 )与(Y1 , · · · , Y17 ), 观测后算得 x ¯ = 10.6(g), y ¯ = 9.5(g), s2 1 = 2.4, 2 s2 = 4.7, 假 设 这 两 条 流 水 线 上 灌 装 的 番 茄 酱 的 重 量 分 别 服 从 正 态 分 2 2 2 布N (µ1 , σ2 1 )与 N (µ2 , σ2 ), 且相互独立. µ1 , σ1 , µ2 , σ2 均未知. 求:
历年西安交通大学概率论与数理统计试题及答案
2(0,)N σ15)X 是来自225122156)X X X ++++服从的分布是___ 机变量X 服从数为λ的]2)1=,则λ= 设两个随机变量X 与Y 的方差分别为共 4 页 第 1 页共4 页第2 页,)X为来自总体n求(1)θ的矩估计;(10分)设ˆθ是一定是θ的相合估计。
共4 页第3 页共4 页第4 页西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A ) 课时:48 考试时间:2007 年7 月9 日(200,169)N 180200169P -⎧⎨⎩1.54)=0.93941()x dx =⎰1X θ=+,得1()(nk f θ==∏,),n1,,),n 当0,)nln k x ∑,求导得似然方程0=其唯一解为2,故θ的极大似然估优于页1(1,F n -(24,19)=0.429,21.507≈∈2的条件下,进一步检验假设:2μ<。
选取检验统计量12(t n n +0.05(43)t =-2.647 1.681-<-)B=)1Y≥=个人在第一层进入十八层楼的电梯,假如每个人以相同的概率从任个人在不同楼层走出电梯的概2=-1Xe-5,,X 都服从参数为分布,若将它们串联成整机,求整机寿命的分布密度。
分)某汽车销售点每天出售的汽车数服从参数为且每天出售的汽车数是相互独立的,西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A)课时:48 考试时间:2008 年7 月9 日三、1exp(),5 X2 (5,)B e-,∴四、设1iX⎧=⎨⎩第,n1n-第 1页1,2,,5min {k X 5,0,x e λ--0,x > exp(5)λ,365,(3652,365iN ⨯⨯3652)3652-⨯=⨯七、()E X dx θθ==+1X θθ=+2⎪⎫; 1)(ni θ==∏()ln nθθ= 第 2 页(0,1)N 的样本9,)X 是来自正态总体N 的置信区间为 分)某卡车为乡村小学运送书籍,共装有1,2,,n.设各部件的状态相互独立,以转中同时需要调整的部件数,求(E X,)X是来自总体的一组样本nˆμ,它是否是的极大似然估计量*μ,它是否是西安交通大学本科生课程考试试题标准答案与评分标准(A)n,则X,nX相互独立,1,2,i n= ()E X=()D X: (1)0x y<<<⎰⎰10000,X独立同分布,1,2,n ,因此当,)n x 中最小值时,的极大似然估计量为 ,}n X 2,}n X X 分布函数是1(1(X F z --,分布密度是((Z x f z μμ>≤ ()n x nxe dx μ--=12min{,,}n X X X 不是统计量X T S -=代入数据()Pλ,且已知{(,)=G x y,X)为来自总体服从参数为…,n,λ>服从以λ(0)求该样本的联合密度函数共2 页第1 页5,,X 是独立同分布的随机变量,其共同密度函数为:,试求5,,)Y X =的数学期望和方差。
概率论权威试题及其答案详细解析
概率论与数理统计试题 A 卷 2007-2008学年 第二学期 2008.06一、填空题(每空3分,共18分)1. 事件A 发生的概率为0.3,事件B 发生的概率为0.6,事件A ,B 至少有一个发生的概率为0.9,则事件A ,B 同时发生的概率为____________2. 设随机向量(X ,Y )取数组(0,0),(-1,1),(-1,2),(1,0)的概率分别为,45,41,1,21cc c c 取其余数组的概率均为0,则c =__________3. 设随机变量X 在(1,6)上服从均匀分布,则关于y 的方程012=+-Xy y 无实根的概率为_______________. 4. 若)1,0(~N X ,)1,0(~N Y ,且X 与Y 相互独立,则Y X Z +=服从______________5. 设总体X 的概率密度为⎩⎨⎧<<+=其他,0,10,)1();(x x x f θθθ,n X X X ,,21 为来自总体X 的一个样本,则待估参数)(-1>θθ的最大似然估计量为_____________. 