第6章 传感器原理与测量电路1

合集下载

《传感器与检测技术》高教(4版) 第六章

《传感器与检测技术》高教(4版) 第六章

差动变压器位移计
当铁芯处于中间位置时,输出电压: UU 21 U 220
当铁芯向右移动时,则输出电压: UU 21 U 220
当铁芯向左移动时,则输出电压: UU 21 U 220
输出电压的方向反映了铁芯的运动方向,大小反映了铁 芯的位移大小。
差动变压器位移计
输出特性如图所示。
差动变压器位移计
角度的精密测量。 光栅的基本结构
1、光栅:光栅是在透明的玻璃上刻有大量平行等宽等 距的刻线构成的,结构如图。
设其中透光的缝宽为a,不透光的缝宽为b,
一般情况下,光栅的透光缝宽等于不透光
的缝宽,即a = b。图中d = a + b 称为光
栅栅距(也称光栅节距或称光栅常数)。
光栅位移测试
2、光栅的分类
1、激光的特性
(1)方向性强
(2)单色性好
(3) 亮度高
(4) 相干性好
2、激光器
按激光器的工作物质可分为以下几类: (1)固体激光器:常用的有红宝石激光器、钕玻 璃激光器等。
(2)气体激光器:常用的为氦氖激光器、二氧化 碳激光器、一氧化碳激光器等。
激光式传感器
(3) 液体激光器:液体激光器分为无机液体激光器 和有机液体激光器等。
数小,对铜的热电势应尽可能小,常用材料有: 铜镍合金类、铜锰合金类、镍铬丝等。 2、骨架:
对骨架材料要求形状稳定表面绝缘电阻高, 有较好的散热能力。常用的有陶瓷、酚醛树脂 和工程塑料等。 3、电刷:
电刷与电阻丝材料应配合恰当、接触电势 小,并有一定的接触压力。这能使噪声降低。
电位器传感器
电位计式位移传感器
6.2.2 差动变压器位移计结构
1-测头; 2-轴套; 3-测杆; 4-铁芯;5-线圈架; 6-导线; 7-屏蔽筒;8-圆片弹簧;9-弹簧; 10-防尘罩

传感器复习题与答案

传感器复习题与答案

传感器复习题与答案传感器原理与应⽤复习题第⼀章传感器概述1.什么是传感器?传感器由哪⼏个部分组成?试述它们的作⽤和相互关系。

(1)传感器定义:⼴义的定义:⼀种能把特定的信息(物理、化学、⽣物)按⼀定的规律转换成某种可⽤信号输出的器件和装置。

⼴义传感器⼀般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界⾮电信号转换成电信号输出的器件。

我国国家标准对传感器的定义是:能够感受规定的被测量并按照⼀定规律转换成可⽤输出信号的器件和装置。

以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的⼀种检测装置;能按⼀定规律将被测量转换成电信号输出;传感器的输出与输⼊之间存在确定的关系。

(2)组成部分:传感器由敏感元件,转换元件,转换电路组成。

(3)他们的作⽤和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输⼊,转换成电路参量;上述电路参数接⼊基本转换电路,便可转换成电量输出。

2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出?(1)发展趋势:①发展、利⽤新效应;②开发新材料;③提⾼传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和⽹络化。

(2)特征:由传统的分⽴式朝着集成化。

数字化、多动能化、微型化、智能化、⽹络化和光机电⼀体化的⽅向发展,具有⾼精度、⾼性能、⾼灵敏度、⾼可靠性、⾼稳定性、长寿命、⾼信噪⽐、宽量程和⽆维护等特点。

(3)输出:电量输出。

3.压⼒、加速度、转速等常见物理量可⽤什么传感器测量?各有什么特点?本⾝发热⼩,缺点是输出⾮线性。

4(1)按传感器检测的量分类,有物理量、化学量,⽣物量;(2)按传感器的输出信号性质分裂,有模拟和数字;(3)按传感器的结构分类,有结构性、物性型、复合型;(4)按传感器功能分类,单功能,多功能,智能;(5)按传感器转换原理分类,有机电、光电、热电、磁电、电化学;(6)按传感器能源分类,有有源和⽆源;根据我国的传感器分类体系表,主要分为物理量传感器、化学量传感器、⽣物量传感器三⼤类。

