晶体硅太阳能电池和薄膜太阳能电池。

合集下载

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解

摘要:上述电池中,尽管硫化镉薄膜电池地效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重地污染,因此,并不是晶体硅太阳能电池最理想地替代.砷化镓化合物及铜铟硒薄膜电池由于具有较高地转换效率受到人们地普遍重视.关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池文档收集自网络,仅用于个人学习单晶硅是制造太阳能电池地理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价地材料来取代.为了寻找单晶硅电池地替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料地太阳能电池.其中主要包括砷化镓族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习上述电池中,尽管硫化镉薄膜电池地效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重地污染,因此,并不是晶体硅太阳能电池最理想地替代.砷化镓化合物及铜铟硒薄膜电池由于具有较高地转换效率受到人们地普遍重视. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习砷化镓太阳能电池属于族化合物半导体材料,其能隙为,正好为高吸收率太阳光地值,与太阳光谱地匹配较适合,且能耐高温,在℃地条件下,光电转换性能仍很良好,其最高光电转换效率约,特别适合做高温聚光太阳电池.砷化镓生产方式和传统地硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆地直径通常为—英寸,比硅晶圆地英寸要小得多.磊晶圆需要特殊地机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品成本比较高.磊晶目前有两种,一种是化学地,一种是物理地.等化合物薄膜电池地制备主要采用和技术,其中方法制备薄膜电池受衬底位错,反应压力,比率,总流量等诸多参数地影响. (砷化镓)光电池大多采用液相外延法或技术制备.用作衬底地光电池效率高达(一般在左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用.以硅片作衬底,技术异质外延方法制造电池是降用低成本很有希望地方法.已研究地砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷砷化镓异质结,金属半导体砷化镓,金属绝缘体半导体砷化镓太阳电池等.文档收集自网络,仅用于个人学习砷化镓材料地制备类似硅半导体材料地制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等.由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池地发展受到影响.除外,其它化合物如,等电池材料也得到了开发. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习年德国费莱堡太阳能系统研究所制得地太阳能电池转换效率为,为欧洲记录.首次制备地电池转换效率为.另外,该研究所还采用堆叠结构制备,电池,该电池是将两个独立地电池堆叠在一起,作为上电池,下电池用地是,所得到地电池效率达到. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习砷化镓()化合物电池地转换效率可达,化合物材料具有十分理想地光学带隙以及较高地吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池.但是材料地价格不菲,因而在很大程度上限制了用电池地普及. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习铜铟硒电池铜铟硒简称材料地能降为,适于太阳光地光电转换,另外,薄膜太阳电池不存在光致衰退问题.因此,用作高转换效率薄膜太阳能电池材料也引起了人们地注目.文档收集自网络,仅用于个人学习电池薄膜地制备主要有真空蒸镀法和硒化法.真空蒸镀法是采用各自地蒸发源蒸镀铜,铟和硒,硒化法是使用叠层膜硒化,但该法难以得到组成均匀地.薄膜电池从年代最初地转换效率发展到目前地左右.日本松下电气工业公司开发地掺镓地电池,其光电转换效率为(面积) .年美国可再生能源研究室研制出转换效率地太阳能电池,这是迄今为止世界上该电池地最高转换效率.预计到年电池地转换效率将达到,相当于多晶硅太阳能电池. 作为太阳能电池地半导体材料,具有价格低廉,性能良好和工艺简单等优点,将成为今后发展太阳能电池地一个重要方向.唯一地问题是材料地来源,由于铟和硒都是比较稀有地元素,因此,这类电池地发展又必然受到限制. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习碲化镉太阳能电池是ⅡⅥ族化合物半导体,带隙,与太阳光谱非常匹配,最适合于光电能量转换,是一种良好地材料,具有很高地理论效率(),性能很稳定,一直被光伏界看重,是技术上发展较快地一种薄膜电池.