二元一次不等式组100道 利用方程(组)-不等式(组)解决实际问题

合集下载

二元一次不等式组的解法与应用

二元一次不等式组的解法与应用

二元一次不等式组的解法与应用一、引言二元一次不等式组是数学中常见的问题之一,对于解不等式组以及应用于实际问题中具有重要的意义。

本文将介绍二元一次不等式组的解法,并探讨其在实际问题中的应用。

二、二元一次不等式组的解法要解决二元一次不等式组,我们可以通过图像法、代数法和线性规划法等多种方法。

接下来将详细介绍这些方法。

1. 图像法图像法是一种直观的解决二元一次不等式组的方法。

我们可以将每个不等式都转化为一个直线,并找出其解集的交集区域。

通过观察这个交集区域,我们可以得到不等式组的解。

2. 代数法代数法是一种基于代数运算的解决方法。

首先,我们需要将二元一次不等式组进行标准化,即将所有不等式移项并合并同类项。

然后,我们可以通过消元法或代入法来求解。

3. 线性规划法线性规划法是一种用于求解有约束条件的优化问题的方法,也可以应用于解决二元一次不等式组。

我们可以将不等式组转化为线性规划模型,并利用线性规划的理论和算法求解。

三、二元一次不等式组的应用二元一次不等式组在实际生活中有着广泛的应用。

以下是几个常见的例子。

1. 经济学中的应用在经济学中,我们经常会遇到一些涉及资源分配和约束条件的问题。

通过建立二元一次不等式组模型,可以帮助我们解决这些问题。

比如,某企业要通过生产两种产品来最大化利润,但存在资源限制和市场需求的约束,我们可以将这些条件转化为不等式组,并求解最优解。

2. 几何学中的应用几何学中的一些问题也可以通过二元一次不等式组来解决。

比如,某个区域内有一定数量的点,我们想要找到一个点,使得它到这些点的总距离最小。

我们可以将该问题转化为不等式组,并利用解不等式组的方法求解最优解。

3. 生活中的实际问题除了学科领域,二元一次不等式组也经常出现在我们的日常生活中。

比如,我们需要在一定的时间和金钱限制下,找到合适的方式安排旅行行程,或者在购物时选择最优的价格和质量。

通过建立二元一次不等式组模型,我们可以帮助解决这些实际问题。

利用二元一次方程组解决实际问题

利用二元一次方程组解决实际问题

教案纸 科目名称 数学 审批意见:课 题 利用二元一次方程组解决实际问题 学生姓名任课教师 学生年级 初一授 课 日 期 授 课 形 式 □AA □AB 教学目的:1、掌握常见实际问题的几种类型中的等量关系式教学重点:实际问题等量关系的挖掘教学难点:实际问题等量关系的挖掘 要点一、常见的一些等量关系(一) 1.和差倍分问题: 增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题: 解这类问题的基本等量关系是:加工总量成比例. 3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量. 4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价 . 要点二、实际问题与二元一次方程组 1.列方程组解应用题的基本思想 列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足: ①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等. 2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数; 列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 验:检验求得的值是否正确和符合实际情形; 答:写出答案. 要点诠释: (1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、和差倍分问题例1.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=()100%()⨯男女生优分人数男女生测试人数,全校优分率=100%⨯全校优分人数全校测试人数)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题的第(2)问也可以用不等式求出甲乙两校男生人数满足什么关系时,才满足甲校的全校优分率比乙校的全校的优分率低.举一反三:【变式】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?类型二、配套问题例2. 某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68 个,扁担40 根,问这个班的男女生各有多少人?【总结升华】两人抬土需要一根扁担,一只筐;一人挑土需要一根扁担,两只筐.题中的等量关系是:参加劳动的同学一共用去箩筐68个和40根扁担,从而列出方程组,解出即可.举一反三:【变式】某工厂有工人60人,生产某种由一个螺栓和两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?类型三、工程问题例3.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成.现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前1天完成任务.问:甲、乙两队合做了多少天?丙队加入后又做了多少天?【总结升华】①工程类问题中相等关系一般都比较明显,常见的一组相等关系是:两个或几个工作效率不同的对象所完成的工作量之和等于工作总量.②在工程类问题中如果没有工作总量,一般情况下把工作总量设为单位“1”.变式训练:甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.(2)有两个等量关系:类型四、利润问题例题4.甲乙两件服装的成本为500元,商店老板为获取利润,决定将甲种服装按50%的利润定价,乙种服装按40%的利润定价.实际出售时,两种服装均按九折出售,这样商店共获利157元.求甲乙两件服装的成本各是多少元?举一反三:【变式】儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元?变式:4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)课堂练习一、选择题1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? () .A.200(30-x)+50(30-y) =1800 B.200(30-x)十50(30-x-y)=1800C.200(30-x)+50(60-x-y)=1800 D.200(30-x)十50[30-(30-x)-y]=18002. 某中心学校现有学生515人,计划一年后女生在校人数增加135,男生在校人数增加190,这样在校学生人数将增加2103,那么该校现有女生和男生人数分别是( ).A.245和270 B.260和255 C.25.9和256 D.240和2753.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款( ).A.288元B.322元C.288元或316元D.332元或363元4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了().A.18道B.19道C.20道D.21道5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有().A.2592362yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2592362xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2592236xyx y⎧+=⎪⎨⎪+=⎩D.259236x yx y+=⎧⎨+=⎩6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?()A. B.C. D.二、填空题7.一张方桌由一个桌面和四条桌腿组成,如果1 m3木料可制作方桌的桌面50个,或制作桌腿300条,现有5 m3木料,设用x cm3木料制作桌面,用y m3木料制作桌腿,恰好配成方桌,则可得方程组为________.8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55cm,则木桶中水的深度是cm.9.如图所示个大小、形状完全相同的小长方形组合成一个周长为68的大长方形,则大长方形的面积为________.10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只.11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________.12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与________个砝码C的质量相等.三、解答题13.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这批货车的情况如下表:第一次第二次甲种货车辆数(单位:辆)2 5乙种货车辆数(单位:辆)3 6吨)现租用该公司4辆甲种货车和5辆乙种货车一次刚好运完这批货,如果按每吨付费30元计算,问货主应付费多少元?14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生?15. [阅读]在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2、y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭. [运用](1)如图所示,长方形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为________;。