传感器原理及其应用 第6章 磁电式传感器

传感器原理及其应用 第6章 磁电式传感器

材料(单晶) N型锗(Ge) N型硅(Si) 锑化铟(InSb)
1/ 2
4000 1840 4200
砷化铟(InAs)
磷砷铟(InAsP) 砷化镓(GaAs)
0.36
0.63 1.47
0.0035
0.08 0.2
25000
10500 8500
100
850 1700
1530
3000 3800
哪种材料制作的霍尔元件灵敏度高
1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架; 5—心轴;6—工作线圈;7—壳体;9—引线 工作频率 固有频率 灵敏度 10~500 Hz 12 Hz 最大可测加速度 5g 可测振幅范围 精度 ≤10% 45mm×160 mm 0.7 kg
0.1~1000 m 外形尺寸 1.9 k 质量
d E N dt
武汉理工大学机电工程学院
第6章 磁电式传感器
磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作 相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等, 一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。 6.1.1 恒磁通式磁电感应传感器结构与工作原理 恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感 应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割 磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。
武汉理工大学机电工程学院
第6章 磁电式传感器 磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt 成正比的感应电动势E,其大小为
dx E NBl dt
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。 当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正 比,根据感应电动势E的大小就可以知道被测速度的大小。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传 感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于 固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近 似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随 振动频率增加而下降。 不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的, 但一般频响范围为几十赫至几百赫。低的可到10 Hz左右,高的可 达2 kHz左右。

传感器电路原理

传感器电路原理

传感器电路原理传感器是现代电子技术的重要组成部分,广泛应用于各个领域。

传感器电路是传感器工作的基础,对于了解传感器原理和应用非常重要。

本文将详细介绍传感器电路的原理。

1. 传感器电路的基本原理传感器电路的基本原理是将传感器所感知到的物理量转化为电信号。

传感器通过特定的物理效应,如光电效应、电磁感应等,与所感知的物理量产生相互作用,将其转化为电信号输出。

传感器电路负责接收和处理这些电信号,进一步转化为我们可以使用的信号。

2. 传感器电路的构成要素传感器电路主要由传感器元件、信号调理电路和输出电路三部分组成。

- 传感器元件是将物理量转化为电信号的关键部分,根据实际需求可以选择光传感器、压力传感器、温度传感器等不同类型的传感器元件。

- 信号调理电路用于调整传感器输出信号的幅度、频率等参数,以使其适应后续电路的要求,保证测量的准确性和可靠性。

- 输出电路将调理后的信号转化为我们所需要的电压、电流、频率等形式,以便用于数据采集、控制等应用。

3. 传感器电路的工作原理传感器电路的工作原理可以简单描述为:传感器元件感知物理量并转换为电信号,信号调理电路对信号进行调整,输出电路将调理后的信号转化为需要的形式。

以光传感器为例,光传感器是通过光电效应将光信号转化为电信号的传感器。

当光线照射到光传感器上时,光电效应产生电荷,进而产生电流。

传感器电路会接收这一电流信号,并经过放大、滤波等处理,最终得到可用的光信号输出。

4. 传感器电路的应用举例传感器电路应用广泛,下面介绍几个常见的应用举例:- 温度传感器电路:将温度传感器感知的温度转换为电信号,可以应用于室内温度控制、温度采集等领域。