碲化镉容易沉积成大面积地薄膜,沉积速率也高.薄膜太阳电池通常以异质结为基础.尽管和和晶格常数相差,但它们组成地异质结电学性能优良,制成地太阳电池地填充因子高达.文档收集自网络,仅用于个人学习制备多晶薄膜地多种工艺和技术已经开发出来,如近空间升华、电沉积、、、、丝网印刷、溅射、真空蒸发等.丝网印刷烧结法:由含、浆料进行丝网印刷、膜,然后在~℃可控气氛下进行热处理得大晶粒薄膜. 近空间升华法:采用玻璃作衬底,衬底温度~℃,沉积速率μ. 真空蒸发法:将从约℃加热钳埚中升华,冷凝在~℃衬底上,典型沉积速率. 以吸收层,作窗口层半导体异质结电池地典型结构:减反射膜玻璃()背电极.电池地实验室效率不断攀升,最近突.世纪年代初,电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在左右.商业化电池效率平均为. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习人们认为,薄膜太阳电池是太阳能电池中最容易制造地,因而它向商品化进展最快.提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层地厚度,可减少入射光地损失,从而增加电池短波响应以提高短路电流密度,较高转换效率地电池就采用了较薄地窗口层而创了最高纪录.要降低成本,就必须将地沉积温度降到℃以下,以适于廉价地玻璃作衬底;实验室成果走向产业,必须经过组件以及生产模式地设计、研究和优化过程.近年来,不仅有许多国家地研究小组已经能够在低衬底温度下制造出转换效率以上地太阳电池,而且在大面积组件方面取得了可喜地进展,许多公司正在进行薄膜太阳电池地中试和生产厂地建设.有地已经投产. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习在广泛深入地应用研究基础上,国际上许多国家地薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产.年美国地电池产量就为,目前,美国高尔登光学公司( )在薄膜电池地生产能力为,日本地电池产量为.德国公司将在建成一家年产地薄膜太阳电池组件生产厂,预计其生产成本将会低于$.该组件不但性能优良,而且生产工艺先进,使得该光伏组件具有完美地外型,能在建筑物上使用,既拓宽了应用面,又可取代某些建筑材料而使电池成本进一步降低. 公司计划在生产薄膜太阳电池.而公司也将进一步扩大薄膜太阳电池生产. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习薄膜太阳电池是薄膜太阳电池中发展较快地一种光伏器件.美国南佛罗里达大学于年用升华法在面积上做出效率为地太阳电池,随后,日本报道了基电池以作吸收层,作窗口层地半导体异质结电池,其典型结构为玻璃背电极,小面积电池最高转换效率,成为当时薄膜太阳能电池地最高纪录,近年来,太阳电池地研究方向是高转换效率,低成本和高稳定性.因此,以为代表地薄膜太阳电池倍受关注,报道了面积为电池转换效率达到地水平.美国国家可再生能源实验室提供了地面积为薄膜太阳电池地测试结果,转换效率达到地薄膜太阳电池,面积为,效率为,面积为地太阳电池,转换效率达到地太阳电池,面积为,转换效率为. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习碲化镉薄膜太阳电池地制造成本低,目前,已获得地最高效率为,是应用前景最好地新型太阳电池,它已经成为美、德、日、意等国研究开发地主要对象. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习薄膜太阳电池较其他地薄膜电池容易制造,因而它向商品化进展最快.已由实验室研究阶段走向规模化工业生产.下一步地研发重点,是进一步降低成本、提高效率并改进与完善生产工艺.太阳能电池在具备许多有利于竞争地因素下,但在年其全球市占率仅﹪,目前电池商业化产品效率已超过﹪,究其无法耀升为市场主流地原因,大至有下列几点:一、模块与基材材料成本太高,整体太阳能电池材料占总成本地﹪,其中半导体材料只占约﹪.二、碲天然运藏量有限,其总量势必无法应付大量而全盘地倚赖此种光电池发电之需.三、镉地毒性,使人们无法放心地接受此种光电池. 来源:大比特半导体器件网文档收集自网络,仅用于个人学习太阳能电池作为大规模生产与应用地光伏器件,最值得关注地是环境污染问题.有毒元素对环境地污染和对操作人员健康地危害是不容忽视地.我们不能在获取清洁能源地同时,又对人体和人类生存环境造成新地危害.有效地处理废弃和破损地组件,技术上很简单.而是重金属,有剧毒,地化合物与一样有毒.其主要影响,一是含有地尘埃通过呼吸道对人类和其他动物造成地危害;二是生产废水废物排放所造成地污染.因此,对破损地玻璃片上地和应去除并回收,对损坏和废弃地组件应进行妥善处理,对生产中排放地废水、废物应进行符合环保标准地处理.目前各国均在大力研究解决薄膜太阳能电池发展地因素,相信上述问题不久将会逐个解决,从而使碲化镉薄膜电池成为未来社会新地能源成分之一.文档收集自网络,仅用于个人学习。

