分式培优
初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

(2)若商店按售价为每个书包 元,销售完这两批书包,总共获利多少元?
15.某服装加工厂计划加工4000套运动服,在加工完1600套后,采用了新技术,工作效率比原计划提高 ,结果共用了18天完成全部任务.求原计划每天加工多少套运动服.
16.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
13.科幻小说《流浪地球》的销量急剧上升.为应对这种变化,某网店分别花20000元和30000元先后两次购进该小说,第二次的数量比第一次多500套,且两次进价相同.
(1)该科幻小说第一次购进多少套?每套进价多少元?
(2)根据以往经验:当销售单价是25元时,每天的销售量是250套;销售单价每上涨1元,每天的销售量就减少10套.网店要求每套书的利润不低于10元且不高于18元.
11.小明家用 元网购的 型口罩与小磊家用 元在药店购买的 型口罩的数量相同, 型与 型口罩的单价之和为 元,求 两种口罩的单价各是多少元?
12.某市为治理污水,需要铺设一段全长为 的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加 ,结果提前 天完成这一任务,实际每天铺设多长管道?
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)
7.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.那么第一批饮料进货单价多少元?
八年级分式培优习题

八年级分式培优习题一、填空题1、下列分式中,有意义的分式是()A、 B、 C、 D、2、下列各分式中,最简分式是()A、 B、 C、 D、3、下列各分式中,当x取何值时,分式有意义?()A、 B、 C、 D、4、下列各分式中,分式的值等于零的是()A、 B、 C、 D、5、下列各分式中,分式的值不存在的是()A、 B、 C、 D、二、解答题6、请解以下分式方程:(1)(2)61、请解以下分式方程:(1)(2)611、请解以下分式方程:(1)(2)6111、请解以下分式方程:(1)(2)请解以下分式方程:(1)(2)八年级培优计划一、目标:通过培优,使优生更上一层楼,提高优生的学习能力和思维能力,提高他们的竞争意识和一定的应试技巧,但也帮助他们发现不足,进一步提高他们学习的自觉性,以真正取得理想的成绩。
二、具体措施:1、思想方面培优辅差。
做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。
了解学生们的学习态度、学习习惯、学习方法等。
从而根据学生的思想心态进行相应的辅导。
定期与学生家长、班主任沟通了解学生的家庭、生活、思想等各方面的情况,以利于教师做好学生的思想引导工作。
2、培优辅差内容:数学方面:在讲完新课后,编拟一些较高思维层次的专题知识渗透到教学中,培养优生的发散思维能力、探究能力和创新思维能力。
3、辅差内容:对差生主要从以下几个方面进行:1)认真备课,设计好每一节课的层次教学,利用多种多样的教学手段吸引差生的注意力,让差生有机会表现自己,多设计一些对应差生的问题,提高差生的学习信心。
2)经常与家长,了解差生各方面的情况,对症下药,讲究方法。
3)采用“一帮一”的方法,安排学习优秀的学生对后进生进行辅导训练。
并开展“手拉手”活动,让优生和差生结成对子。
4)注意保持和蔼可亲的态度去面对学生,不能对他们采用强硬的态度和手段。
这样会使他们对老师既亲近又尊重,更愿意接近老师并乐于接受教育。
分式培优专题训练

1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b a b c c ---=-;②x y x y x x -+-=-;③a b a b c c -++=-;④m n m n m m ---=-中,成立的是( )A .①②B .③④C .①③D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 【题型2:分式的约分】4.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.【题型3:分式的定义及有无意义】1.(辨析题)下列各式πa ,11x +,15x y +,22a b a b --,23x -,0中,是分式的有___ ________;是整式的有_____ ____。
2.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 3.(探究题)当x _______时,分式2212x x x -+-的值为零. 4.分式24x x -,当x _______时,分式有意义;当x _______时,分式的值为零. 5.分式31x a x +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零;B .分式无意义C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零7.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 8.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±9.(2005.杭州市)当m =________时,分式2(1)(3)32mm m m ---+的值为零. 10.(妙法巧解题)已知13x y 1-=,求5352x xy y x xy y+---的值.1.下列运算正确的是( ) A.326x xx = B.0=++y x y x C.1-=-+-y x y x D.ba xb x a =++ 2.下列分式运算,结果正确的是( ) A.n m m n n m =•3454; B.bc ad d c b a =• C . 222242b a a b a a -=⎪⎭⎫ ⎝⎛-; D.3334343y x y x =⎪⎪⎭⎫ ⎝⎛3.已知a-b 0≠,且2a-3b=0,则代数式ba b a --2的值是( )A.