大学物理学第04章补充例题
【免费下载】上海交通大学出版社 大学物理教程 第四章 答案

习题44-1.在容积的容器中盛有理想气体,气体密度为=1.3g /L 。
容器与大气相通排出一部分气体后,3V L =ρ气压下降了0.78atm 。
若温度不变,求排出气体的质量。
解:根据题意,可知:,,。
1.78P atm =01P atm =3V L =由于温度不变,∴,有:,00PV PV =001.783PVV L P ==⨯那么,逃出的气体在下体积为:,1atm ' 1.78330.78V L L L =⨯-=这部分气体在下体积为:1.78atm ''V =0'0.7831.78PV LP ⨯=则排除的气体的质量为: 。
0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯=根据题意,可得:,pV RT ν=mpV RT M=1V p RT p M m ρ==4-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。
如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少?解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用,知两气体摩尔数相同,即:pV RT ν=,∴,代入数据有: 。
H O νν=O H HOm m M M = 1.6O m kg =4-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。
用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。
要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少?解:已知氮气和氧气质量相同,水银滴停留在管的正中央,则体积和压强相同,如图。
由:,有:,molmpV RT M =2222(30)O N O N m m R T RT M M +=而:,,可得: 。
20.032O M kg =20.028N M kg =30282103028T K ⨯==+4-4.高压氧瓶:,,每天用,,为保证瓶内71.310p Pa =⨯30V L =51 1.010p Pa =⨯1400V L =,能用几天?6' 1.010p Pa ≥⨯解:由,可得:,''pV p V =761.31030'390' 1.010pV Pa LV L p Pa⨯⨯===⨯∴;'360V V V L ∆=-=而:,有:,11'p V p V ∆=∆615' 1.010********.010p V Pa LV L p Pa∆⨯⨯∆===⨯那么:能用的天数为天 。
大学物理第四五六章习题参考答案

第4章机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1.简谐振动离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+==8.阻尼振动振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
第04章 一维随机变量

第四章 一维随机变量第一节 一维随机变量及其分布一、一维随机变量1、定义:设),,(P S F 为一概率空间,X 为S 到R 上的单值映射,若1B ∈∀B 均有F ∈∈=-})(|{)(1B e X e B X ,称X 为S 上的一维随机变量. 常用X 、Y 、Z 、…等等表示.例1 掷骰子 },,,{621e e e S =,定义: :X k e k →,6,,2,1 =k .显然,X :→S R . 所以X 为S 上的一维随机变量.2、X 的分布:}{B X P ∈, R ⊂B 其中:=∈}{B X F ∈∈∈},)(|{S e B e X e例如:]4,3[=B ,那么}43{}{≤≤=∈X P B X P },4)(3|{S e e X e P ∈≤≤=.例2 口袋中装有3,3,2,2,2,1-标数的六个球,任取一球,用X 表示取出球的标 数,求X 的分布.解:(1) X 的所有可能取值为3,2,1-,依次记为321,,x x x .61}1{}{11=-====X P x X P p , 2163}2{}{22======X P x X P p ,3162}3{}{32======X P x X P p .(2) 记},,{321x x x A =,A B BA B +=,显然 φ=∈}{A B X ,那么}{}{}{A B X P BA X P B X P ∈+∈=∈∑∑∈∈===∈=Bx kBx kk k px X P BA X P }{}{例如:)3,1[-=B ,那么}31{}{≤≤-=∈X P B X P 3/2}2{}1{==+-==X P X P .2、 分类(1)一维离散型随机变量: X 的取值至多可数; (2)一维非离散型随机变量.其中:一维连续型随机变量(后面讨论).二、分布函数1、定义:设),,(P S F 为一概率空间,X 为S 上的一维随机变量, R ∈∀x ,规定:}{)(x X P x F ≤=.称)(x F 为X 的分布函数.显然: )()(}{a F b F b X a P -=≤<.特别地:①)(}{b F b X P =≤;② )(1}{a F a X P -=>.例3 求例2中X 的分布函数)(x F . 解:已知 ∑∑∈∈===∈B x kBx kk k px X P B X P }{}{,R ∈∀x ,取R ⊂-∞=],(x B ,那么∑∑≤∈==∈=≤=xx kBx kk k pp B X P x X P x F }{}{)(.(1) 当1-<x 时, 0}{)(=≤=x X P x F ; (2) 当21<≤-x 时, 61)(1==p x F ; (3) 当32<≤x 时,32646361)(21==+=+=p p x F ; (4)当3≥x 时, 1)(321=++=p p p x F .所以 ⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=.3,1,32 ,3/2,21 ,6/1,1 ,0)(x x x x x F2、 性质(1)R ∈∀x ,1)(0≤≤x F . (显然)(2))(x F 为单调不减函数. (显然)(3)0)(lim =-∞→x F x ,1)(lim =+∞→x F x 。
大学物理课后答案第四章

第四章 气体动理论一、基本要求1.理解平衡态的概念。
2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。
3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。
4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。
5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。
6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。
二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。
2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。
以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。
重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。
《大学物理》习题册题目及答案第4单元 能量守恒定律