薄膜太阳能电池分类

薄膜太阳能电池分类

薄膜太阳能电池分类薄膜太阳能电池分类21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。

薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。

薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,应用非常广泛。

1.硅基薄膜电池硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。

非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。

为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。

2.碲化镉(CdTe)薄膜电池碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。

不过由于镉元素可能对环境造成污染,使用受到限制。

近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW碲化镉太阳电池组件。

3.铜铟镓硒(CIGS)薄膜电池铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。

基底一般用玻璃,也可用不锈钢作为柔性衬底。

实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。

4.砷化镓(GaAs)薄膜电池砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被应用于人造卫星的太阳电池板。

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别1

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别1

单晶硅、多晶硅、非晶硅、薄膜太阳能电池的工作原理及区别硅太阳能电池的外形及基本结构如图1。

其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。

上表面为N+型区,构成一个PN+结。

顶区表面有栅状金属电极,硅片背面为金属底电极。

上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。

当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子一一空穴对。

各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。

光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。

当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。

太阳能电池各区对不同波长光的敏感型是不同的。

靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5—10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5%左右。

电池基体域产生的光电流对红外光敏感,占80—90%,是光生电流的主要组成部分。

iS电E1•太阳能电池的基本结构及工作原理2.单晶硅太阳能电池单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。

这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。

为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。

有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。

将单晶硅棒切成片,一般片厚约0.3毫米。

硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。

加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。

扩散是在石英管制成的高温扩散炉中进行。

这样就在硅片上形成PN 结。

然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。

薄膜太阳能电池组件与晶体硅电池组件对比

薄膜太阳能电池组件与晶体硅电池组件对比

薄膜太阳能电池与晶体硅电池特点介绍商用的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能 电池和薄膜太阳能电池。

薄膜电池目前常见有:非晶硅电池、碲化镉电池、铜铟 硒电池等。

上述各类型电池主要性能如下表1.1 所示。

表1.1 太阳能电池分类汇总表种 类 电池类型 商用效率实验室效率使用寿命优点单晶硅 14%~17%23% 25 年效率高 技术成熟晶硅电池多晶硅 13%~15%20.3% 25 年 效率较高 技术成熟非晶硅 6%~9% 13% 25 年弱光效应好 成本相对较低碲化镉 8%~10% 15.8% 25 年弱光效应好 成本相对较低薄膜电池铜铟硒 10%~13%15.3% 25 年弱光效应好 成本相对较低单晶硅、多晶硅太阳能电池具有制造技术成熟、产品性能稳定、使用寿命长、光电转化效率相对较高的特点;非晶硅薄膜太阳能电池具有弱光效应好,成本相对于硅太阳能电池较低的优点。

而碲化镉则由于原材料存在较严重的环保回收问题;铜铟硒电池则因原材料稀缺性、成品率低,其规模化生产受到限制。

一、非晶硅薄膜与晶体硅的区别1、非晶硅薄膜组件材料和制造工艺对环境友好,易于形成大规模生产能力;2、非晶硅薄膜组件品种多,用途广;3、非晶硅薄膜组件能更好的配合建筑分格,更能体现建筑美观;4、非晶硅薄膜组件具备弱光发电的性能;5、非晶硅薄膜组件透光性好,透光度可从5%到30%;6、非晶硅薄膜组件高温性能好,高温对发电性能的影响比晶体硅的小很多;7、晶体硅具有“热斑效应”,而阴影对非晶硅的影响很小;8、晶体硅组件光电转换效率较非晶硅薄膜组件稍高;9、晶体硅组件占地面积较非晶硅薄膜组件稍少;二、温度对输出功率的影响1、当工作温度为25℃时,两者均无功率损失;2、随着工作温度的不断上升,晶体硅的实际输出功率会出现大幅度下降,下降幅度约为非晶硅的3 倍;3、高温环境下,非晶硅材料的优势尤为明显。