6. 当2σ已知,正态总体均值μ的置信度为α-1的置信区间为(样本容量为n )___________二、选择题(每题3分,共18分)1. 对任意事件A 与B ,下列成立的是-------------------------------------------------------------( ) (A ))0)((),()|(≠=B P A P B A P (B ))()()(B P A P B A P += (C ))0)((),|()()(≠=A P A B P A P AB P (D ))()()(B P A P AB P =2. 设随机变量X ),(~p n B 且期望和方差分别为48.0)(,4.2)(==X D X E ,则----( )(A) 3.0,8==p n (B) 4.0,6==p n (C) 4.0,3==p n (D ) 8.0,3==p n 3. 设随机变量X 的分布函数为F X (x ),则24+=X Y 的分布函数F Y (y )为-------------( ) (A) 1()22X F y + (B) 1(2)2X F y +(C) (2)4X F y - (D )(24)X F y -4. 若随机变量X 和Y 的相关系数0=XY ρ,则下列错误的是---------------------------------( ))1(~-n t S X (A) Y X ,必相互独立 (B) 必有)()()(Y E X E XY E = (C) Y X ,必不相关 (D ) 必有)()()(Y D X D Y X D +=+5. 总体)1,0(~N X ,n X X X ,,21 为来自总体X 的一个样本,2,S X 分别为样本均值和样本方差,则下列不正确的是--------------------------------------------------------------------( )(A) ),0(~n N X n (B) (C) (D )6. 设随机变量)2,1( =k X k 相互独立,具有同一分布, ,0=k EX ,2σ=K DX ,2,1=k ,则当n 很大时,1nkk X=∑的近似分布是--------------------------------------------------------( ) (A) 2(0,)N n σ (B) 2(0,)N σ (C) 2(0,/)N n σ(D) 22(0,/)N n σ三、解答题(共64分)1. (本题10分)设一批混合麦种中一、二、三等品分别占20%、70%、10%,三个等级的发芽率依次为0.9,0.7,0.3,求这批麦种的发芽率。
08-09I概率论与数理统计试卷(A)参考答案
| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | ||防灾科技学院2008~2009学年 第一学期期末考试概率论与数理统计试卷(A )使用班级07601/ 07602/07103 答题时间120分钟一填空题(每题2分,共20分)1、已知事件A ,B 有概率4.0)(=A P ,条件概率3.0)|(=A B P ,则=⋂)(B A P 0.28 ;2、设),(~1p n b X ,),(~2p n b Y 则~Y X +),(21p n n b +;3、若)2(~πX ,则=)(2X E 6 ;4、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,8.011,6.01,0)(,则=≤<-)31(X P0.4 ;5、连续型随机变量的概率密度函数为)0(0,)(>⎩⎨⎧≤>=-λλλx x ex f x,则分布函数为⎩⎨⎧≤>-=-000,1)(x x e x F x λ;6、若)1,0(~),1,0(~N Y N X 且X 与Y 相互独立,则~2/)(22Y X X +)2(t ;7、若随机变量X ,1)(,2)(==X D X E ,则利用切比雪夫不等式估计概率()≥<-32X P 98;8、若总体),(~2σμN X ,则样本方差的期望=)(2S E 2σ;9、设随机变量)2,1(~-U X ,令⎩⎨⎧<≥=.0,0,0,1X X Y ,则Y10、已知灯泡寿命)100,(~2μN X ,今抽取25只灯泡进行寿命测试,得样本1200=x 小时,则μ的置信度为95%的置信区间是 (1160.8,1239.2) (96.1025.0=z )。