-12B.0C.4D.4或-124.已知72=y x ,则222273223y xy x y xy x +-+-的值是( ) A.10328 B.1034 C.10320 D.1037 5.如果y=1-x x ,那么用y 的代数式表示x 为( ) A. 1+-=y y x B. 1--=y y x C. 1+=y y x D. 1-=y y x 7.若将分式x x x +22化简得1+x x ,则x 应满足的条件是( ) A. x>0 B. x<0 C.x 0≠ D. x 1-≠8.计算:(1)222210522y x ab b a y x -⋅+;(2) 232222)()()(x y xyxy x y y x -⋅+÷-;(3) (3))22(2222a b ab b a a b ab aba -÷-÷+--9.若m 等于它的倒数,求分式22444222-+÷-++m mm m m m 的值;1. 若432zyx ==,求222z y x zxyz xy ++++的值.2. 如果32=b a ,且a ≠2,求51-++-b a b a 的值。
分式培优练习题(完整标准答案)

分式培优练习题(完整标准答案)分式(一)选择1.下列运算正确的是()。
A。
-4=1 B。
(-3)-1=1 C。
(-2m-n)2=4m-n D。
(a+b)-1=a-1+b-12.分式 y-z/x+z+x-y 的最简公分母是()。
A。
2 B。
C。
D。
23.用科学计数法表示的数-3.6×10-4写成小数是()。
A。
0. B。
-0.0036 C。
-0. D。
-0.若分式 x-2/x-5x+6 的值为 k,则 x 的值为()。
A。
2 B。
-2 C。
2或-2 D。
2或35.计算 |1+(1/x-1)/(x-1)| 的结果是()。
A。
1 B。
x+1 C。
x+1/x-1 D。
x/(x-1)6.工地调来 72 人参加挖土和运土,已知 3 人挖出的土 1 人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派 x 人挖土,其它的人运土,列方程①72-x=3x+72④=3.上述所列方程,正确的有()个。
A。
1 B。
2 C。
3 D。
47.在分式a/(x^2+2πx+y)+m/(x-2) 中,分式的个数是()。
A。
2 B。
3 C。
4 D。
58.若分式方程 (1-a)/(x-2)+(a+x)/(x-1)=3 有增根,则 a 的值是()。
A。
-1 B。
C。
1 D。
29.若 1/(11-ba)=1/(ab+ba)=-3,则 (a-b)/(a+b) 的值是()。
A。
-2 B。
2 C。
3 D。
-310.已知 b0,且ab≠0,其中第 7 个式子是 1/(a+7b),一组按规律排列的式子:-b^2/a,-b^5/a^2,-b^8/a^3,-b^11/a^4,……,其中第 n 个式子是 -b^(3n-2)/a^n。
若 7m=3,7n=5,则 72m-n=()。
A。
-1 B。
1 C。
2 D。
311.化简 (a^2-ab+b^2)/(a-b)^2.2.若 0<x<1,且 x+1/x=6,求 x-1/x 的值。
浙教版七下数学第5章《分式》单元培优测试题(含参考答案)

浙教版七下数学第5章《分式》单元培优测试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.在﹣3x、、﹣、、﹣、、中,分式的个数是( )A. 3个B. 4个C. 5个D. 6个【答案】A【考点】分式的定义【解析】【解答】解:、、是分式,其余都是整式。
故答案为:A【分析】根据分母中含有字母的有理式是分式,逐个判断即可。
2.下列运算正确的是()A. B. C. D.【答案】C【考点】分式的约分,分式的加减法【解析】解答: A、分式的分子和分母同时乘以一个不为0的数时,分式的值才不改变,故A错误。
B、分式的分子和分母同时加上一个不为0的数时,分式的值改变,故B错误,C、,故C正确,D、,故D错误,故选C.分析: 根据分式的基本性质对前三项进行判断,D是同分母的分式加减运算,分母不变,分子直接相加即可.3.若分式的值为0,则的取值范围为()A. 或B.C.D.【答案】B【考点】分式的值为零的条件【解析】【解答】解:由题意得:(x+2)(x-1)=0,且∣x∣-2≠0,解得:x=1;故答案为:B。
【分析】根据分子为0,且分母不为0时分式的值为0,列出混合组,求解即可。
4.计算的结果为()A. 1B. xC.D.【答案】A【考点】分式的加减法【解析】【解答】解:原式==1故答案为:A.【分析】根据同分母分式的减法,分母不变,分子相减,并将计算的结果约分化为最简形式。
A. x=1B. x=2C. 无解D. x=4【答案】C【考点】解分式方程【解析】【解答】方程两边都乘以x-2得:1=x-2+1,解这个方程得:-x=-2+1-1-x=-2,x=2,检验:∵把x=2代入x-2=0,∴x=2是原方程的增根,即原方程无解,故答案为:C.【分析】方程两边都乘以最简公分母x-2,化分式方程为整式方程,解这个整式方程求出x的值,把x的值代入最简公分母中检验,若最简公分母不为0,则x的值是原分式方程的解,若最简公分母为0,则x的值是原分式方程的增根,原分式方程无解.6.计算的结果是()A. ﹣yB.C.D.【答案】B【考点】分式的乘除法【解析】解答: 原式=故选B.分析: 在计算过程中需要注意的是运算顺序.分式的乘除运算实际就是分式的约分7.已知公式(),则表示的公式是()A. B. C. D.【答案】D【考点】解分式方程【解析】【解答】解:∵,∴,∴,∴,∴∴,∵,∴;故答案为:D。
2024年中考数学复习-分式性质的拓展应用考点培优练习