二元一次不等式组100道利用方程不等式解决实际问题

二元一次不等式组100道利用方程不等式解决实际问题

二元一次不等式组100道利用方程不等式解决实际问题以下是100道利用方程(组)不等式(组)解决实际问题的例子:1.问题:一个矩形花坛的长是宽的2倍,其面积不小于10平方米。

求矩形花坛可能的长和宽。

解答:设矩形花坛的长为x,宽为y。

根据题意得到两个方程:x = 2y 和xy ≥ 10。

将第一个方程代入第二个方程得到2y^2 ≥ 10,化简得y^2 ≥ 5,解得y ≥ √5 或者y ≤ -√5、由于长和宽都不能为负数,所以y ≥ √5、再将y = √5 代入第一个方程得到 x = 2√5、因此,矩形花坛可能的长和宽为2√5 和√52.问题:小明与小红一起制作蛋糕,小明做了x个小时,小红做了y 个小时。

如果小明完成的蛋糕比小红多1个,而且他们总共做了不少于8个小时。

问小明和小红各自做的时间至少是多少?解答:设小明做蛋糕的时间为x,小红做蛋糕的时间为y。

根据题意得到两个不等式:x-y=1和x+y≥8、将第一个不等式整理得到x=y+1,代入第二个不等式得到y+1+y≥8,化简得y≥3/2、由于时间不能是小数,所以y≥2、再将y=2代入第一个不等式得到x=2+1=3、因此,小明和小红各自做蛋糕的时间至少是3小时和2小时。

3.问题:一家小超市每天至少卖出200瓶饮料和100袋薯片。

饮料一瓶价格为x元,薯片一袋价格为y元。

天总销售额不小于300元。

求饮料和薯片的最低价格。

解答:设饮料的价格为x元,薯片的价格为y元。

根据题意得到两个不等式:200x+100y≥300和x≥0,y≥0。

将第一个不等式化简得到2x+y≥3、我们希望价格最低,因此令x=0和y=0。

代入得到0≥3,不符合条件。

接下来我们令x=0,得到y≥3、再令y=0,得到2x≥3,化简得到x≥3/2、所以饮料的最低价格是3/2元,薯片的最低价格是3元。

(最新整理)二元一次方程组和不等式应用题专题

(最新整理)二元一次方程组和不等式应用题专题

二元一次方程组和不等式应用题专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二元一次方程组和不等式应用题专题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二元一次方程组和不等式应用题专题的全部内容。

班级姓名二元一次方程组和不等式(二)1。

(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?2。

某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支5的进价是第一次进价的倍,购进数量比第一次少了30支.4(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?3。

为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a 、b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4。

二元一次不等式组知识点讲解及习题

二元一次不等式组知识点讲解及习题

第三节:二元一次不等式组与简单的线性规划1、二元一次不等式表示的区域:二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域。

