高分子聚合物的特征
聚丙烯酸钠增稠剂的特性及用途

聚丙烯酸钠增稠剂的特性及用途聚丙烯酸钠增稠剂是一种高分子聚合物,具有优异的增稠和流变性能,在许多领域中都有广泛的应用。
本文将详细介绍聚丙烯酸钠增稠剂的特性、用途、优势以及应用实例,帮助读者更好地了解其特点和价值。
黏度随浓度变化聚丙烯酸钠增稠剂的黏度随着浓度的增加而增加。
在低浓度下,它呈现牛顿流体性质,黏度与剪切速率成正比。
当浓度增加时,聚丙烯酸钠分子链相互交织,形成网状结构,导致黏度迅速增加。
热稳定性好聚丙烯酸钠增稠剂在高温下具有良好的稳定性,可以在广泛的温度范围内使用。
其热分解温度高于300℃,因此在大多数应用场景中可以保持良好的增稠效果。
抗剪切能力强聚丙烯酸钠增稠剂具有出色的抗剪切能力,可以在高剪切速率下保持稳定的黏度。
这意味着在诸如高速搅拌、泵送和涂布等过程中,其增稠效果仍能保持良好的一致性。
溶解性好聚丙烯酸钠增稠剂可以很好地溶解在水中,形成透明、均一的高黏度溶液。
其溶解速度取决于搅拌时间和温度。
在大多数情况下,搅拌30分钟至1小时即可完全溶解。
聚丙烯酸钠增稠剂在以下领域中具有广泛的应用:涂料工业在涂料工业中,聚丙烯酸钠增稠剂可以提高涂料的流动性和稳定性,防止涂料在贮存过程中的沉淀和分层。
它还可以增强涂料在施工过程中的涂布效果,提高涂层的平滑度和均匀性。
油墨工业在油墨工业中,聚丙烯酸钠增稠剂可以改善油墨的印刷适性和流动性。
它有助于提高油墨的传递性和附着力,从而改善印刷品质和干燥性能。
聚丙烯酸钠增稠剂还可以提高油墨的耐磨性和耐候性,延长油墨的使用寿命。
洗衣粉工业在洗衣粉工业中,聚丙烯酸钠增稠剂可以增加洗衣粉的粘着性和抗流动性,提高洗衣粉的洗涤效果和易用性。
它有助于使洗衣粉在水中更容易分散,并形成均匀的溶液,使洗涤剂发挥最佳的清洁作用。
化妆品工业在化妆品工业中,聚丙烯酸钠增稠剂主要用于洗发水、沐浴露和护肤品等产品中。
它有助于提高产品的粘稠度和稳定性,防止产品在贮存过程中出现沉淀和分层。
聚丙烯酸钠增稠剂还可以提高产品的滋润性和保湿性能,为消费者提供更舒适的使用体验。
高分子聚合物的主要表征方法

摘要本文主要综述了高分子聚合物及其表征方法和检测手段。
首先,从不同角度对高分子聚合物进行分类,并对高分子聚合物的结构,生产,性能做了一个简单的介绍。
其次,阐述了表征和检测高分子聚合物的常用方法,例如:凝胶渗透色谱、核磁共振(NMR)、红外吸收光谱(IR)、激光拉曼光谱(LR)等。
最后,介绍了检测高分子聚合物的常用设备,例如:偏光显微镜、金相显微镜、体视显微镜、X射线衍射、扫描电镜、透射电镜、原子力显微镜等。
关键词:聚合物;表征方法;检测手段;常用设备ABSTRACTThis paper mainly summarizes the polymer and its detection means.First of all, this paper made a simple introduction of the polymer structure, production performance. Secondly, it describes the detection methods of polymers, such as: gel permeation chromatography, nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), laser Raman spectroscopy (LR).Finally, it describes the common equipment