温度系数(%/℃)组件类别开路电压 短路电流 最大功率 非晶硅 -0.34 0.018 -0.19晶体硅 -0.34 0.065 -0.43 三、弱光环境发电量的测试四、“热斑效应”的影响1、对于晶体硅太阳电池,小遮挡即可引起大功率损失,即“热斑效应”;2、阴影遮挡对于薄膜电池的影响要小得多。

薄膜太阳能技术

薄膜太阳能技术

一、绪论1、太阳能电池的进展历程第一阶段,晶体硅太阳能电池第二阶段,薄膜太阳能电池第三阶段,染料敏化太阳能电池,有机太阳能电池CIGS太阳能电池2、太阳能电池的类型3、薄膜太阳能电池的优点低成本、低效能、柔软、质量轻,电池的转换效率为10%~15%,使用廉价的材料和简单、快速的生产工艺实现了低成本生产柔软的太阳能电池,而很少有破损。

二、半导体物理1、晶体内部原子排列的具体形式称为晶格。

周期性结构:如简立方、面心立方、体心立方、密排六方晶体等。

2、电子共有化运动原子中的电子在原子核的势场和其它电子的作用下,分列在不同的能级上,形成所谓电子壳层。

原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,因而,电子将可以在整个晶体中运动。

这种运动称为电子的共有化运动。

特点:(1)外层电子轨道重叠大,共有化运动显著(2)电子只能在能量相同的轨道之间转移,引起相对应的共有化3、固体按导电性能的高低可以分为导体,半导体,绝缘体。

导体:价带是导带或等效导带,导电是电子绝缘体:只有满带和空带,且禁带宽度较大,Eg 约3~6 eV半导体的能带结构,满带与空带之间也是禁带,但是禁带很窄(E g 约0.1~2 eV )。

P型半导体导电是空穴,N型半导体导电是电子。

硅Eg=1.14eV 锗Eg=0.67eV 砷化镓Eg=1.43eV4、实际晶体与理想晶体的区别(1)原子并非在格点上固定不动(2)杂质的存在a. 工艺流程中引入;b. 认为掺杂;c. 温度的影响,等等。

(3)缺陷:点缺陷(空位,间隙原子、反结构缺陷)线缺陷(位错:刃形位错和螺形位错)(4)面缺陷(层错,晶粒间界)5、V族元素P在硅、锗中电离时能够释放电子而产生导电电子并形成正电中心,施主电离产生导电电子,N型半导体。

III族元素B在硅、锗中电离时能够接受电子而产生导电空穴并形成负电中心,受主电离释放导电空穴,P型半导体。

太阳能电池第一、二、三代发展进程

太阳能电池第一、二、三代发展进程

太阳能电池第一、二、三代发展进程目前的电池片技术绝大部分(大概96%)是硅晶技术,不管是PERC还是TOPCon,还是HJT都是基于硅晶材料。

他的优势是量产成本低,光电转换效率高,是市场主流技术。

还有部分(4%左右)是薄膜电池,包括碲化镉,铜铟镓硒,钙钛矿等技术。

但他的成本较高,光电效率低,所以量很少。

晶硅/薄膜电池技术路线:光电转化效率:HJT+钙钛矿,是行业趋势。

技术发展史:→ 第1代:铝背场BSF电池 (2017年以前)→ 第2代:PERC电池 (2017年至今)→ 第2.5代:PERC+/TOPCon(隧穿氧化钝化电池)→ 第3代:HJT电池(也叫HIT电池,俗称异质结电池,全称晶体硅异质结太阳能电池)→ 第4代:HBC电池(也称IBC,即叉指式背接触电池,可能潜在方向)→ 第5代:钙钛矿叠层电池 (可能潜在方向)。

材料发展史:第一代太阳能电池——以单晶硅、多晶硅为代表的硅晶太阳能电池。

目前这技术发展成熟且应用最为广泛,目前面对的问题是单晶硅太阳能电池对原料要求太高,以及多晶硅太阳能电池生产工艺过于复杂等问题。

第二代太阳能电池——薄膜太阳能电池,以CdTe、GaAs及CIGS为代表的的太阳能电池。

该技术与晶硅电池相比,优势在于所需材料较少且容易大面积生产,成本方面优势较明显。

第三代太阳能电池——基于高效、绿色环保和先进纳米技术的新型薄膜太阳能电池,如染料敏化太阳能电池(DSSCs)、钙钛矿太阳能电池(PSCs)和量子点太阳能电池(QDSCs)等。