- 压力传感器电路:将压力传感器感知的压力转换为电信号,可用于压力监测、工业自动化等应用。

- 光电传感器电路:将光电传感器感知的光信号转换为电信号,可用于光敏开关、光电测距等场景。

总结:传感器电路是将传感器感知到的物理量转换为电信号的重要组成部分,常用于各个领域,如温度控制、压力监测、光敏开关等。

第六章 电感式传感器

第六章 电感式传感器

0
3


灵敏度:
L2

L0
0
1
0


0
2


0
3


K


L / L0


1 2
0
L

L1

L2

2L0
0
1
0
2


实际上由于线圈内部的磁场是不均匀的,电感量的增 量ΔL与△x存在着一定的非线性。
为提高灵敏度和线性度,螺线管型自感式传感器常 采用差动结构。
6.1 自感式传感器
广西大学电气工程学院
双螺管型差动型
L1
L2
u
x
特性曲线
等效电路
将传感器两线圈接于电桥 的相邻桥臂时,其输出灵 敏度可提高一倍,并改善 了非线性特性,还能减少 干扰影响。
• 对电源采取稳压、稳频、屏蔽、加滤波电容等 措施,可减弱或消除电源的影响。
• 铁芯磁感应强度的工作点一定要选在磁化曲线 的线性段,以免在电源电压波动时,铁芯磁感 应强度进入饱和区而使导磁率发生很大变动。
6.1 自感式传感器
零点残余电压及其补偿
在电桥预平衡时,无法实 现平衡,最后总要存在着 某个输出值ΔU0,这称为 零点残余电压
应在设计制造时采取措施, 保证两电感线圈的对称。
减少电源中的谐波成分 在测量电桥中接入可调电
位器 采用相敏整流电路
广西大学电气工程学院
理想状态
ΔU0
实际状态
uo
理想状态
实际状态
第六章 电感式传感器
广西大学电气工程学院

第六章-自感式传感器

第六章-自感式传感器

L0
L10
L20
m
0W
2
mr
rc
l2 c
l2
k1
k2
m0W 2mr rc2
l2
综上所述,螺管式自感传感器的特点: ①结构简单,制造装配容易; ②由于空气间隙大,磁路的磁阻高,因此灵敏度低 ,但线性范围大; ③由于磁路大部分为空气,易受外部磁场干扰; ④由于磁阻高,为了达到某一自感量,需要的线圈 匝数多,因而线圈分布电容大; ⑤要求线圈框架尺寸和形状必须稳定,否则影响其 线性和稳定性。
2
3
(2)单线圈是忽略
0
以上高次项,差动式是忽略
0
以上偶次项,
因此差动式自感式传感器线性度得到明显改善。
*另一种形式: Π型
6 自感式传感器
6.1 工作原理 6.2 变气隙式自感传感器 6.3 变面积式自感传感器 6.4 螺线管式自感传感器 6.5 自感式传感器测量电路 6.6 自感式传感器应用举例
第6章 电感式传感器
电感式传感器是建立在电磁感应基础上,利用 线圈自感或互感的改变来实现测量的一种装置。它 可对直线位移和角位移进行直接测量,也可通过一 定的敏感元件把振动、压力、应变、流量等转换成 位移量而进行测量。通常可由下列方法使线圈的电 感变化:
(1)改变几何形状; (2)改变磁路的磁阻; (3)改变磁芯材料的导磁率; (4)改变一组线圈的两部分或几部分间的耦合度。
1. 交流电桥 2. 变压器电桥 3. 自感传感器的灵敏度
(一)交流电桥式测量电路
分析:
• 衔铁在初始位置时,电桥平衡
L1
L2
L0
W 2m0S 20
• 若衔铁上移,则:
1 0 ,2 0