used to characterize and detection of polymers, such as: polarizing microscope, metallographic microscope, microscope, X ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy.Key words:Polymer; Characterization; Testing means; common equipment高分子聚合物及其表征方法和测试手段1 前言纵观人类发现材料和利用材料的历史,每一种重要材料的发现和广泛利用,都会把人类支配和改造自然的能力提高到一个新水平,给社会生产力和人类生活水平带来巨大的变化,把人类的物质文明和精神文明向前推进一步,所以说材料是人类社会进步的里程碑。
高分子聚合物的结构特点与性能

第一章 高分子聚合物的结构特点与性能
⑵高分子材料的结构
高分子链:由一种或几种简单的低分子有机化合物以共价键重复连接 而成。
单体:凡是可以聚合生成大分子链的低分子化合物叫做单体。 例:氯乙烯(CH2=CHCl)就是聚氯乙烯的单体。 反应式:n(CH2一CHCl)→ CH2一CHCl n 大分子链还可以由两种或两种以上单体共同聚合而成(形成共聚物)。
名称
内容
链结构
一级结构 (近程结构)
结构单元的化学组成 键接方式 构型、几何形状(线形,支化,网状等) 共聚物的结构
二级结构
高分子的大小(分子质量及其分布)
(远程结构) 高分子的形态(高分子链的柔性)
三级结构(聚集态结构、 晶态 聚态结构、超分子结构) 非晶态 取向态
第一章 高分子聚合物的结构特点与性能
第一章 高分子聚合物的结构特点与性能
1.2 聚合物的热力学性能 1.2.1聚合物分子运动单元的多重性 运动单元:可以是侧基、链节、链段 和整个分子链。 高分子运动主要包括四种类型。 ⑴分子链的整体运动: ⑵链段的运动: ⑶链节、支链和侧基的运动:
⑷晶态聚合物的晶区内也存在分子运
动
第一章 高分子聚合物的结构特点与性能
第一章 高分子聚合物的结构特点与性能 ②具有交联网络结构 交联网络结构高聚物既不能被溶剂溶解,也不能通 过加热使其融融。 高分子聚合物的结构对性能的影响: 线型高聚物:具有可溶性和可熔性,成型后性质不 变,可多次成型(热塑性聚合物) 体型高聚物:成型前是可溶和可熔的,成型后变成 既不溶解又不熔融的固体,所以不能再次成型。(热 固性聚合物)
第一章 高分子聚合物的结构特点与性能
⒈高分子链结构特点: 远程结构:又称二级结构,是指单个高分子的大小、 形态、链的柔顺性及分子在各种环境中所采取的构象。
高分子总结

第一章绪论高分子:也叫聚合物分子或大分子,具有高的相对分子量(104~106) ,其结构必须是由多个重复单元所组成,并且这些重复单元实际上或概念上是由相应的小分子衍生而来单体:是构成聚合物的低分子化合物结构单元:构成高分子主链结构一部分的单个原子或原子团,可包含一个或多个链单元重复单元:大分子链上化学组成和结构均可重复出现的最小基本单元,可简称重复单元,又可称链节单体单元:与单体分子的原子种类和各种原子的个数完全相同、仅电子结构有所改变的结构单元均聚物:由一种(真实的、假设的)单体聚合而成的聚合物共聚物:由一种以上(真实的、假设的)单体聚合而成的聚合物缩聚物:单体经多次缩合而聚合成大分子的反应缩聚反应的主产物热塑性塑料:热塑性高分子一般是线型高分子,在受热后会从固体状态逐步转变为流动状态,可逆,可再生热固性塑料:热固性高分子在受热后先转变为流动状态,进一步加热则转变为固体状态,不可逆,不可再生分子量的多分散性:聚合物是由一系列分子量(或聚合度)不等的同系物高分子组成,这种同种聚合物分子长短不一的特征碳链聚合物:主链(链原子)完全由C原子组成杂链聚合物:主链原子除C外,还含O,N,S等杂原子第二章高分子材料合成原理及方法加聚反应:单体因加成而聚合起来的反应称为加聚反应,反应产物称为加聚物。