二、单项选择题(本大题共5小题,每题2分,共10分)1、若6.0)(,4.0)(,5.0)(===B A P B P A P ,则=)(A B P ( C )(A) 0.2 ; (B) 0.45; (C) 0.6; (D) 0.75;2、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β( C )(A )11-=αβ ;(B )1+=αβ;(C )11+=αβ;(D )不能确定; 3、设随机变量X 和Y 不相关,则下列结论中正确的是( B )(A )X 与Y 独立; (B ))(4)()2(Y D X D Y X D +=-;(C ))(2)()2(Y D X D Y X D +=-; (D ))(4)()2(X D Y D Y X D -=-;4、若)1,0(~N X ,则)2|(|>X P =( A )(A ))]2(1[2Φ-;(B )1)2(2-Φ;(C ))2(2Φ-;(D ))2(21Φ-; 5、下列不是评价估计量三个常用标准的是( D ))(A 无偏性; )(B 有效性; )(C 相合性; )(D 正态性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海海洋大学试卷姓名: 学 号: 专 业 班 名: 一、[1273'=⨯'1.甲、乙两人独立地破译一份密码,A 、B 分别表示甲、乙译出此密码,则B A 表示( )。
(A )两人都没译出此密码 (B )两人没有都译出此密码(C )两人都译出此密码 (D )至少一人译出此密码2.设A 、B 为任意两事件,且B A ⊂,则下列选项必然成立的是( )。
(A ))B (P )A (P < (B ))B (P )A (P ≤ (C ))B (P )A (P > (D ))B (P )A (P ≥ 3.设3/1)A (P =,2/1)B (P =,8/1)A B (P =,则)A B (P = ( C )。
(A )1/6 (B )5/24 (C )3/8 (D )1/8 4.设)Y ,X (的联合概率分布如 右 表:则a=( )。
(A )0 (B )1/8 (C )3/8 (D )7/85.若随机变量X 服从参数为λ上的指数分布,则=)X (E ( )。
(A )0 (B )λ (C )λ/1 (D )2/1λ 6.若随机变量X 服从参数为λ上的指数分布布,则=)(X D ( )。
(A )2λ (B )λ (C )λ/1 (D )2/1λ7.设随机变量127)(),(~X =x E x f ,⎩⎨⎧≤≤+= . 010 ,)(其它,;当x b ax x f 则) (,) (==b a 。
(A )0 ,1 (B )1 ,1 (C )2/1 ,1 (D )1 ,2/1二、(6分)设 甲、乙两射手独立的射击同一目标,他们击中目标的概率分别为0.9和0.8。
求在一次射击中,目标被击中的概率。
解:令A=“甲击中目标”, B=“乙击中目标” ---------(2分) 那么,A+B=“目标被击中”)()()()()()()()(B P A P B P A P AB P B P A P B A P -+=-+=+---------(2分)98.08.09.08.09.0=⨯-+=---------(2分)三、(10分)设8支枪中有3支未经校正,5支已试射校正中靶,一射手用校正过的枪射击时、中靶概率为0.8,而用未经校正过的枪射击时、中靶概率为0.3。
今从8枪中取一支进行射击,结果中靶。
所用这支枪是已经校正过的概率。
解:令=B “用已经校正过的枪”, =A “中靶”那么,3.0)|(,8.0)|(==B A P B A P ---------(2分) (1)6125.03.0838.085)|()()()()(=⨯+⨯=+=B A P B P B A P B P A P --------(4分)(2)8163.06125.08.085)()()()(=⨯==A PB A P B P A B P -----------(4分) 四、 (25分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤= . 022- ,cos )(其它,;当ππx x a x f ,试求:(1)常数a ;(2)X 落在)3,3(ππ-内的概率;(3)X 的分布函数;(4)E(X);(5)D(X)。