第四章 能量守恒定律序号 学号 姓名 专业、班级一 选择题[ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是(A) p E =k mg F 2)(2μ-(B) p E =kmg F 2)(2μ+(C) KF E p 22=(D) k mg F 2)(2μ-≤p E ≤kmg F 2)(2μ+[ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r+-=∆其中一个力为恒力)SI (953k j i F+--=,则此力在该位移过程中所作的功为(A )-67 J (B )91 J (C )17 J(D )67 J[ C ]3.一个作直线运动的物体,其速度v与时间t的关系曲线如图所示。
设时刻1t 至2t 间外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则(A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W[ C ]4.对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加。
(2) 质点运动经一闭合路径,保守力对质点作的功为零。
(3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。
在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的(D )只有(3)是正确的。
[ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。
大学物理课后习题答案第四章

第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
大学物理习题答案解答第四章动量

第四章 动量一、填空题1、设坐标轴为x 轴,则小球与墙壁碰前的速度1v vi =,因小球与竖直墙壁作完全弹性碰撞,则小球与墙壁碰后的速度为2v vi =-。
则碰撞过程中,小球的动量增量为21()2p mv mv m v i mvi mvi ∆=-=--=-。
2、设子弹初速度的方向为x 轴,且受到木块的冲力为F ',对子弹射入木块并随木块一起运动的过程,使用动量定理,有()()212212121210505009()t t I F dt p p mv mv m v v i i i N s -''==-=-=-=⨯⨯-=-⋅⎰又设木块受到子弹的冲力为F ,则木块受到子弹的冲量为2221119()t t t t t t I Fdt F dt F dt I i N s '''==-=-=-=⋅⎰⎰⎰3、设棒球未被击打前的速度为x 轴,棒击打棒球前后,棒球受到棒的冲量为2121t t I Fdt mv mv ==-⎰则棒施于球的平均冲力为()()21212110.33020300()0.05tt m F Fdt v v i i i N t t t ==-=⨯--=--∆⎰4、设子弹出射的方向为x 轴,则每分钟900个子弹受到的机枪的冲量为()212121t t I F dt Mv Mv Nm v v ''==-=-⎰则机枪受到子弹的平均反冲力为()()22211121212211111900210800060240()t t tt t t F Fdt F dt F dt I t t t t t t Nm v v i t i N ---'''==-==--∆∆⨯⨯=--=-⨯-∆=-⎰⎰⎰5、设A 粒子对B 粒子的作用力为AB F ,而B 粒子对A 粒子的作用力为BA F ,则A ,B 两粒子发生作用的过程中,A 粒子受到B 粒子的冲量为()212121t BA A A A A A A t I F dt m v m v m v v '==-=-⎰而B 粒子受到A 粒子的冲量为()2121214t AB B B B B B B t I F dt m v m v m v v ==-=-⎰注意到AB BA F F =-,有I I '=-由以上三式,可解出B 粒子在作用后的速度为()()()()212111127743444(5)()B B A A v v v v i j i j i j i j m s -⎡⎤=--=----+⎣⎦=-⋅6、小球受到三个力的作用,分别为重力mg ,桌面对它的支持力N 和绳子的拉力T 。
大学物理课后习题答案(第四章) 北京邮电大学出版社