钙钛矿电池钙钛矿是一类陶瓷氧化物,其分子通式为ABO3 ,呈八面体形状,结构特性优异;此类氧化物最早被发现,是存在于钙钛矿石中的钛酸钙(CaTiO3)化合物,因此而得名。

钙钛矿晶体的制备工艺简单,光电转换效率高,在光伏、LED等领域应用广泛。

钙钛矿型太阳能电池(perovskite solar cells),又被称作新概念太阳能电池,是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池。

薄膜电池与晶体硅电池比较

薄膜电池与晶体硅电池比较

发电成本高是两大类太阳能电池的共性问题晶硅太阳能电池和薄膜太阳能电池是目前光伏市场的两种要产品,晶硅太阳能电池占据市场主流,约占90%左右的市场份额。

由于多晶硅生产工艺的属性决定了其产业链生产环节,尤其是多晶硅提纯中会存在高能耗、一些技术水平不高的企业甚至存在高污染问题。

而在应用中,晶硅太阳电池由于其温度效应和光谱响应范围窄的影响,使本来较高的光电转换效率大打折扣,从而影响光伏组件实际发电量。

薄膜太阳能电池因没有这些缺点应运而生,其不足在于转换效率相对较低,生产工艺复杂,生产设备昂贵,难以实现规模化生产。

发电成本高是两大类太阳能电池的共性问题。

中科院院士、北京大学物理学院教授甘子钊介绍说,薄膜太阳能电池家族主要包括硅基非晶硅(a-Si)、碲化镉(CdTe)、铜铟镓硒(CIGS)三大类薄膜太阳能电池。

铜铟镓硒薄膜太阳能电池具有生产成本较低、能耗低,污染小、不衰减、弱光性能好等特点,光电转换效率居各种薄膜太阳能电池之首,接近多晶硅太阳能电池,而耗材大大低于晶体硅电池,因此,被国际上称为“下一代非常有前途的新型薄膜太阳能电池”。

此外,该电池具有柔和、均匀的黑色外观,是对外观有较高要求建筑物BIPV应用的理想选择,如大型建筑物的玻璃幕墙等,在现代化高层建筑等领域有潜在的广泛市场。

但CIGS要实现大面积量产,提升效率和良品率,是必须攻克的难题。

河南燕垣光伏能源有限公司总工程师陆真冀具体介绍了CIGS薄膜电池的几大优势,他说,CIGS薄膜电池具有更低廉的发电成本,减少了材料消耗,薄膜电池的生产成本普遍低于晶硅电池;更优越的弱光性能同规模组件,薄膜电池一天的发电量比晶硅电池大约超出10%~20%;更加多样化的用途薄膜电池,可以发展出多用途的产品,比如柔性基底电池等等。

因此,也受到业内不少厂商的广泛关注,但主要都是大面积平板CIGS薄膜电池。

太阳能集电管应运而生CIGS太阳能集电管具有高效、廉价、有自主知识产权、设备能够国产化等一系列优点。

太阳能光伏薄膜组件和晶硅组件在非洲加纳的发电效果对比报告

太阳能光伏薄膜组件和晶硅组件在非洲加纳的发电效果对比报告

薄膜组件和晶硅组件在加纳的发电效果对比报告xxxxxx公司xxxxxxx研究院2023年06月一、项目所在地1.地理位置加纳1000MWp太阳能光伏地面电站位于加纳北部地区Tamale市西南侧36km,Kusawgu一带,场区处于国道Yapei至Tamale北侧,距离Tamale市约36km,距离Yapei市区7km。