分式性质的拓展应用考点培优练习考点直击1.分式定义:形如AB的式子叫分式,其中A,B是整式,且B中含有字母.(1) B=0时,分式无意义; B≠0时,分式有意义.(2) 分式的值为0:A=0,B≠0时,分式的值等于0.(3)分式的约分:把一个分式的分子与分母的公因式约去叫作分式的约分.方法是把分子、分母因式分解,再约去公因式.(4)最简分式:一个分式的分子与分母没有公因式时,叫作最简分式.分式运算的最终结果若是分式,一定要化为最简分式.(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫作分式的通分.(6)最简公分母:各分式的分母所有因式的最高次幂的积.(7)有理式:整式和分式统称有理式.2.分式的基本性质:(1)AB =A⋅MB⋅M(M是不为0的整式);(2)AB =A÷MB÷M(M是不为0的整式);(3)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.例题精讲例1若实数a,b,c满足条件1a +1b+1c=1a+b+c,则a,b,c中( )A.必有两个数相等B.必有两个数互为相反的数C.必有两个数互为倒数D.每两个数都不等【思路点拨】首先把等式去分母得到b²c+bc²+a²c+ac²+a²b+ab²+2abc=0,用分组分解法将上式左边分解因式得(a+b)(b+c)(a+c)=0,,从而得到a+b=0或b+c=0或a+c=0,根据相反数的定义即可选出选项.举一反三1 (湖北中考)已知分式x+y1−xy的值是a,如果用x,y的相反数代入这个分式所得的值为b,则a,b ( )A. 相等B.互为相反数C.互为倒数D.乘积为−1举一反三2 下列分式从左到右的变形一定正确的是 ( )A.b+xa+x =baB.b2a=b22abC.x−yx+y =y−xx+yD.−x−yx+y=−1举一反三3 要使1x+2=x−3x2−x−6成立,必须满足 ( )1A. x≠-2B.x≠−2且x≠3C. x≠3D.以上都不对例2 (南京统考)已知三个数x,y,z满足xyx+y =−2,yzy+z=43,xzx+z=−43,求xyzxy+yz+zx的值.【思路点拨】分式的分子是单项式,分母是多项式时,可以通过对等号两边同时取倒数来帮助运算.举一反三 4 已知代数式x⁴−x²+6x−8的值等于1,求代数式xx+1的值.举一反三5 已知xx2+x+1=13,求分式x2x4+x2+1的值.举一反三6 已知1x −1y=3,求分式2x−3xy−2yx−2xy−y的值.例3【探索】(1)若3x+4x+1=3+mx+1,则m=;(2) 若5x−3x+2=5+mx+2,则m= .【总结】若ax+bx+c =a+mx+c(其中a,b,c 为常数),则m=.【应用】利用上述结论解决:若代数式4x−3x−1的值为整数,求满足条件的整数x的值.举一反三7 已知x+1x =3,求x2x4+x2+1的值.11举一反三8 (西安统考)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.在分式中,我们定义:对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x−1x+1,x2x−1这样的分式就是假分式;再如3x+1,2xx2+1这样的分式就是真分式.类似的,假分式也可以化为带分式(即整式与真分式的和的形式).如x−1x+1=(x+1)−2x+1=1−2x+1;再如x2x−1=x2−1+1x−1=(x+1)(x−1)+11=x+1+1x−1.解决下列问题:(1) 分式2x是 (填“真分式”或“假分式”);(2)将假分式x−1x+2化为带分式:;(3)如果分式2x−1x+1的值为整数,那么整数x的值为 .过关检测基础夯实1.下列各式中2x ,a+2b2,a+bπ,a+1a,(x−1)(x+2)x+2,a+√bb,分式的个数是 ( )A. 2B. 3C.4D. 52.使分式x−1x2−3x+2有意义的x 的取值范围是 ( ) A. x≠1 B. x≠2C. x≠1且x≠2D.x可为任何数3.若分式x2−4x+3(x−1)(x−2)的值为0,则( )A. x=1或x=3B. x=3C. x=1D. x≠1且. x≠24.下列约分正确的是 ( )A.a9a3=a3 B.x+1x+1=0 C.x2+2x+1x+1=x+1 D.a2+b2a+b=a+b5.a5,n2m,12π,ab+1,a+b3,y5−1z中,分式有个.6.当分式1x−3有意义时,则 x 满足的条件是 .7.若分式x+1x−1的值为 0,则 x 的值是8.利用分式的基本性质填空:(1)3a5xy =()10axy(a≠0);(2)a+2a2−4=1().9.约分:(1)a3b3a2b+ab ;(2)x2−2x+1(x2+1)2−4x2.10. 通分: 2m−3,12(m+3).能力拓展11. 当分式62x−3的值为整数时,自然数x 的取值可能有 ( )A.3个B. 4个C.6 个D.8个12. 如果分式a2a+b中的a,b都同时扩大2倍,那么该分式的值 ( ) A. 不变 B. 缩小 2倍C. 扩大 2倍D. 扩大 4 倍13. 设xyz≠0,且3x+2y—7z=0,7x+4y—15z=0,则4x2−5y2−6z2x2+2y2+3z2=¯.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则a−23b12a+2b=15.x 取何值时,下列分式有意义:(1)x+22x−3;(2)6(x+3)|x|−12;(3)x+6x2+1.16. (1) 已知分式2x2−8x−2,x取何值时,分式的值为0?(2)x 为何值时,分式x2+23x−9的值为正数?17.已知实数a,b满足, 6ᵃ=2010,335ᵇ=2 010,求1a +1b的值.综合创新18. 设 a +b +c = abc(abc≠0),化简: a (1−b 2)(1−c 2)+b (1−c 2)(1−a 2)+c (1−a 2)(1−b )2aℎc= .19.若 x²+x −1=0,则x 4+(x−1)2−1x (x−1)的值为 .20.