加聚反应无副产物缩聚反应:具有两个或两个以上官能团的单体,相互反应生成高分子化合物,同时产生有简单分子的化学反应自由基:在原子、分子或离子中,只要有未成对电子的原子、分子或离子歧化终止:某链自由基夺取另一自由基的氢原子或其他原子的终止反应偶合终止:两链自由基的独电子相互结合成共价键的终止反应动力学链长:活性链从引发阶段到终止阶段所消耗的单体分子数阻聚:每一个自由基都终止,使聚合反应完全停止缓聚:仅使部分自由基终止,使聚合反应减缓诱导期:引发剂分解,出击自由基为阻聚杂质所终止,无聚合物形成,聚合物速度为0的时期自由基寿命:自由基从产生到终止所经历的时间聚合上限温度:平衡单体浓度为1mol/L时的平衡温度活性阴离子聚合体系:无转移、无终止的聚合体系自加速:外界因素不变,仅由于体系本身引起的加速现象引发剂效率:引发聚合的引发剂量占引发剂分解或消耗总量笼蔽效应:当体系中有溶剂存在时,引发剂分解形成的初级自由基不能即刻同单体反应引发聚合,而是处于溶剂分子构成的“笼子”的包围之中,初级自由基只有扩散出笼子之后,才能与单体发生反应,生成单体自由基诱导分解:引发剂在体系中存在的各种自由基作用下发生分解反应的过程均缩聚:均缩聚反应的单体只有一种,但单体带有两种不同的官能团混缩聚:含有不同官能团的两种单体分子间进行的缩聚反应则为混缩聚反应共缩聚:在均缩聚反应、混缩聚反应体系中再加入另外一种单体而进行的缩聚反应平衡缩聚:衡常数小于103的缩聚反应,聚合时必须充分除去小分子副产物,才能获得较高分子量的聚合产物非平衡缩聚:平衡常数大于103的缩聚反应,官能团之间的反应活性非常高,聚合时几乎不需要除去小分子副产物,且可获得高分子量的聚合物反应程度:参加反应的官能团数占起始官能团数的分率平均聚合度:体系中每一个分子所具有的结构单元数体型缩聚:除线形方向缩聚外,侧基也能聚合,先形成支链,而后进一步形成体型缩聚物凝胶化:反应初期产物能够溶能熔,当反应进行到一定程度时,体系粘度将急剧增大,迅速转变成具有弹性的凝胶状态竞聚率:均聚速率常数和交叉聚合速率常数之比,表示了单体的自聚能力与共聚能力之比本体聚合:单体本身加少量引发剂(甚至不加)的聚合悬浮聚合:单体以液滴状悬浮于水中的聚合乳液聚合:单体、水、水溶性引发剂、乳化剂配成乳液状态所进行的聚合溶液聚合:单体和引发剂溶于适当溶剂中的聚合第三章高分子的链结构和凝聚态结构构型:分子链中由化学键所固定的原子在空间的几何排列构象:由于单键内旋转造成的原子(或基团)在分子中的空间排列远程结构:高分子的大小(相对分子质量及相对分子质量分布)和大分子在空间呈现的形状(各种构象,均方末端距)内旋转活化能:反式构象与顺式构象的势能差成为内旋转势垒链段:从分子链中划分出来可以任意取向的最小运动单元静态柔顺性:大分子链在热力学平衡条件下的柔顺性动态柔顺性:指高分子链在一定外界条件下,从一种平衡态构象(比如反式)转变到另一种平衡态构象(比如旁式)的速度高分子的柔顺性:高分子能够改变其构象的性质取向:在外力场,特别是拉伸场作用下,分子链、链段或晶粒沿某一方向或两个方向择优取向排列,使材料发生各向异性的变化内聚能:克服分子间作用力,把1mol的液体或固体分子移到其分子引力范围之外所需要的能量内聚能密度:单位体积的内聚能液晶态:介于液相(非晶态)和晶相之间的中介状态,它是一种排列相当有序的液态第四章高分子材料的主要物理性能玻璃化转变温度:玻璃态向高弹态转变的温度,即链段开始运动或冻结的温度脆点(脆化温度Tb):一定温度以下,聚合物处于脆态,大分子的柔性消失,这个温度称为脆点自由体积理论:当温度降低时,自由体积逐步减少,到某一温度时,自由体积将达到某一值,即无法提供足够空间供链段运动,这时高聚物进入玻璃态,链段运动被冻结,这一临界温度叫玻璃化温度,在临界值以下,已无足够空间进行分子链构象的调整,因此高聚物的玻璃态可称为等自高弹性:形变量大,模量小,本质是熵弹性粘弹性:粘性、弹性行为同时存在的现象Maxwell 麦克斯维尔模型:一个虎克弹簧和一个牛顿粘壶串连的模型Kelvin 凯尔文模型:虎克弹簧和牛顿粘壶并联而成蠕变:恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象应力松弛:恒温恒应变下,材料的内应力随时间的延长而衰减的现象松弛时间:应力松弛到σ0的1/e的时间滞后现象:试样在交变应力作用下,应变的变化落后于应力的变化的现象力学损耗:聚合物在交变应力作用下,产生滞后现象,而使机械能转变为热能的现象屈服现象与屈服点:超过了此点,冻结的链段开始运动,试样出现的局部变细的现象银纹:张应力作用下,于材料某些薄弱地方出现应力集中而产生局部的塑性形变和取向,以至于在材料表面或内部出现微细凹槽的现象强迫高弹形变:非晶高分子在处于玻璃态时,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之百的大形变脆韧转变温:断裂应力与屈服应力相等时的对应温度相对粘度:增比粘度:比浓粘度:特性粘度:流变性:流动过程中的粘弹性剪切变稀效应:剪切速率增大,表观粘度降低牛顿流体:遵循牛顿流体定律的流体非牛顿流体:不完全服从牛顿流动定律的流体表观粘度:高分子流动曲线上一点到坐标原点的割线斜率为流体的表观粘度牛顿流动定律:大多数小分子液体流动时,剪切应力与剪切速率成正比自由基聚合反应常用引发剂偶氮二异丁氰(AIBN),过氧化二苯甲酰(BPO ),过硫酸钾K 2S 2O 8和过硫酸铵(NH 4)2S 2O 8阳离子聚合反应常用引发剂质子酸,如浓H 2SO 4、 H 3PO 4 、 HClO 4等强质子酸Lewis 酸,如AlCl 3、BF 3(需要有水),SnCl 4、ZnCl 2、TiBr 4等阴离子聚合反应常用引发剂碱金属如 Li 、Na 、K 、萘钠络合物有机金属化合物如 金属氨基化合物、金属烷基化合物(丁基锂(n-C 4H 9Li ))氢卤酸能作为阳离子聚合反应的引发剂吗?氢卤酸的X -亲核性太强,不能作为阳离子聚合引发剂,会与活性中心结合成共价键,使链终止自由基聚合反应通常可以得到分子量巨大的聚合物原因是聚合物的分子量取决于链增长反应速率与链终止反应速率的相对大小,当体系中不存在链转移反应时,聚合度等于链增长反应速率与链终止反应速率的比值在离子聚合反应过程中,能否出现自动加速效应?为什么?不存在,因为自由基聚合反应中的自由加速效应是由于随着反应的进行体系粘度随转化率提高后,双基终止困难,终止速率下降 ,而对链增长速率影响不大,导致自动加速,而离子聚合反应中不存在双基终止乙烯,丙烯,丁烯,异丙烯,烷基乙烯基醚能聚和成高分子聚合物吗?前三个不能,侧基推电子能力弱,异丙烯可以,有两个推电子的甲基,可以, p-π共轭大于氧原子的诱导效应,使双键电子云密度增加阴离子聚合无终止的主要原因活性链上脱负氢离子困难反离子一般为金属阳离子,无法从其中夺取某个原子或 H + 而终止注:1.形成π-π共轭,三种聚合均可进行2.阳离子聚合反应中单体插入聚合,离子对的存在使链增长末端是不自由的,对链节构型有一定的控制能力3.阳离子聚合反应中单体转移是主要的链终止方式之一,只能单基终止,自发终止或向反离子转移终止4.阴离子聚合反应无转移,无终止。