第6章压电式传感器原理及其应用

第6章 压电式传感器原理及其应用 章
6.1 压电效应和压电材料 6.2 压电元件的常用结构 6.3 压电式传感器等效电路和测量电路 6.4 压电式传感器的应用
压电式传感器概述
压电式传感器的压电元件是利用压电材料制成的, 压电式传感器的压电元件是利用压电材料制成的, 它是一种电量型传感器。 它是一种电量型传感器。 工作原理:以某些电介质的压电效应为基础 以某些电介质的压电效应为基础, 工作原理 以某些电介质的压电效应为基础,在外力 作用下,电介质的表面就会产生电荷,有电压输出, 作用下,电介质的表面就会产生电荷,有电压输出, M 从而实现力—电信号转换 再通过检测电荷量( 电信号转换, 从而实现力 电信号转换,再通过检测电荷量(或 输出电压)的大小,即可测出作用力的大小。 输出电压)的大小,即可测出作用力的大小。 压电元件是一种典型的力敏感元件, 压电元件是一种典型的力敏感元件,可用来测量最 终可变换为力的各种物理量,如测量压力、应力、 终可变换为力的各种物理量,如测量压力、应力、 加速度等。由于压电元件具有体积小、重量轻、 加速度等。由于压电元Байду номын сангаас具有体积小、重量轻、结 构简单、可靠性高、频带宽、 构简单、可靠性高、频带宽、灵敏度和信噪比高等 优点,压电式传感器也随之得到了飞速发展。 优点,压电式传感器也随之得到了飞速发展。 在声学、力学、 在声学、力学、医学和航空航天等领域都得到了广 泛应用。其缺点是无静态输出, 泛应用。其缺点是无静态输出,要求有很高的输出 阻抗,需用低电容的低噪声电缆等。 阻抗,需用低电容的低噪声电缆等。
铜芯线充当内电极铜网屏蔽层作外电极管状pvdf高分子压电材料为绝缘层最外层是橡胶保护层为承压弹性元件当管状高分子压电材料受压时其内外表面产生电荷可达到测量的目的图620高分子压电电缆2高分子压电电缆的典型应用高分子压电电缆测速系统由两根高分子压电电缆相隔一段距离平行埋设于柏油公路的路面下50mm处如图621所示

传感器原理与工程应用完整版习题参考答案

《传感器原理及工程应用》完整版习题答案第1章 传感与检测技术的理论基础(P26)1—1:测量的定义?答:测量是以确定被测量的值或获取测量结果为目的的一系列操作。

所以, 测量也就是将被测量与同种性质的标准量进行比较, 确定被测量对标准量的倍数。

1—2:什么是测量值的绝对误差、相对误差、引用误差?1-3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa∴ 绝对误差 Δ=x-L=142-140=2(kPa)实际相对误差 %==43.11402≈∆L δ标称相对误差%==41.11422≈∆x δ引用误差%--=测量上限-测量下限=1)50(1502≈∆γ1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ):120.42 120.43 120.40 120.42 120.43 120.39 120.30 120.40 120.43 120.41 120.43 120.42 120.39 120.39 120.40试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。

答:绝对误差是测量结果与真值之差, 即: 绝对误差=测量值—真值 相对误差是绝对误差与被测量真值之比,常用绝对误差与测量值之比,以百分数表示 , 即: 相对误差=绝对误差/测量值 ×100% 引用误差是绝对误差与量程之比,以百分数表示, 即: 引用误差=绝对误差/量程 ×100%解:当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。

则 2072.410.03270.0788()0.104d G mm v σ=⨯=<=-,所以7d 为粗大误差数据,应当剔除。

(第6章)磁电式传感器


6.2.2 霍尔元件的应用
1.霍尔式微量位移的测量 .
由霍尔效应可知,当控制电流恒定时, 由霍尔效应可知,当控制电流恒定时, 霍尔电压U与磁感应强度B成正比,若磁感 成正比, 的函数, 应强度B是位置x的函数,即 UH=kx 13) (6-13) 式中: ——位移传感器灵敏度 位移传感器灵敏度。 式中:k——位移传感器灵敏度。
测量转速时,传感器的转轴1 测量转速时,传感器的转轴1与被测物 体转轴相连接,因而带动转子2转动。 体转轴相连接,因而带动转子2转动。当转 的齿与定子5的齿相对时,气隙最小, 子2的齿与定子5的齿相对时,气隙最小, 磁路系统中的磁通最大。而磁与槽相对时, 磁路系统中的磁通最大。而磁与槽相对时, 气隙最大,磁通最小。因此当转子2转动时, 气隙最大,磁通最小。因此当转子2转动时, 磁通就周期性地变化,从而在线圈3 磁通就周期性地变化,从而在线圈3中感应 出近似正弦波的电压信号, 出近似正弦波的电压信号,其频率与转速 成正比例关系。 成正比例关系。
2.霍尔元件基本结构 .
霍尔元件的外形结构图,它由霍尔片、 霍尔元件的外形结构图,它由霍尔片、 根引线和壳体组成, 4根引线和壳体组成,激励电极通常用红色 而霍尔电极通常用绿色或黄色线表示。 线,而霍尔电极通常用绿色或黄色线表示。
图6-8阻 )
I v= nebd