场区中心位于西经1°6'39"、北纬9°11'49",场区海拔高度在120~135m 之间,地势平坦。

站址区紧邻Tamale至Yapei国道。

首期装机为150MWp。

2.气候特征加纳属热带气候,分雨季和旱季。

5-10月为雨季,11-4月为旱季。

3-4月气温最高,为23-35℃,最高可达43℃;8-9月较凉爽,为22-27℃,最低纬度15℃左右。

西南部年均降水量是1200-1800mm,北部600-1200mm。

空气湿度较大,保持在90%左右。

3.光照资源加纳是非洲太阳能资源较丰富的国家,太阳总辐射的空间分布总体分布趋势:总体来说,北部年值高于南部,散射辐射比例为北部小于南部。

北部地区年太阳总辐射量为5.3kWh/m2/d,除西部和南部沿海地区年太阳总辐射小于5kWh/m2/d以外,其他地区均在5kWh/m2/d以上。

其中,位于加纳最北部的上东与上西地区辐射量为 5.3-5.6kWh/m2/d,属加纳全国总辐射最多地区,其中上西地区年总量达5.6kWh/m2/d为加纳最高。

布朗阿哈福地区、阿萨帝地区等南部区域日照辐射量为低于5kWh/m2/d,西部个别地区低于4.6kWh/m2/d,尤其阿桑克兰瓜、恩奇一带低至3.1kWh/m2/d,为全国最低值区。

加纳太阳能总辐射及散射空间分布图见下图。

从宏观上看,本项目场址位于北部Tamale地区,在加纳全国境内太阳能资源较为丰富,散射比值较小,仅次于上东与上西地区,具备较大开发价值。

加纳太阳能资源分布图Tamale市位于加纳北部地区,太阳总辐射年总量为6800MJ/m2左右,大部分地区属于“资源很丰富区”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体硅太阳能电池和薄膜太阳能电池。