(舟山中考)给定下面一列分式(其中x≠ 0):x 3y,−x 5y2,x 7y3,−x 9y 4,⋯(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第7个分式.4 分式性质的拓展应用【例题精讲】 1. B 解析: 1a+1b+1c=1a+b+c,去分母并整理得 b²c +bc²+a²c +ac²+a²b + ab²+2abc =0,即 (b²c +2abc +a²c )+(bc²+ac²)+(a²b +ab²)=0,∴c(a + b)²+c²(a +b )+ab (a +b )=0,(a +b ). (ac +bc +c²+ab )=0,(a +b )(b +c )⋅(a+c)=0,即a+b=0或b+c=0或a+c=0,则a ,b ,c 中必有两个数互为相反数.2. --4 解析:由已知条件可得x+y xy= −12,y+zyz=34,z+xzx=−34,即 1x+ 1y=−12,1y+1z=34,1z+1x=−34,三式相加得 2x+2y+2z=−12,∴1x+ 1y+1z=−14,∴xy+yz+zxxyz=−14, ∴xyz xy+yz+zx=−4.3.【探索】(1)1 (2)-13【总结】b-ac 【应用】x=2或x=0 解析:【探索】(1)将已知等式整理得3x+4x+1=3x+3+m x+1,即3x+4=3x+3+m,解得m=1;(2) 将已知等式整理得5x−3x+2=5x+10+m x+2,即5x-3=5x+10+m,解得:m=-13.【应用】4x−3x−1=4(x−1)+1x−1=4+1x−1,:x 为整数且4x−3x−1为整数,∴x-1=±1,∴x=21或x=0.【举一反三】1.B 解析:根据题意,用x ,y 的相反数代入这个 分 式,即 b =−x−y1−(−x )(−y )= −x+y 1−xy=−a,所以a ,b 互为相反数.2. D 解析:当a≠0且x=0时,等式才能成立,A 错误;当b≠0时,从左到右的变形才能成立,B 错误;分式从左不能变形到右,C 错误;−x−y x+y=−(x+y )x+y=−1,D 正确.3. B 解析:x+2≠0,解得x≠--2,又∵x²-x--6≠0,(x+2)(x -3)≠0,解得x≠-2且x≠3,则x≠-2且x≠3时,等式成立.4.7±√136解析: ∵x⁴−x²+6x −8=1, ∴x⁴−x²+6x −9=0,∴x⁴−(x −3)²= ,∴(x²+x −3)(x²−x +3)=0,∴x²+(x--3=0或 x²−x +3=0.当 x²−x +3=0时,方程无解;当 x²+x −3=0时,x=−1±√132.当 x =−1+√132时, xx+1=−1+√132−1+√132+1√131+√13= 7−√136;当 x =−1−√132时,xx+1=−1−√132−1−√132+1√131−√13=7+√136. 5. 13解析:由x x 2+x+1=13整理变形得1x+1+1x=13,从而得 x +1x=2.而 x 2+x 2x 4+x 2+1=1x 2+1+1x2,1x 2=(x +1x)2−2=2, 故x2x4+x2+1=13.6. 35解析:∵1x−1y=3,∴y−x=3xy,∴x−y=−3xy,∴2x+3xy−2yx−2xy−y=2(x−y)+3xy(x−y)−2xy=2×(−3xy)+3xy−3xy−2xy=−3xy−5xy=35.7. 18解析:将x+1x=3两边同时乘x,得x2+1=3x,x2x4+x2+1=x2(x2+1)2−x2=x29x2−x2=18.8.(1) 真分式(2)1−3x+2(3)2或-4或0或-2解析:(3)2x−1x+1=2x+2−3x+1=2−3x+1.所以当x+1=3或-3或1或-1时,分式的值为整数.解得x=2或x=-4或x=0或x=-2.【过关检测】1. B 解析: a+2b2,a+bπ的分母中均不含有字母,因此它们是整式,而不是分式;a+√bb的分子不是整式,因此不是分式.2. C 解析: ∵x²−3x+2≠0即(x-1)(x-2)≠0,∴x-1≠0且x-2≠0,∴x≠1且x≠2.3. B 解析:∵分式x2−4x+3(x−1)(x−2)的值为0,∴x²−4x+3=0且(x--1)(x--2)≠0,∴x=3.4. C 解析:原式=a⁶,A错误;原式=1,B错误;该分式是最简分式,不需要约分,D错误.5.3 解析: n2m ,ab+1,y5−1z为分式.6. x≠3解析:由题意得x--3≠0,解得x≠3.7.-1 解析:由分式x+1x−1的值为0,得x+1=0且x-1≠0,解得x=-1.8.(1) 6a² (2)a-29.(1) 原式=a3b3ab(a+1)=a2b2a+1(2) 原式=(x−1)2(x2+1+2x)(x2+1−2x)=(x−1)2(x+1)2(x−1)2=1(x+1)210.2m−3=4(m+3)2(m+3)(m−3)12(m+3)=m−32(m+3)(m−3)11. B 解析:要使62x−3的值为整数,则2x-3只能取±1,±2,±3,±6,而x 是自然数,分析知2x-3可取±1或±3,对应得x为0,1,2,3.12. C 解析:∵分式a2a+b 中的a,b都同时扩大2倍, ∴(2a)22a+2b=2a2a+b,∴该分式的值扩大2倍.13.−116解析:∵xyz≠0,∴x≠0且y≠0且z≠0,{3x+2y−7z=0circle17x+4y−15z=0circle2②--①×2得7x-6x--15z+14z=0,∴x=z,将x=z代入①得3z+2y-7z=0,解得y=2x= 2z,原式=4z2−5×4z2−6z2z2+2×4z2+3z2=−22z212z2=−116.14.6a−4b3a+12b 解析a−23b12a+2b=6(a−23b)6(12a+2b)=6a−4b3a+12b.15.(1)x≠32(2)x≠±12 (3) x 为任意实数解析:(1)要使x+22x−3有意义,则2x-3≠0,解得x≠32.当x≠32时, x+22x−3有意义.(2)要使6(x+3)|x|−12有意义,则|x|-12≠0,解得x≠±12.当x≠±12时, 6(x+3)|x|−12有意义.(3)要使x+6x2+1有意义,则x²+1≠0.x为任意实数,x+6x2+1有意义.16.(1) -2 (2)x>3解析:(1)由2x2−8x−2=0,得2x²−8=0且x--2≠0,解得x=-2.当x=-2时,分式的值为0.(2)x2+23x−9的值为正数,得3x-9>0,解得x>3.当x>3时,分式x2+23x−9的值为正数.17. 1 解析: ∵6ᵃ=2010,335ᵇ=2010,∴6ᵃᵇ=2010ᵇ,335ᵃᵇ=2010ᵃ,∴6ᵃᵇ×335ᵃᵇ=2010ᵇ⁺ᵃ,(6×335)ᵃᵇ=2010ᵃ⁺ᵇ,∴ab=a+b,∴1a +1b=a+bab=1.18.4 解析:分子=a(1−b²−c²+b²c²)+b(1−c²−a²+a²c²)+c(1−a²−b²+a²b²)=(a+b+c)−ab(a+b)−bc(b+c)-ac(c+a)+abc(ab+ac+bc).