IB EH = nebd
IB UH = ned
式中: 称之为霍尔常数, 式中:令RH=1/ne,称之为霍尔常数, 其大小取决于导体载流子密度, 其大小取决于导体载流子密度,则
RH IB = K H IB UH = d
(6-12) 12)
称为霍尔片的灵敏度。 式中: 式中:KH=RH/d称为霍尔片的灵敏度。

(完整版)测试技术部分课后习题参考答案

第1章 测试技术基础知识1.4 常用的测量结果的表达方式有哪3种?对某量进行了8次测量,测得值分别为:82.40、82.43、82.50、82.48、82.45、82.38、82.42、82.46。

试用3种表达方式表示其测量结果。

解:常用的测量结果的表达方式有基于极限误差的表达方式、基于t 分布的表达方式和基于不确定度的表达方式等3种1)基于极限误差的表达方式可以表示为0max x x δ=±均值为8118i x x ==∑82.44因为最大测量值为82.50,最小测量值为82.38,所以本次测量的最大误差为0.06。

极限误差max δ取为最大误差的两倍,所以082.4420.0682.440.12x =±⨯=±2)基于t 分布的表达方式可以表示为x t x x ∧±=σβ0标准偏差为s ==0.04样本平均值x 的标准偏差的无偏估计值为ˆx σ==0.014 自由度817ν=-=,置信概率0.95β=,查表得t 分布值 2.365t β=,所以082.44 2.3650.01482.440.033x =±⨯=±3)基于不确定度的表达方式可以表示为0x x x x σ∧=±=±所以082.440.014x =±解题思路:1)给出公式;2)分别计算公式里面的各分项的值;3)将值代入公式,算出结果。

第2章 信号的描述与分析2.2 一个周期信号的傅立叶级数展开为12ππ120ππ()4(cos sin )104304n n n n n y t t t ∞==++∑(t 的单位是秒) 求:1)基频0ω;2)信号的周期;3)信号的均值;4)将傅立叶级数表示成只含有正弦项的形式。

解:基波分量为12ππ120ππ()|cos sin 104304n y t t t ==+ 所以:1)基频0π(/)4rad s ω=2)信号的周期02π8()T s ω==3)信号的均值42a = 4)已知 2π120π,1030n n n n a b ==,所以4.0050n A n π=== 120π30arctan arctan arctan 202π10n n nn bn a ϕ=-=-=-所以有0011()cos()4 4.0050cos(arctan 20)24n n n n a n y t A n t n t πωϕπ∞∞===++=+-∑∑2.3某振荡器的位移以100Hz 的频率在2至5mm 之间变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可移动极板
C 0之值。又若将此电容传感器接至振荡器的调谐回路
0
32
Sensors 解法1
课堂练习
0 A 8.85 10 12 10 2 c0 13 .9 pF 1) 0 0.2
c 2) 0 c0 c 13.9 90 103 .9 pF
18
Sensors

极距变化型电容传感器
极距变化型电容式传感器的优点是动态响应快,灵敏 度高,可进行非接触测量。但由于输出非线性特性、传感 器杂散电容对灵敏度和测量精度的影响,以及与传感器配 合使用的电子线路比较复杂等缺点,因此使用范围受到一 定限制。差动式电容传感器比单个电容灵敏度提高一倍, 非线性误差减小。
25
Sensors
位移测量
介电常数b(l x)
d