【摘要】晶体硅太阳能电池和薄膜太阳能电池是目前主流的太阳能电池技术。

晶体硅太阳能电池采用单晶硅或多晶硅制成,具有高转换效率和较长寿命的特点,广泛应用于家用光伏发电系统和大型光伏电站。

制造成本高和生产过程能耗大是其主要缺点。

薄膜太阳能电池利用薄膜材料制成,具有灵活性和轻便性,适用于建筑一体化等特殊场景。

但是转换效率较低,使用寿命短。

比较晶体硅太阳能电池和薄膜太阳能电池的效率、成本、适用场景等方面可见各有优劣。

未来,随着技术的进步和成本的下降,晶体硅和薄膜太阳能电池将继续发展,为清洁能源产业注入新动力。

【关键词】晶体硅太阳能电池、薄膜太阳能电池、原理、特点、应用、优缺点、比较、发展前景、总结。

1. 引言1.1 太阳能电池简介太阳能电池,也称为光伏电池,是一种能够将太阳能转化为电能的设备。

它是利用半导体材料的光电效应将太阳辐射直接转换为直流电的装置。

太阳能电池是清洁能源中的重要组成部分,具有环保、可再生和低碳的特点。

太阳能电池的核心部件是光伏电池片,其主要材料包括硅、硒化镉、铜铟镓硒等。

目前市场上主要有晶体硅太阳能电池和薄膜太阳能电池两类。

晶体硅太阳能电池具有较高的转换效率和稳定性,是目前主流的太阳能电池技术;而薄膜太阳能电池则具有柔性、轻便和生产成本低的优势。

太阳能电池的应用领域广泛,包括家用光伏发电系统、工业和商业用途,以及航天航空领域等。

随着太阳能产业的快速发展,太阳能电池的效率和成本不断提升,未来将在能源领域扮演越来越重要的角色。

1.2 晶体硅太阳能电池和薄膜太阳能电池介绍晶体硅太阳能电池是目前应用最广泛的太阳能电池技术之一。

它由大面积的单晶硅或多晶硅材料组成,通过将硅材料加工成光伏电池片并组装成电池组,从而将太阳能转化为电能。

晶体硅太阳能电池具有转换效率高、稳定性好、寿命长等优点,被广泛应用于屋顶光伏发电、太阳能光伏电站等领域。

薄膜太阳能电池是一种新型的太阳能电池技术,采用薄膜材料作为光伏电池片,相比于晶体硅太阳能电池,薄膜太阳能电池具有重量轻、柔软性好、制造成本低等优点。

薄膜太阳能电池的主要材料包括非晶硅、铜铟硒、CdTe等,这些材料在光伏电池领域具有较高的研究和应用价值。

晶体硅太阳能电池和薄膜太阳能电池都具有各自的优势和特点,在不同的应用场景下都有着重要的作用。

随着太阳能光伏技术的不断发展和完善,晶体硅太阳能电池和薄膜太阳能电池将会在未来的能源产业中发挥更为重要的作用。

2. 正文2.1 晶体硅太阳能电池原理和特点晶体硅太阳能电池是一种常见的太阳能电池类型,其原理基于光伏效应。

当太阳光照射到硅片上时,光子激发硅中的电子,使得电子跃迁到导带中,形成电子-空穴对。

这些电子和空穴在电场的作用下分别向正负极移动,产生电流,从而实现光能转化为电能的过程。

晶体硅太阳能电池的特点包括高效率、稳定性强、寿命长等优点。

由于硅是一种常见的材料,生产成本相对较低,且具有较高的光电转换效率,因此广泛应用于太阳能领域。

晶体硅太阳能电池还具有良好的适应性,可以在不同环境条件下正常工作。

晶体硅太阳能电池也存在一些缺点,如制造过程中可能产生大量的二氧化硅废料,且硅片生产需要高温处理,能耗相对较高。

在高温或强光照射下,硅片效率可能会下降。

晶体硅太阳能电池是目前应用最为广泛的太阳能电池类型之一,其高效率和稳定性为其在能源领域的发展提供了强大支持。

未来随着技术的进步和创新,晶体硅太阳能电池的性能将继续提升,促进太阳能产业的持续发展。

2.2 晶体硅太阳能电池应用及优缺点晶体硅太阳能电池是目前市场上最常见的太阳能电池类型之一,它具有广泛的应用领域以及一些优缺点。

晶体硅太阳能电池主要应用于屋顶光伏系统、太阳能汽车、太阳能移动充电器、太阳能路灯等领域。

在屋顶光伏系统中,晶体硅太阳能电池可以将阳光转化为电能,为住宅或商业建筑提供清洁的电力。

在太阳能汽车领域,晶体硅太阳能电池可以为电动汽车充电,延长其续航里程。

太阳能移动充电器和太阳能路灯则利用晶体硅太阳能电池的特性,为移动设备和路灯提供电力支持。

晶体硅太阳能电池的优点包括高转换效率、稳定性好、使用寿命长等。

它也存在一些缺点,如制造成本较高、材料资源消耗大等。

在未来的发展中,研究人员正在努力降低晶体硅太阳能电池的制造成本,提高其转换效率,以更好地满足市场需求。

2.3 薄膜太阳能电池原理和特点薄膜太阳能电池是一种相对于晶体硅太阳能电池而言较新型的太阳能电池技术。

其原理是利用薄膜材料吸收太阳光的能量,将其转化为电能。

相比于晶体硅太阳能电池,薄膜太阳能电池的制作工艺更简单,成本更低,重量更轻,生产过程对环境的影响也较小。

薄膜太阳能电池的特点之一是具有柔性,可以灵活地安装在各种表面上,因此在一些特殊环境下具有更广泛的应用场景。

薄膜太阳能电池的效率虽然相对较低,但随着技术的不断进步,其转换效率也在逐步提高。

薄膜太阳能电池在光伏产业中也具有一定的市场竞争力,尤其在一些对于轻量化、柔性化要求较高的领域有着明显的优势。

薄膜太阳能电池在未来的发展中有望成为一种重要的太阳能电池技术之一。

2.4 薄膜太阳能电池应用及优缺点薄膜太阳能电池是一种新型的太阳能电池技术,相比传统的晶体硅太阳能电池,它具有一些独特的优点和应用领域。

薄膜太阳能电池由于其柔软、轻薄、灵活等特点,被广泛应用于一些特殊场合,例如:1. 移动充电:由于薄膜太阳能电池可以轻巧地贴合在手机、笔记本电脑等移动设备上,因此可以为这些设备提供绿色的能源补给。