又
k 0.2 2 5,即T 1.26s 3 m 8 10
2 A x0 (
v0
)2
2 2
5.0 10 2 2 (1.0 10 ) ( ) 5 2 10 2 m v 5.0 10 2 5 tan 0 0 1, 即 0 2 x 0 1.0 10 5 4 5 x 2 10 2 cos(5t )m 4 ∴
A 3.2 10 3 rad l
∴ 故其角振幅
2 A x0 (
小球的振动方程为
4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为 0.20m ,位相与第一振动的
给小球一水平向右的冲量 Ft 1.0 10 kg m s ,取打击时刻为计时起点 (t 0) ,求 振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有
4 1
v0 x 0
F t mv 0
∴
v
F t 1.0 10 0.01 m 1.0 10 3
A mg 2 m 2 2 gh 2 x ( ) ( ) ( ) k (m M )
2 0 2
v0
mg 2kh 1 k (m M ) g
2kh ( M m) g (第三象限),所以振动方程为 (3) mg 2kh k 2kh x 1 cos t arctan k (m M ) g ( M m) g mM 3 4-10 有一单摆,摆长 l 1.0m ,摆球质量 m 10 10 kg ,当摆球处在平衡位置时,若 tan 0
(2)
当
Ek E p
时,有
E 2E p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五版
第四章补充例题
1 一飞轮半径为0.2 m、转速为 150 r· -1,因受制动而均匀减速,经 min 30 s 停止转动.试求:(1)角加速度和 在此时间内飞轮所转的圈数;(2)制动 开始后 t = 6 s 时飞轮的角速度;(3)t = 6 s 时飞轮边缘上一点的线速度、切向 加速度和法向加速度.
2 2 0
N
2π
2π
37.5 r
2
第四章
刚体的转动
物理学
第五版
第四章补充例题
π 1 ω ω0 αt (5π 6) 4π rad s 6 t (3) 6 s时,飞轮边缘上一点的线速度大小
(2)t 6 s时,飞轮的角速度
v rω 0.2 4π 2.5 m s
2 1 2 1
第四章
刚体的转动
8
物理学
第五版
第四章补充例题
解得
mg ( R r ) 2 2 J mR mr mgr ( R r ) a1 r 2 2 J mR mr mgR ( R r ) a2 R 2 2 J mR mr FT1 mg ma 1
第四章 刚体的转动
6
解 由 M k J
物理学
第五版
第四章补充例题
4 电风扇在开启电源后,经t1时间达到 了额定转速,此时相应的角速度为0 ,当 关闭电源后,经过t2时间风扇停转.已知风 扇转子的转动惯量为J,并假设摩擦阻力矩 和电机的电磁力矩均为常量,求电机的电磁 力矩.
M M f J1 1 1 解 M J 解得: Jω0 ( ) M f 2 t1 t 2 ω0 1t1 2t2
第四章
刚体的转动
1
物理学
第五版
第四章补充例题
解 (1)ω0 5π rad s , t = 30 s 时, 0
1
θ 设 t = 0 s 时, 0 0,因飞轮作匀减速运动
0
t
π 2 rad s 6
飞轮 30 s 内转过的角度
75 π rad 2 75 π 转过的圈数
3 一转动惯量为 J 的圆盘绕一固定轴 转动,起初角速度为0 ,设它所受阻力矩 为M=-k (k为常数),求圆盘的角速度从0 变为0/2 所需的时间.
d k d dt 有J 即 k, J dt 1 0 d t k J ln 2 2 dt, 解得:t 0 0 J k
2
该点的切向加速度和法向加速度
π 2 at r 0.2 ( ) 0.105 m s 6 2 2 2 an rω 0.2 (4π) 31.6 m s
第四章 刚体的转动
3
物理学
第五版
第四章补充例题
2 一质量为m、长为L的均匀细棒, 可在水平桌面上绕通过其一端的竖直固定 轴转动,已知细棒与桌面的摩擦因素为 , 求棒转动时受到的摩擦力矩的大小.
第四章 刚体的转动
mg
15
物理学
第五版
第四章补充例题
应用动能定理求ω
L
1 由 Md J 2 0 2
mg
L 1 1 2 2 mg cos d ( mL ) 得 0 2 2 3 3g sin L
第四章 刚体的转动
16
第四章 刚体的转动
7
物理学
第五版
第四章补充例题
5 如图:一定滑轮两端分别悬挂质量 都是m的物块A和B,图中R和r,已知滑轮 的转动惯量为J,求A、B两物体的加速度及 滑轮的角加速度. β mg FT ma2 r R 解 FT1 FT2 FT mg ma1 由 FT R FT r J FT1' FT2' a1 A B a1 r a2 mg a2 R mg
o
第四章
x
dx
x
4
刚体的转动
物理学
第五版
第四章补充例题
解 如图,距O点为x,长为dx的质元dm
m 的质量 dm dx l 其所受阻力矩 dM x( dm g) mg L 1 M xdmg xdx mgL
l
0
2
o
第四章
x
dx
x
5
刚体的转动
物理学
第五版
第四章补充例题
FT2 mg ma2
第四章 刚体的转动
9
物理学
第五版
第四章补充例题
6 一轻绳绕在有水平轴的定滑轮上,滑 轮质量为m,绳下端挂一物体,物体所受重 力为G, 滑轮的角加速度为β 1 ,若将物体去 掉而以与G相等的力 直接向下拉绳子,滑 β2 β1 R R 轮的角加速度β 2将 (A) 不变 (C) 变大 (D) 无法判断
第四章 刚体的转动
10
(B) 变小
G
物理学
第五版
第四章补充例题
解 GR J 2 2 GR J
FT R J1 1 FT R J
又 所以
G FT
2 1
R
FT’ G
β
1
R
β
2
FT
G
答案:选(C)
第四章
刚体的转动
11
物理学
第五版
第四章补充例题
7 轻绳一端 v 系着质量为m的质 r/2 r O m 点,另一端穿过光 滑水平桌面上的小 F 孔O用力拉着,质 点原来以等速率作半径为r 的圆周运动,问 当拉动绳子向正下方移动到半径为r/2时,质 点的角速度多大?
8 如图,一长L、 L 质量为m的细棒可绕其 一端自由转动,开始 时棒处于水平位置, mg 求棒转到与水平线成 度、角加速度. 角度 时的角速
第四章
刚体的转动
14
物理学
第五版
第四章补充例题
解 应用转动定律 M J 求β
L
L M mg cos 2 1 2 J mL 3 3g cos 2L
第四章 刚体的转动
12
物理学
第五版
第四章补充例题
应有 L 常矢量
即 J11 J 22
解 m绕O转动中, 所受力矩M=0.
r/2
O
r
v
m
F
2
v r mr ( ) m 2 r 2 解得: 2 4v / r
2
第四章 刚体的转动
13
物理学
第五版
第四章补充例题