注意:由于对直线同一侧的所有点(x,y),把它代入Ax+By+C,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0) ,从Ax0+By0+C的正负可以判断出Ax+By+C>0表示哪一侧的区域(一般在C≠0时,取原点作为特殊点)2、二元一次不等式组表示的区域:二元一次不等式表示平面的部分区域,所以二元一次方程组表示各个区域的公共部分。

(二元一次不等式表示的区域)例1、画出不等式2x+y-6<0表示的平面区域。

(跟踪训练)画出不等式4x-3y≤12表示的平面区域。

(点的分布)例2、已知点P(x 0,y 0)与点A(1,2)在直线l:3x+2y-8=0的两侧,则( ) A 、3x 0+2y 0>0 B 、3x 0+2y 0<0 C 、3x 0+2y 0>8 D 、3x 0+2y 0<8(跟踪训练)已知点(3 ,1)和点(-4 ,6)在直线 3x –2y + m = 0 的两侧,则( ) A .m <-7或m >24 B .-7<m <24 C .m =-7或m =24D .-7≤m ≤ 24(二元一次不等式组表示的平面区域) 例3、画出不等式组表示的区域。

(1) (2)⎪⎩⎪⎨⎧-≥≤+<242y y x xy ⎪⎪⎩⎪⎪⎨⎧+<≥+≥<9362323x y y x x y x(已知区域求不等式)例4、求由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域所表示的不等式。

(跟踪训练)下图所示的阴影区域用不等式组表示为(已知不等式组求围成图形的面积)例5、求不等式组3,0,20xx yx y≤⎧⎪+≥⎨⎪-+≥⎩表示的平面区域的面积(跟踪训练)在直角坐标系中,由不等式组230,2360,35150,x yx yx yy->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点个数(绝对值不等式的画法)例6、画出不等式|x|+|y|<1所表示的区域。

二元一次方程(不等式)组应用

二元一次方程(不等式)组应用

二元一次方程1.你知道吗?中国在近几届亚运会金牌榜上一直位居榜首,下表是第十五届亚运会中某日的金牌榜.根据此表你能列出方程组求出中国获得的金牌数吗?请试之.2.根据条件,设出适当的未知数,并列出二元一次方程或方程组.(1)摩托车的速度是货车的倍,它们速度之和是150km/h;(2)某时装的价格是某皮装价格的1.4倍,5件皮装要比3件时装贵2800元.3.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?4.根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?5.甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A 工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.问乙、丙二队合作了多少天?6.(2018•株洲)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?7.(2018•扬州)古运河是扬州的母亲河.为打造古运河风光带,现有一段长为180M的河道整治任务由A、B两工程队先后接力完成.A工程队每天整治12M,B工程队每天整治8M,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:根据甲、乙两名问学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示,y表示乙:x表示,y表示(2)求A、B两工程队分别整治河道多少M.8.(2018•烟台)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60M,下坡路每分钟走80M,上坡路每分钟走40M,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?9.(2018•威海)为了参加2018年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑工程进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600M,跑步的平均速度为每分钟200M,自行车路段和长跑路段共5千M,用时15分钟.求自行车路段和长跑路段的长度.10.(2018•台州)毕业在即,九年级某班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课教师每人一本作纪念,其中送给任课教师的留念册单价比给同学的单价多8元.请问这两种不同留念册的单价分别是多少?11.(2018•泉州)某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息.解决问題:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?12.(2018•娄底)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2018年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.13.(2018•临沂)去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?14.(2018•济南)某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?20(2018•长沙)某工程队承包了某标段全长1755M的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6M,经过5天施工,两组共掘进了45M.(1)求甲、乙两个班组平均每天各掘进多少M?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2M,乙组平均每天能比原来多掘进0.3M.按此旄工进度,能够比原来少用多少天完成任务?21.(2018•长春)在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.不等式(组)1.(2018•永州)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?2.(2018•温州)2018年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.6、(2018•铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?7、(2018•绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.8、(2018•邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年级学生.请求出该合唱团中七年级学生的人数.9、(2018•清远)某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?10、(2018•宁波)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.11、(2018•内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?12、(2018•绵阳)王伟准备用一段长30M的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为aM,由于受地势限制,第二条边长只能是第一条边长的2倍多2M.(1)请用a表示第三条边长;(2)问第一条边长可以为7M吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.数量的.请你通过计算,求出义洁中学从荣威公司购买18、(2018•桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?19、(2018•毕节地区)小明到一家批发兼零售的文具店给九年级学生购买考试用2B铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?。