0 r bx
d

0bl
d

0 ( r 1)bx
d
26
Sensors
电容式传感器的等效电路
电感L由电容器本身的电感和外部引 线的电感所组成。低频时很小,在很 高的频率工作时需要加以考虑。
量程指标: 温度指标: 量程范围、过载能力等 工作温度范围、温度 误差、温度漂移、温 灵敏度指标: 度系数、热滞后等 灵敏度、分辨力、满量程 抗冲振指标: 输出、输入输出阻抗等 精度有关指标:精度、误 容许各项抗冲振的频 差、线性、滞后、重复性、率、振幅及加速度、 冲振所引入的误差 灵敏度误差、稳定性 其它环境参数: 动态性能指标: 固有频率、阻尼比、时间 抗潮湿、抗介质腐蚀 常数、频率响应范围、频 能力、抗电磁场干扰 率特性、临界频率、临界 能力等 速度、稳定时间等
21
Sensors
面积变化型电容传感器
动板
α
定板
覆盖面积 电容量 灵敏度
2 0 rr 2 C 2
dC S d
A
r 2
电容量
0 r bx C
dC S dx
灵敏度
0 r r 2 常数 2
0 r b 常数
22
Sensors
面积变化型电容传感器
电容式传感器
电感式传感器
压电式传感器
光电式传感器
磁电式传感器
光纤式传感器
光栅式传感器
9
Sensors
传感器分类
6.1 概 述
——按信号变换特征
能量转换型:直接由被测对象输入能量使其工作。例如热电偶 温度计,压电式加速度计。 能量控制型:从外部供给能量并由被测量控制外部供给能量的 变化。例如电阻应变片。
16
Sensors
极距变化型电容传感器
差动式极距变化型
Δδ
C1
δ0
C2
δ0
17
Sensors
极距变化型电容传感器
差动式极距变化型传感器灵敏度可提高一倍,而非线 性可大大减小。
A C1 0 r C0 0
A C2 0 r C0 0
1
2 3 4 1 ) ( ) ( ) ] C0 [1 ( )( 0 0 0 0
0 r A C
1.电容传感器工作原理和类型 2. 电容传感器输出特性和测量电路 3. 电容式传感器的应用
36
Sensors
6.3 电感式传感器
电感式传感器是基于电磁感应原理,它是把被测量转 化为电感量的一种装置。
6.2 电容式传感器
要提高传感器灵敏度S应减小初始极距 0 ,但极距也要受 电容击穿电压限制。 非线性随相对位移 的增加而增加,为保证线性度应限 0 制相对位移。
初始极距 0 与S, / 0 与线性度相矛盾,决定了极距变 化型电容传感器只适合测小位移( 在0.01微米至零点几 毫米)。 为提高灵敏度和改善非线性,一般采用差动结构。
电容式传感器的常用转换电路
R ( R 2 RL ) RLU E f (c1 c2 ) 2 ( R RL )
二极管双T型电路
U RL
30
Sensors
电容式传感器的常用转换电路
运算放大器式电路
Cx
C0 C0 U o U s U s Cx r 0 A
C0 i=0 Us a i0
学习要求
1.掌握电容式传感器工作原理; 2.掌握电容式传感器的分类、及它们各自的特点; 3.了解电容式传感器的测量电路。
13
Sensors
6.2 电容式传感器
电容式传感器是将被测物理量转换为电容量变化的装 置,实质上是一个具有可变参数的电容器。
介电常数变化型 面积变化型
0 r A C
极距变化型
6.1 概 述
——按被测物理量分类
机械量:长度,厚度,位移,速度,加速 度,旋转角,转数,质量,重量,力,压 力,真空度,力矩,风速,流速,流量; 声:声压,噪声; 磁: 磁通,磁场; 光:亮度,色彩; 温度:温度,热量,比热。
8
Sensors
传感器分类
6.1 概 述
——按传感原理分类
电阻式传感器
半导体气敏元件 电化学气体传感器 离子电极 酶传感器
压电效应 压阻效应 霍尔效应 压力引起电容量变化 塞贝克效应 温度引起载流子数的变化 压阻效应 压力引起电容量的变化 压电效应
表面吸附现象 电化学反应
5