∵a+b+c=abc,∴分子=abc-ab(abc-c)-bc(abc-a)-ac(abc-b)+abc(ab+ac+bc)=abc-abc(ab-1+bc-1+ac-1)+abc(ab+ac+bc)=abc+3abc=4abc.∴原式=4abcabc=4.19. 3 解析: ∵x²+x−1=0,∴x²=−(x−(1),x2+x=1,∴x4+(x−1)2−1x(x−1)=[−(x−1)]2+(x−1)2−1x(x−1)=2x2−4x+1x2+x−2x=2(1−x)−4x+11−2x=3(1−2x)1−2x=3.20.(1)任意一个分式除以前面一个分式恒等于−x2y(2)观察这一列分式:①发现分母上是y¹,y²,y³,…,故第7 个式子的分母是y⁷.②发现分子上是x³, x⁵,x⁷,…,i故第7个式子的分子是:x¹⁵.③再观察符号,发现第偶数个分式为负,第奇数个分式为正.综上,第 7 个分式应该是x15y7.。
浙教版数学七年级下册分式培优题

浙教版数学七年级下册第五章《分式》培优题一.选择题(共6小题)1.若分式,则分式的值等于()A.﹣ B.C.﹣ D.2.对于正数x,规定f(x)=,例如:f(3)==,f()==,则f()+f()+…+f()+f(1)+f(2)+…+f(2014)+f(2015)的值为()A.2016 B.2015 C.2015.5 D.2014.53.分式方程有增根,则m的值为()A.0和2 B.1 C.1和﹣2 D.24.已知:a,b,c三个数满足,则的值为()A.B.C.D.5.甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为()A. B.C.D.随所取盐水重量而变化6.已知x2﹣5x﹣1991=0,则代数式的值为()A.1996 B.1997 C.1998 D.1999二.填空题(共6小题)7.有一个计算程序,每次运算这种运算的过程如下:则第n次运算的结果y n.(用含有x和n的式子表示)8.已知分式=,则=.9.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为n,这里“∑”是求和符号,通过以上材料的阅读,计算=.10.如表:方程1、方程2、方程3…是按照一定规律排列的一列方程:﹣=1﹣=1﹣=1(1)若方程﹣=1(a>b)的解是x1=6,x2=10,则a=b=.(2)请写出这列方程中第n个方程:方程的解:.11.已知a、b、c为整数,a2+b2+c2+49﹣4a﹣6b﹣12c<1,则(++)abc=.12.若xyz≠0,并且满足3x=7y=63z,则=.三.解答题(共6小题)13.先化简代数式(x+2﹣)÷,然后选择取一个合适的x的值,代入求值.14.2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?15.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.16.2014年12月25日,石家庄至济南客运专线重点控制工程衡景特大桥箱梁架设任务全面展开,该项目在招标时接到了甲、乙两个施工单位的投标书,从投标书中得知如图所示的信息.(1)求甲、乙两个施工单位单独完成这项工程各需要多少天?(2)已知甲施工单位每天的施工费为18.3万元,乙施工单位每天的施费为15.6万元.根据实际情况,该工程由甲、乙两个施工单位共同完成,需要预算约多少万元?(不足一天按一天算)17.为了节约用水,石家庄物价局于2015年3月20日举行《市民用水阶梯价格分级用量听证会》,并提出超量加价.若民用自来水水费调整为每月用水量不超过15m3(包括15m3)时,则按规定标准2.8元/m3(含污染费和排污费),若每月用水量超过15m3,则超过的部分按3.8m3收费(含污染费和排污费).(1)小敏家为了响应政府节约用水的号召,决定从2015年4月起计划平均每月用水量比2014年4月到2015年3月平均每月用水量减少4m3,这使小敏家在相同的月数内,从计划前180m3的用水量变为计划后132m3的用水量,求小敏家从2015年4月起计划平均每月用水量;(2)小敏家从2014年4月到2015年3月这一年中,有四个月超出现在计划月平均用水量的20%,有四个月超出现在计划月平均用水量的50%,其余的四个月的用水量与2014年4月到2015年3月的平均每月用水量相等.若按新的交费法,求小敏家从2014年4月到2015年3月这一年中应交的总水费.18.“十•一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?浙教版数学七年级下册第五章《分式》培优题参考答案与试题解析一.选择题(共6小题)1.(2016•大庆校级自主招生)若分式,则分式的值等于()A.﹣ B.C.﹣ D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.2.(2015•湖南自主招生)对于正数x,规定f(x)=,例如:f(3)==,f()==,则f()+f()+…+f()+f(1)+f(2)+…+f(2014)+f(2015)的值为()A.2016 B.2015 C.2015.5 D.2014.5【分析】根据题中所给出的例子找出规律,进而可得出结论.【解答】解:∵对于正数x,规定f(x)=,∴f(1)==,f(2)==,f()==,f(3)==,f()==…,∴f(n)+f()=1,∴f()+f()+…+f()+f(1)+f(2)+…+f(2014)+f(2015)=[f()+f(2015)]+…+f(1)=2014+=2014.5.【点评】本题考查的是分式的化简求值,此题属规律性题目,根据题意找出规律是解答此题的关键.3.