解:(1)211cos )(22=∴==⎰⎰-∞+∞-a xdx a dx x f ππ-----------(5分)(2)23cos 21)()133(3333===<<-⎰⎰--xdx dx x f X P ππππππ-----------(5分)(3)⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-+-<==⎰∞-2,122,21sin 212,0)()(ππππx x x x dt t f x F x-----------(5分)(4)0cos 21)()(22===⎰⎰-∞+∞-ππxdx x dx x xf X E -----------(5分)(5)24cos 21)()(222222-===⎰⎰-∞+∞-πππxdx x dx x f xX E ---------(3分)24)()()(222-=-=∴πX E X E X D ---------(2分)五、(6分)设随机变量X 服从],[b a 上的均匀分布,令0)(c X Y ≠+=d c ,试求随机变量Y 的概率密度。
解:⎪⎩⎪⎨⎧≤-≤⋅⎪⎭⎫ ⎝⎛-=其它,0,||1)(bcd y a c c d y f y f X Y ---------(4分)当0>c 时,⎪⎩⎪⎨⎧+≤≤+-=其他,0,)(1)(d cb y d a c a b c y f Y ---------(1分)当0<c 时,⎪⎩⎪⎨⎧+≤≤+--=其他,0,)(1)(d ca y d b c a b c y f Y ---------(1分)六、(10分)已知总体X 的密度函数为⎩⎨⎧+=0,,1)x (f(x)θθ 1x x,01x 0≥≥<<,未知参数-1>θ,n 21X ,,X ,X 是来自总体X 的样本。
求θ的矩估计量和最大似然估计量。
解:(1)EX =⎰+∞∞-dx x xf )(=⎰++=++1121)1(θθθθdx x---------(3分)令X =++21θθ, 解得XX --=112ˆ1θ ---------(2分) (2)令L(θ;x 1,x 2,...,x n )=∏=ni i x f 1);(θ=()⎪⎩⎪⎨⎧<<+其他,010,)1(2121n n nx x x x x x θθ, -----(2分) lnL=∑=++ni i x n 1ln )1ln(θθ,0ln1ln 1=++=∑=ni i x nd L d θθ,---------(2分)解得最大似然估计量为:2ˆθ=1ln1--∑=ni iX n---------(1分) 七、(8分)设某种油漆的9个样品,其干燥时间(以小时记)分别为:6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0 设干燥时间总体服从正态分布 ),N(~X 2σμ,求μ的置信度为95%的置信区间。
根据经验知226.0=σ(小时)。
解: μ的置信度为95%的置信区间为:},{22αασσZ nX Z nX +-=}96.196.06,96.196.06{⨯+⨯----------(4分)={5.608,6.392} ---------(4分)八、(14分)用过去的铸造方法,零件强度服从正态分布,其标准差为1.6kg/mm 2,为了降低成本,改变了铸造方法,测得用新方法铸造出零件强度如下:51.9,53.0,52.7,54.1,53.2,52.5,52.5,51.1,54.7。
问改变方法后零件强度的(1)方差2σ是否发生了显著变化?(2)方差2σ是否变大?(取显著性水平0.05=α)?解:(1)H 0:σ2=1.62,H 1:σ2≠1.62---------(2分)采用统计量2χ=)1(~)1(222--n Sn χσ,这里σ2=1.62 , n =9否定域:2χ)1(22->n αχ或2χ)1(212-<-n αχ ---------(2分)计算2χ=26.11925.18⨯=3.7266, 查表得535.17)8()1(2025.022==-χχαn ,180.2)8()1(2975.0212==--χχαn ---------(2分)从而<--)1(212n αχ2χ)1(22-<n αχ,故接受原假设.即改变方法后零件强度的方差是未发生显著变化. ---------(1分) (2)H 0:σ2≤1.62,H 1:σ2>1.62 ---------(2分) 采用统计量2χ=)1(~)1(222--n Sn χσ,这里σ2=1.62, n =9否定域:2χ)1(2->n αχ ---------(2分)计算2χ=26.11925.18⨯=3.7266, 查表得:507.15)8()1(205.02==-χχαn ---------(2分)从而2χ)1(2-<n αχ,故接受原假设.即改变方法后零件强度的方差没有变大。
-------(1分) 附表1:X~)(2n χ, P{X>)(2n αχ}=α;附表2:)x (Φ)0x (dt e212tx2≥=-∞-⎰π。