Sensors
传感器定义
6.1 概 述
传感器是将被测量转换成为与之有确定对应关系的、 容易测量、传输或处理的另一种形式的量(大多为电量) 的装置。
f0 1 2 L C
' 0
df
1 2
1 1 1 1 dc f 0 dc L 2 c0 c0 2 c0
df 0.5% f0
dc 2 0.005 c0 1.04 pF
33
Sensors 解法2
0
1
2 3 4 1 ) ( ) ( ) ] C0 [1 ( )( 0 0 0 0
0
C C1 C2 2C0 [(

0
3 5 ) ( ) ] )(
0
0
C0 C S 2 0
特 点
1.主要用于小位移量测量,0.01μm到数百μm。 2.分辨力可达0.1μm,灵敏度较高。
19
Sensors
电容式传声器
应用举例
20
Sensors
面积变化型电容传感器
面积变化型电容传感器的工作原理是在被测参数的作用下 改变极板的有效面积。常用的有角位移型和线位移型两种。优 点是输出与输入成线性关系。但与极距变化型相比,灵敏度较 低。适用于较大角位移及直线位移的测量。
Rp 为并联损耗
A
Rs 为引线,电容器支
架和极板的电阻。
电阻,它代表极 板间的泄漏电阻 和极板间的介质 损耗。通常在低 频时较大。
B
电容传感器谐振频率通常为几十兆赫,通 常工作点应在其谐振频率的 1/21/3 ,且 使用条件必须与标定条件相同。
传感器等效电容:
Ce
C 1 2 LC
27
Sensors
C0 C
Δδ

δ
[1 0 0
0
] — —非线性
2
当 0时,C C0 通常取
0
, 灵敏度S=
C C0 = 为近似线性。 0
0
0.1 。
15
Sensors 讨 论
电容式传感器的等效电路
驱动电缆技术消除 寄生电容的影响
28
Sensors
电桥电路
E C1 C2 Uo 2 C1 C2
电容式传感器的常用转换电路

0 r A C1 0 0 r A C2 0
E Uo 2 0
29
Sensors
第六章
传感器
Sensors
主要内容
1. 2. 3. 4.
传感器概述 电容式传感器 电感式传感器 压电式传感器
5. 6. 7. 8.
磁电式传感器 霍尔式传感器 光栅式传感器 光纤式传感器
2
Sensors
本章学习要求
1.了解传感器的分类 2.掌握常用传感器测量原理
3.了解传感器测量电路
3
Sensors
尺寸、位移、 温度、力等
物理量
传感器
电量
电压、电流、 频率、脉冲等
6
Sensors
传感器组成
6.1 概 述
传感器由敏感器件与辅助器件组成。敏感元件的作用 是感受被测物理量,并对信号进行转换输出。辅助器件则 是对敏感器件输出的电信号进行放大、阻抗匹配,以便于 后续仪表接入。
7
Sensors
传感器分类
特 点
1. 输出特性为线性,灵敏度S为常数,适合测量大位移。 2.与极距变化型相比,灵敏度较低
应用举例
——检测齿轮转速
23
Sensors
介电常数变化型电容传感器
0 r A C
24
Sensors
板材测厚
介电常数变化型电容传感器
非线 性
0 A 0 r A C1C2 0 A C d 0 A 0 r A C1 C2 d d r
相关器件 光电池 光敏电阻器 光电晶体管
物理现象 光电动势 光导效应

皮 肤
位移→电压 位移→电阻 位移→电压 位移→电容 温度→电压 温度→电阻 压力→电阻 压力→电容 压力→电压 压力→电压
气体→电阻 气体→电流 化学变化→电
相关文档
最新文档