二元一次方程(组)和不等式(组)的应用

二元一次方程(组)和不等式(组)的应用

二元一次方程(组)和不等式(组)的应用1、端午节是我国传统的节日,人们素有吃粽子的习俗。

某商场在端午节来临之际,用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同,已知A种粽子的单价是B种粽子的单价的1.2倍。

(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共260 0个,已知A、B 两种粽子的进价不变,求A种粽子最多能购进多少个?2、某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:老板:如果你在多买一个,就可以打八五折,花费比现在还省17元。

小明:那就多买一个吧,谢谢!(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?3、在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的总量比A型粽子的2倍少20千克,购进两种粽子公用了2560元,求两种型号粽子各多少千克?4、刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用了140元又买了一些,两次一共购买了40 kg,这种大米的原价是多少?5、随着中国传统几日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折销售,乙品牌粽子打七五折销售,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需要660元,打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元。

(1)打折前甲乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?6、某商场购进甲乙两种商品,甲种商品公用了2000元,乙种商品公用了2400元。

二元一次方程组和不等式应用题专题

二元一次方程组和不等式应用题专题

. (•湖州)为进一步建设秀美、宜居地生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树地价格之比为::,甲种树每棵元,现计划用元资金,购买这三种树共棵.()求乙、丙两种树每棵各多少元?文档收集自网络,仅用于个人学习()若购买甲种树地棵树是乙种树地倍,恰好用完计划资金,求这三种树各能购买多少棵?()若又增加了元地购树款,在购买总棵树不变地前提下,求丙种树最多可以购买多少棵?文档收集自网络,仅用于个人学习.某商店第一次用元购进铅笔若干支,第二次又用元购进该款铅笔,但这次每支地进价是第一次进价地倍,购进数量比第一次少了支.文档收集自网络,仅用于个人学习()求第一次每支铅笔地进价是多少元?()若要求这两次购进地铅笔按同一价格全部销售完毕后获利不低于元,问每支售价至少是多少元?.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表地部分信息:文档收集自网络,仅用于个人学习(说明:①每户产生地污水量等于该户自来水用水量;②水费自来水费用污水处理费用)已知小王家年月份用水吨,交水费元;月份用水吨,交水费元.()求、地值;()随着夏天地到来,用水量将增加.为了节省开支,小王计划把月份地水费控制在不超过家庭月收入地.若小王家地月收入为元,则小王家月份最多能用水多少吨?文档收集自网络,仅用于个人学习计划购置一批电子白板和一批笔记本电脑,经投标,购买块电子白板比买台笔记本电脑多元,购买块电子白板和台笔记本电脑共需元.()求购买块电子白板和一台笔记本电脑各需多少元?文档收集自网络,仅用于个人学习()根据该校实际情况,需购买电子白板和笔记本电脑地总数为,要求购买地总费用不超过元,该校最多能购买多少台电脑?文档收集自网络,仅用于个人学习.为了解决农民工子女就近入学问题,我市第一小学计划年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买地课桌凳与办公桌椅地数量比为,购买电脑地资金不超过元.已知一套办公桌椅比一套课桌凳贵元,用元恰好可以买到套课桌凳和套办公桌椅.(课桌凳和办公桌椅均成套购进)文档收集自网络,仅用于个人学习()一套课桌凳和一套办公桌椅地价格分别为多少元?()最多能买多少办公桌和课桌凳..为奖励在文艺汇演中表现突出地同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买个笔记本和支钢笔,则需要元;如果买个笔记本和支钢笔,则需要元.文档收集自网络,仅用于个人学习()求购买每个笔记本和每支钢笔各多少元?()班主任给小亮地班费是元,需要奖励地同学是名(每人奖励一件奖品),若购买地钢笔数不少于笔记本数,小亮最多能买多少个笔记本?文档收集自网络,仅用于个人学习班级姓名.为了抓住梵净山文化艺术节地商机,某商店决定购进、两种艺术节纪念品.若购进种纪念品件,种纪念品件,需要元;若购进种纪念品件,种纪念品件,需要元.