第1章 高分子聚合物的特性

讨论:
§1.3 聚合物的流变学性质 a a K n1
n=1时, a K 这意味着非牛顿流体变为牛顿 流体,所以,n值可以用来反映非牛顿也体偏离牛顿流体 性质的程度。 n≠1时 ,绝对值∣1-n∣越大,流体的非牛顿性越强, 剪切速率对表观粘度的影响越强。 其中n<1时,称为假塑性液体。(在注射成型中,除 了热固性聚合物和少数热塑性聚合物外,大多数聚合物熔 体均有近似假塑性液体流变学的性质) n>1时,称为膨胀性液体。(属于膨胀性液体的主要 是一些固体含量较高的聚合物悬乳液)
§1.3 聚合物的流变学性质
流体在管道内流 动时的流动状态:层 流和湍流。
层流(黏性流动或流 线流动)特征:流体的质 点沿着平行于流道轴线的 方向相对运动,与边壁等 距离的液层以同一速度向 前移动,不存在任何宏观 的层间质点运动,所有质 点的流线均相互平行。
湍流(紊流)特征:流体 的质点除向前运动外,还在主 流动的横向上作不规则的任意 运动,质点的流线呈紊乱状态。
玻璃态
变 形 程 度
高弹态
粘流态
E
1 2
m
(熔点)
温度
b
g
f
d
(脆化温度) (玻璃化温度) (粘流温度) (热分解温度)
1—线型无定形聚合物;2—线型结晶聚合物
§1.2 聚合物的热力学性能
玻璃态:
塑料处于温度 g 以下的状态,为坚硬的固体, g 是大多数塑件的使用状态。 称为玻璃化温度,是 多数塑料使用温度的上限。
要综合考虑生产的经济性、设备和模具的可靠性 及制件的质量等因素,确保成型工艺能有最佳的 注射压力和注射温度。
(4)助剂对粘度影响
为了保证使用性能或加工需要,多数聚合物都 要添加一些助剂才能使用。聚合物中添加助剂后, 大分子间的相互作用力、熔体黏度都将发生改变。 如,增塑剂降低粘度,提高流动性。
高分子材料的结构特征

(3 )构造异构 (a ) 单烯类单体形成聚合物的键接方式 对于不对称的单烯类单体,例如CH2=CHR,在聚合时就有可能 有头-尾键接和头-头(或尾-尾)键接或不规则键接三两种方式:
头-尾: 头-头或尾-尾:
42
(b )双烯类单体形成聚合物的键接方式
双烯类单体在聚合过程中有1,2加成、3,4加成和1,4加成,键接结构更 为复杂,以异戊二烯为例:
第7章 高分子材料的结构特征
1
结构单元的化学组成
近程结构
结构单元的构型 分子链的构造
一级结构
高分子链的
共聚物的序列结构
高
结构
聚
物
的
结
构
远程结构
高分子链的形态
(构象)
高分子的大小
(分子量及分布)
晶态结构
二级结构
非晶态结构
聚集态结构
取向态结构 液晶态结构
三级结构
织态结构
2
高分子结构的特点(与小分子物质相比)
22
聚苯乙烯|PS
(聚丁烯PB) 23
顺式PB(聚丁烯)在常温下是一种橡胶,而不是
硬质塑料,两者是不相容的,因此SBS具有两 相结构:PB易形成连续的橡胶相,PS易形成 微区分散区树脂中,它对PB起着交联的作用, PS是热塑性的,在高温下能流动。
24
(3)接枝共聚(graft)
• ABS树脂是丙烯腈A、丁二烯B和苯乙烯S的三 元共聚物,共聚方式上无规与接枝共聚相结 合。
• 独特的链结构。高分子是由很大数目(103——105 数量级)的结构单元组成的,每一个结构单元相当 于一个小分子