(2014春•靖江市校级月考)分式方程有增根,则m的值为()A.0和2 B.1 C.1和﹣2 D.2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x﹣1)(x+1)=0,所以增根是x=1或﹣1,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣1)(x+1),得x+1﹣(x﹣1)(x+1)=m,∵方程有增根,∴最简公分母(x﹣1)(x+1)=0,即增根是x=1或﹣1,把x=1代入整式方程,得m=2,把x=﹣1代入整式方程,得m=0,经检验,m=0时,故选:A.【点评】本题主要考查解分式方程中产生增根的知识,有增根可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.4.已知:a,b,c三个数满足,则的值为()A.B.C.D.【分析】由已知可得,,,,则ac+bc=3abc,ab+ac=4abc,bc+ab=5abc,把三式相加,可得2(ab+bc+ca)=12abc,即可求解.【解答】解:由已知可得,,,,则ac+bc=3abc①,ab+ac=4abc②,bc+ab=5abc③,①+②+③得,2(ab+bc+ca)=12abc,即=.故选A.【点评】此题考查了分式的化简求值,要特别注意观察已知条件和所求代数式的关系,再进行化简.5.(2012•天水)甲瓶盐水含盐量为,乙瓶盐水含盐量为,从甲乙两瓶中各取重量相等的盐水混合制成新盐水的含盐量为()A. B.C.D.随所取盐水重量而变化【分析】设从甲乙两瓶中各取重量相等的盐水x,列式计算即可.【解答】解:设从甲乙两瓶中各取重量相等的盐水x,则混合制成新盐水的含盐量为:=,故选:A.【点评】本题考查了分式的混合运算,一定要注意浓度问题的算法:溶质除以溶液.6.已知x2﹣5x﹣1991=0,则代数式的值为()A.1996 B.1997 C.1998 D.1999【分析】首先要化简分式到最简,再把已知条件变形,代入即可.【解答】解:=====x2﹣5x+8;∵x2﹣5x﹣1991=0,∴x2﹣5x=1991,∴原式=1991+8=1999.故选D.【点评】解答此题的关键是把分式化到最简,这个过程难度较大.二.填空题(共6小题)7.(2015秋•孝南区期末)有一个计算程序,每次运算这种运算的过程如下:则第n次运算的结果y n.(用含有x和n的式子表示)【分析】把y1代入确定出y2,依此类推得到一般性规律,即可确定出第n次运算结果.【解答】解:把y1=代入得:y2==,把y2=代入得:y3==,依此类推,得到y n=,故答案为:【点评】此题考查了分式的混合运算,弄清题中的规律是解本题的关键.8.(2015秋•浠水县期末)已知分式=,则=.【分析】已知等式左边分子分母除以x变形,求出x+,原式变形后代入计算即可求出值.【解答】解:已知等式变形得:=,整理得:x+=4,则原式===,故答案为:【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.9.(2015•泗洪县校级模拟)读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为n,这里“∑”是求和符号,通过以上材料的阅读,计算=.【分析】根据题中的新定义将原式变形,利用拆项法整理即可得到结果.【解答】解:原式=++…+=1﹣+﹣+…+﹣=1﹣=,故答案为:.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.(2015秋•北京校级期中)如表:方程1、方程2、方程3…是按照一定规律排列的一列方程: ﹣=1﹣=1﹣=1(1)若方程﹣=1(a >b )的解是x 1=6,x 2=10,则a= 12 b= 5 .(2)请写出这列方程中第n 个方程:方程的解: x 1=n +2,x 2=2n +2 .【分析】首先根据已知方程两个重要数字、方程的解,找出与方程序号之间的关系,写出第n 个方程,即可同时求出(1)、(2)两个问题答案.【解答】解:(1)根据已知方程序号、方程两个重要数字、方程的解发现以下规律:序号1,6=2×1+4 2=1+1 3=1+2 4=2×1+2;序号2,8=2×2+4 3=2+1 4=2+2 6=2×2+2;序号3,10=2×3+4 4=3+1 5=2+2 8=2×3+2;序号4,12=2×4+4 5=4+1 6=4+2 10=2×4+2;由序号4可以发现方程(a >b )解x 1=6,x 2=10,12=2×4+4 5=4+1,∴a=12,b=5.故答案为:12,5.(2)有(1)分析得:序号n,2n+4=2×n+4 n+1=n+1 n+2=n+2 2n+2=2×n+2;∴这列方程中第n个方程:,且方程的解为:x1=n+2,x2=2n+2.故答案为:,x1=n+2,x2=2n+2.【点评】题目考查了分式方程的解,同时也是规律型题目求解,解决此类问题关键是学生找出题目中规律所在,题目难度适中,重点考查学生的观察能力和总结能力.11.(2014•雨花区校级自主招生)已知a、b、c为整数,a2+b2+c2+49﹣4a﹣6b ﹣12c<1,则(++)abc=1.【分析】利用条件和因式分解可得:0≤(a﹣2)2+(b﹣3)2+(c﹣6)2<1,即a=2,b=3,c=6,然后代入原式即可求出答案.【解答】解:∵a2+b2+c2+49﹣4a﹣6b﹣12c<1,∴(a﹣2)2+(b﹣3)2+(c﹣6)2<1,∵(a﹣2)2≥0,(b﹣3)2≥0,(c﹣6)2≥0,∴0≤(a﹣2)2+(b﹣3)2+(c﹣6)2<1,∵a、b、c为整数,∴(a﹣2)2+(b﹣3)2+(c﹣6)2也是整数,∴(a﹣2)2+(b﹣3)2+(c﹣6)2=0,∴a=2,b=3,c=6,∴原式=(++)36=1【点评】本题考查分式化简求值,涉及因式分解,不等式的性质等知识,综合程度较高.12.若xyz≠0,并且满足3x=7y=63z,则=4.【分析】先根据3x=7y=63z,得出3x•7y=34z×72z,进而得到x=4z,y=2z,最后代入代数式进行化简计算即可.【解答】解:∵3x=7y=63z,∴3x•7y=(63z)2,又∵(63z)2=632z=(32×7)2z=34z×72z,∴3x•7y=34z×72z,即x=4z,y=2z,∴===4.故答案为:4.【点评】本题主要考查了分式求值问题,解决问题的关键是从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.三.解答题(共6小题)13.