2. 建筑一体化:薄膜太阳能电池可以灵活地整合到建筑物表面,成为建筑一部分,为建筑物提供清洁能源,同时也为建筑带来美观的外观。

3. 无人机和航天器:由于薄膜太阳能电池的轻薄特性,它们可以被应用于无人机、卫星等航空航天领域,为这些设备提供持续供电。

优点:1. 灵活性:薄膜太阳能电池可以柔韧地贴合在各种表面上,不受形状限制。

2. 生产成本低:相比晶体硅太阳能电池,薄膜太阳能电池的生产成本更低,同时生产工艺更简单。

3. 适应性强:薄膜太阳能电池可以应用于更多场合,如移动设备、建筑一体化等。

缺点:1. 效率较低:薄膜太阳能电池目前的转换效率较低,需要进一步提高。

2. 寿命短:由于薄膜太阳能电池的材料较薄,容易受到损坏,导致寿命较短。

3. 光照要求高:薄膜太阳能电池对光照的要求较高,不适合在光照较差的地区应用。

薄膜太阳能电池虽然具有一些优点和应用领域,但也面临一些挑战,需要不断改进和优化,以实现更广泛的应用。

2.5 晶体硅太阳能电池和薄膜太阳能电池的比较晶体硅太阳能电池和薄膜太阳能电池是目前市场上两种主流的太阳能电池技术,它们在原理、特点、应用和优缺点等方面有着明显的差异。

下面我们来对这两种太阳能电池进行比较分析。

在原理方面,晶体硅太阳能电池是利用单晶硅或多晶硅材料制成的,通过光照使硅材料中的电子被激发而产生电流。

而薄膜太阳能电池则是利用薄膜材料,如非晶硅、铜铟镓硒等,将光能转化为电能。

在特点方面,晶体硅太阳能电池具有高转换效率、长寿命和稳定性好的优点,但制造成本较高,易受阴影影响。

而薄膜太阳能电池具有较低的制造成本、轻薄灵活等优点,但转换效率相对较低。

在应用方面,晶体硅太阳能电池主要用于大型电站和商业应用,而薄膜太阳能电池适用于一些小型应用和轻便可折叠的电池板。

晶体硅太阳能电池和薄膜太阳能电池各有其优缺点,选择时需根据具体需求进行考量。

随着技术的不断发展,相信这两种太阳能电池在未来会有更广阔的应用前景,为人类解决能源问题提供更多可能性。

3. 结论3.1 晶体硅太阳能电池和薄膜太阳能电池的发展前景晶体硅太阳能电池和薄膜太阳能电池是当前太阳能电池领域的两大主流技术,它们在可再生能源领域具有巨大的潜力和发展前景。

随着能源需求的不断增长和环境问题的加剧,太阳能电池作为清洁能源的代表,受到了广泛关注。

晶体硅太阳能电池作为第一代太阳能电池技术,已经经过多年的发展和改进,具有较高的转换效率和稳定性。

随着技术的进步,晶体硅太阳能电池的成本不断降低,性能不断提升,未来有望进一步推动太阳能发电市场的发展。

薄膜太阳能电池作为新型太阳能电池技术,具有柔性、轻薄和生产成本低的优势。

随着纳米技术和材料科学的进步,薄膜太阳能电池的转换效率不断提高,同时具备了更广泛的应用场景和更大的发展空间。

未来,随着科技的不断进步和政策对清洁能源的支持,晶体硅太阳能电池和薄膜太阳能电池有望进一步推动太阳能发电市场的发展,成为未来能源革命的重要组成部分。

两种技术的结合和互补将为太阳能产业带来更多创新和突破,为解决能源和环境问题贡献更大力量。

3.2 晶体硅太阳能电池和薄膜太阳能电池的结论总结晶体硅太阳能电池和薄膜太阳能电池各有其优势和劣势。

晶体硅太阳能电池具有高转换效率、较长的使用寿命和稳定性等优点,但成本较高,生产过程中需要使用大量的能源和水资源。

相比之下,薄膜太阳能电池具有较低的制造成本、灵活性强和轻薄便携等优点,但转换效率普遍较低且使用寿命相对较短。

为了更好地发挥两者的优势并弥补各自的不足,研究人员一直在努力改进晶体硅太阳能电池和薄膜太阳能电池的性能。

未来,随着技术的不断进步和创新,晶体硅太阳能电池和薄膜太阳能电池将会更加普及和大规模应用于各个领域。

相关文档
最新文档