• 高分子链具有柔顺性。一般高分子的主链都有一 定的内旋转自由能,可以使主链弯曲而具有柔性
高分子聚合物优秀PPT

因此,使得聚合物具有自身的特点: 热力学性能 流变学性质 成型过程中的流动行为 物理及化学变化等方面
§1.1 高分子聚合物的结构特点
二、高聚物的结构特点
高聚物结构复杂——尚在研究中。 高聚物结构分类:
高分子链结构 高分子凝聚态结构 高分子链的链结构分类: 高分子近程结构 高分子远程结构
合成时所用单体在两种以上,则共聚反应的结果 不仅存在分子链长短的分布,而且每个链上的化学 组成也有一个不同的分布。
§1.1 高分子聚合物的结构特点
聚合物分子的链结构不同,其性质也不同—— 线型聚合物、带有支链的线型聚合物性质:
物理特性是具有弹性和塑性; 在适当溶剂中可溶胀或溶解,随温度不断升高, 聚合物——微观表现为分子链逐渐由链段运动乃至 整个分子链的运动; ——宏观表现为聚合物逐渐开始软化乃至熔化而 流动,这些特性随温度的 降低而呈现逆向性。
一个聚合物分子中含有成千上万甚至几十万个 原子。
尼龙大分子:约有4千个原子,相对分子质量 为2.3万左右。
天然橡胶分子:有5~6万个原子,相对分子质 量大约为40万。 从相对分子质量来看——
低分子化合物的相对分子质量只有几十到几 百;
高聚物的相对分子质量比低分子化合物高得多。
§1.1 高分子聚合物的结构特点
比小分子物质的晶态有序程度差得多 高聚物的非晶态结构——
比小分子物质液态的有序程度高。 高分子链具有特征的堆砌方式,分子链的空间形 状可以是卷曲的、折叠的和伸直的,还可能形成某 种螺旋结构。
§1.1 高分子聚合物的结构特点
2)具有交联网络结构 某些种类的高分子链能够以化学键相互连接形成
高分子聚合物结构特点与性能

塑料成料的结构特点、物 理状态、热力学曲线与加工适应性、流变性质、熔体弹性、 加热与冷却、成型过程的物理与化学变化等。 目的与要求 (1)掌握聚合物的结构类型与物理状态。 (2)了解聚合物的流变方程,并会定性应用分析。 (3)掌握聚合物成型过程中的物理与化学变化。 (4)了解聚合物熔体的弹性及残余应力。
Shenyang Ligong University
1)线型聚合物的物理特性具有弹性和塑性,在适当的溶剂 中可溶解,当温度升高时,则软化至熔化状态而流动,可 以反复成型,这样的聚合物具有热塑性。 2)体型聚合物的物理特性是脆性大、弹性较高和塑性很低, 成型前是可溶和可熔的,而一经硬化成型后,就成为不溶 不熔的固体,即使在再高的温度下(甚至被烧焦碳化)也 不会软化,因此,又称这种材料具有热固性。
2.聚合物的流变方程
1)牛顿流动规律 流体在管道内流动时,可呈现层流和湍流两种不同的流动状态。
层流也称为“黏性流动”,当流速很小时,流体分层流动,互不混合, 称为层流。其特征是流体的质点沿着平行于流道轴线方向相对运动,与边壁 等距离的液层以同一速度向前移动,不存在任何宏观的层间质点运动,因而 所有质点的流线均相互平行。 湍流又称“紊流”,当流速增加到很大时,流线不再清楚可辨,流场中 有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合。这时的流 体作不规则运动,有垂直于流管轴线方向的分速度产生。其特征是流体的质 点除向前运动外,还在主流横向上作无规则的任意运动,质点的流线呈紊乱 状态。
Shenyang Ligong University
Shenyang Ligong University
(2)熔体破裂: 指当一定熔融指数的聚合物在恒温下通过喷嘴口时当 流速超过某一数值时,熔体表面即发生横向裂纹。