(2013春•怀宁县期末)先化简代数式(x+2﹣)÷,然后选择取一个合适的x的值,代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=1时,原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.14.(2015•铜仁市)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?【分析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【解答】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.【点评】考查了分式方程的应用和二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.15.(2015春•杭州期末)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.【分析】(1)设原计划每天加工x个,则现在每天加工1.5x个,根据题意可得,现在加工240个比原计划加工200个少用2天,据此列方程求解;(2)设加工竖式纸盒m个,横式纸盒n个,根据正方形纸板有1000张,长方形纸板有2000张列方程组求解.【解答】解:(1)设原计划每天加工x个,则现在每天加工1.5x个,由题意得,﹣2=,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,答:原计划每天加工20个;(2)设加工竖式纸盒m个,横式纸盒n个,由题意得,,解得:.答:加工竖式纸盒200个,横式纸盒400个恰好能将购进的纸板全部用完.【点评】本题考查了分式方程和二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.16.(2015秋•南皮县期中)2014年12月25日,石家庄至济南客运专线重点控制工程衡景特大桥箱梁架设任务全面展开,该项目在招标时接到了甲、乙两个施工单位的投标书,从投标书中得知如图所示的信息.(1)求甲、乙两个施工单位单独完成这项工程各需要多少天?(2)已知甲施工单位每天的施工费为18.3万元,乙施工单位每天的施费为15.6万元.根据实际情况,该工程由甲、乙两个施工单位共同完成,需要预算约多少万元?(不足一天按一天算)【分析】(1)首先设乙施工单位单独完成这项工程需要x天,则甲施工单位单独完成这项工程需要x天,根据题意可得等量关系:甲10天的工作量+甲乙合作50天的工作量=1,根据等量关系列出方程,再解即可;(2)首先计算出甲乙合作需要的天数,再利用两对合作每天的费用×时间可得答案.【解答】解:(1)设乙施工单位单独完成这项工程需要x天,由题意得:+(+)×50=1,解得:x=125,经检验:x=125是分式方程的解,×125=100(天).答:乙施工单位单独完成这项工程需要125天,甲施工单位单独完成这项工程需要100天;(2)1÷(+)=≈56(天),费用:(18.3+15.6)×56=1898.4(元).答:需要预算约1898.4万元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.17.(2015秋•故城县校级月考)为了节约用水,石家庄物价局于2015年3月20日举行《市民用水阶梯价格分级用量听证会》,并提出超量加价.若民用自来水水费调整为每月用水量不超过15m3(包括15m3)时,则按规定标准2.8元/m3(含污染费和排污费),若每月用水量超过15m3,则超过的部分按3.8m3收费(含污染费和排污费).(1)小敏家为了响应政府节约用水的号召,决定从2015年4月起计划平均每月用水量比2014年4月到2015年3月平均每月用水量减少4m3,这使小敏家在相同的月数内,从计划前180m3的用水量变为计划后132m3的用水量,求小敏家从2015年4月起计划平均每月用水量;(2)小敏家从2014年4月到2015年3月这一年中,有四个月超出现在计划月平均用水量的20%,有四个月超出现在计划月平均用水量的50%,其余的四个月的用水量与2014年4月到2015年3月的平均每月用水量相等.若按新的交费法,求小敏家从2014年4月到2015年3月这一年中应交的总水费.【分析】(1)设小敏家计划平均每月用水量是xm3,则计划前每月用水量为(x+4)m3,找出等量关系:在相同的月数内,从计划前180m3的用水量变为计划后132m3的用水量,列方程求解即可;(2)分别计算出水量超20%和50%时每月的用水量,根据题意计算出相应的水费,相加即可得出一年应共交水费.【解答】解:(1)设小敏家计划平均每月用水量是xm3,则计划前每月用水量为(x+4)m3,由题意得,=,解得:x=11.经检验:x=11是原方程的解,即小敏家计划平均每月用水量是8.25m3;(2)计划用水量为8.25cm3,超过计划用水量20%时,用水量=8.25×(1+20%)=9.9,超过计划用水量50%时,用水量=8.25×(1+50%)=12.375cm 3,设2014年4月到2015年3月的平均每月用水量为a ,则9.9×4+12.375×4+4a=12a 解得:a=11.1375则应交水费:12×11.13758×2.8=374.22(元).答:小玲家从2005年4月到2006年3月的这一年中应共交水费374.22元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.“十•一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:根据上述促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【分析】(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x 元,根据题意可列出方程,解方程即可.【解答】解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为:=32.5%;(2)设西服标价x元,根据题意得,解之得x=750经检验,x=750是原方程的根.答:该套西装的标价为750元.【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.要注意题中给出的判断条件.此题关键是套用优惠率的公式.。