文档收集自网络,仅用于个人学习()求购进、两种纪念品每件各需多少元?()若该商店决定购进这两种纪念品共件,考虑市场需求和资金周转,用于购买这件纪念品地资金不少于元,,那么该商店至少能购进多少件种纪念品?文档收集自网络,仅用于个人学习. 我市某校为了创建书香校园,去年购进一批图书.经了解,科普书地单价比文学书地单价多元,用元购进地科普书与用元购进地文学书本数相等.今年文学书和科普书地单价和去年相比保持不变,该校打算用元再购进一批文学书和科普书,问购进文学书本后至多还能购进多少本科普书?文档收集自网络,仅用于个人学习.商城经销甲、乙两种商品,甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.()若商城同时购进甲、乙两种商品共件恰好用去元,求能购进甲、乙两种商品各多少件?按上述优惠条件,若小王第一天只购买甲种商品一次性付款元,第二天只购买乙种商品打折后一次性付款元,那么这两天他在商城购买甲、乙两种商品一共多少件?文档收集自网络,仅用于个人学习.一批货物要运往某地,货主准备租用汽车运输公司地甲、乙两种货车,已知过去租用这两种货现租用该公司地辆甲种货车与辆乙种货车一次刚好运完这批货物,如果按每吨付运费元计算,问:货主应付运费多少元.文档收集自网络,仅用于个人学习.某商场用元购进甲、乙两种商品,销售完后共获利元.其中甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.文档收集自网络,仅用于个人学习()该商场购进甲、乙两种商品各多少件?()商场第二次以原进价购进甲、乙两种商品.购进乙种商品地件数不变,而购进甲种商品地件数是第一次地倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于元,乙种商品最低售价为每件多少元?文档收集自网络,仅用于个人学习. 同庆中学为丰富学生地校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球地价格相同,每个篮球地价格相同),若购买个足球和个篮球共需元.购买个足球和个篮球共需元.文档收集自网络,仅用于个人学习()购买一个足球、一个篮球各需多少元?()根据同庆中学地实际情况,需从军跃体育用品商店一次性购买足球和篮球共个.要求购买足球和篮球地总费用不超过元,这所中学最多可以购买多少个篮球?文档收集自网络,仅用于个人学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)设租用甲种�辆汽车,请你帮助学校设计所有可能的租车方案.
(2)如果甲、乙两种汽车每辆的租车费用分别是2000元、1800元,请你选择最省钱的一种租车方案.
(1)分析:其中蕴含两个不等式关系:
①两种汽车载的人数不少于290人.②两种汽车载的行李不少于100件.
解:设租用甲种汽车�辆,则乙种汽车(8-�)辆.
6(�-1)
解:设1个月通话时间为�分钟.根据题意,得
①若甲、乙费用相等,则
15+0.2�=0.4�,
解得�=75.
即�=75分钟,两种方式一样.
②若甲费用大于乙费用,则
15+0.2�>0.4�,
解得�75
即�>75分钟,选甲种费用低.
四、比赛积得0分.一支球队打14场,负5场,共得19分,这支球队胜了多少场?
根据题意,得
40�+30(8-�)≥290,
10�+20(8-�)≥100,
解得5≤�≤6.
因为�取整数,
所以�=5或�=6.
有两种租车方案:①甲5辆乙3辆②甲6辆乙2辆.
(2)方案①租金为:
5×2000+3×1800=15400;
方案②租金为:
6×2000+2×1800=15600.
故方案①省钱.
二元一次不等式组100道 利用方程(组)\不等式(组)解决实际问题
方程(组)与不等式(组)是刻画丰富多彩的现实世界数量关系的重要模型,是初中数学的重点内容,在生活中的应用十分广泛.一、旅游租车问题例1某校准备组织290名学生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.
三、上网问题
例3某电信公司开设了甲、乙两种市内移动通信业务.甲种每月缴15元月租费,然后每通话1分钟,再付0.2元话费,乙种不缴月租费,每通话一分钟付话费0.4元,若1个月通话时间为�分钟.请你根据一个月通话时间,选择较优惠的通讯业务.
分析:甲用户1个月费用(15+0.2�)元,乙用户1个月费用0.4�.
解:设这支球队胜了�场,则平了(14-5-�)场.根据题意,得
3�+(14-5-�)=19,
解得�=5.
五、不满也不空问题
例5一伙女生住若干间宿舍,每间住4人,剩下19人没房住;每间住6人,有一间宿舍住不满.问有多少间宿舍,多少名学生?
解:设有�间宿舍,则有(4�+19)名女生.
根据题意,得
6�>4�+19,
二、商品销售问题
例2某商品的进价是2000元,标价3000元,商店决定打折销售,但要求利润率正好是5%,售货员可以打几折销售?
分析:打几折,就是商品原价的十分之几,设打�折,则售价为■×原价,题中相等关系是:利润率=■.
解:设售货员可以打�折,根据题意,得
3000×■-2000=5%�×2000
解得�=7.
相关文档
最新文档