《分式》培优题

《分式》培优题1、下列各式中,分式有2、下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 3、当x _____时,分式392+-x x 有意义.当x ____时,分式392+-x x 的值为0. 4、当 x __________________时,分式325x --12x +有意义. 5、当x= 时,分式2323x x x ---的值为0. 6、若分式23xx -的值为负数,则x 的取值范围 . 7、与分式y x y x --+--相等的分式为( ) y x y x A -+)( y x y x B +-)( y x y x C -+-)( xy x y D +-)( 8、若把分式y x xy +中的x 和y 都扩大为原来的3倍,那么分式的值( ). A .扩大3倍 B .扩大9倍 C .缩小到原来的31 D .不变 9、如果m 为整数,那么使分式13++m m 的值为整数的m 的值有( ) A. 2个 B. 3个 C. 4个 D. 5个10、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
A 、221v v +千米B 、2121v v v v +千米C 、21212v v v v +千米 D 无法确定 11、用科学记数法表示:12.5毫克=_______ _吨. 12、若的值为则分式y xy x y xy x y x ---+=-2232,311( ) A . 53 B. 53- C . 1 D. 532xx xy b a y x m x 27,26,615),(314,233,22,311)()()()()()()(π-+-x x x x x x x x -÷+----+4)44122(2213、化简:① ②35(2)242a a a a -÷+---14、(1)先化简 代数式1)12111(2-÷+-+-+a a a a a a ; 然后从0、1、2中选取一个你喜欢的a 值代入求值.的值求若34121311,012)2(2222+++-⋅-+-+=-+a a a a a a a a a15、计算:(1)(-1)2 013-|-7|+2-31-)(×(2016-π)0+(-2)3; (2)(m 3n )-2·(2m -2n -3)-2÷(m -1n )3.16、若111312-++=--x N x M x x ,试求N M ,的值.17、用换元法解方程222026133x x x x+-=+ ,若设x 2+3x =y ,,则原方程可化为关于y 的整式方程为____________. 18、解方程114112=---+x x x19. 已知两个分式:A=442-x ,B=x x -++2121,其中x ≠±2 . 下面有三个结论:①A=B ; ②A 、B 互为倒数; ③A 、B 互为相反数.请问哪个正确?为什么?20、若关于的分式方程无解,则 . 21.已知a 、b 为实数,且ab =1,设M =11+++b b a a ,N =1111+++b a ,比较M 、N 的大小关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、分式有意义:
分式有意义的条件是:
分式的值为零的条件是:
1、若分式||11x x --的值为零,则x 的值为 . 2. 分式x 3
x 3-+的值为零,则x 的值为 。
3.若33a a
-有意义,则33a a -( ). A. 无意义 B. 有意义 C. 值为0 D. 以上答案都不对
4. 若分式23
3x x x --的值为0,则x = .
5.
x 的取值范围为 .
(1、二次根式有意义的条件是: )
(2、分式有意义的条件是: )
6.
要使
+
有意义,则x 应满足( )
二、分式的扩大倍数问题:
7、若x ,y 的值扩大为原来的3倍,下列分式的值如何变化? ⑴x y x y +- ⑵xy x y - ⑶22x y x y -+ (4)2222x y x y +- (5)22
3x y xy
-
三、统一比例问题:
8. 已知
0345a b c ==≠,求322a b c a b c -+--的值。
9、已知x y z a b b c c a ==---,求x y z ++的值。
10.若x :y=1:3,2y=3z ,则
的值是( ) 11.已知x :2=y :3=z :0.5,则32x y z x y z
+--+的值是( )
12..已知1113a b -=,则ab a b -的值是 。
13. 若27a b =,求22
223223a ab b a ab b
-++-的值。
14.. 已知,,x y z 满足235x y z z x ==-+,求52x y y z
-+的值。
15. 已知311=-y x ,求分式y xy x y xy x ---+2232的值
二、计算公式应用 :公式应用:
16.已知a 2-5a +1=0(0)a ≠,计算4
41a a +的值。
17.. 已知15a a +=,求2
421a a a ++的值。
18. 已知31=+x x ,求1
242++x x x 的值 19. 已知x 2-4x +1=0,求2
421x x x ++的值___________。
20. 若x 是一个不等于0的数,且x 2-3x +1=0,则2
4231x x x ++等于( )
【例1】 不改变分式的值,使分子和分母中的最高次项系数都为正数: ⑴ 2
32645x x x x +-+- ⑵ 237
21x x x -+-+- (3)21
2a a ---;
1.45________.a b a a b a -⎛⎫
⎛⎫
⋅= ⎪ ⎪-⎝⎭⎝⎭ 2. 32
22_______.x x y y ⎛⎫⎛⎫
-
÷= ⎪ ⎪⎝⎭⎝⎭ 3.;
0.3 1.20.051x x +-
4.32
431532x y x y -+ 5.()23
4a a a b b b ⎛⎫⎛⎫
-⋅-÷- ⎪ ⎪⎝⎭⎝⎭。