运筹学 第四章补充题

合集下载

运筹学习题答案(第四章)

运筹学习题答案(第四章)



满足P、P2 , 不满足P3 1
page 4 28 December 2013
School of Management
运筹学教程
第四章习题解答
4.3 用单纯形法解下列目标规划问题:
min P ( d1 d1 ), P2 d 2 , P3 d 3 , P4 (5d 3 3d 2 ) 1 x1 x2 d1 d1 800 d 2 d 2 2500 (1) 5 x1 st. 3 x2 d 3 d 3 1400 x1 , x2 , d i , d i 0, i 1,2,3 解:x1 500 , x2 300 , d 2 10, d 3 200


page 7 28 December 2013
School of Management
运筹学教程
第四章习题解答
(1) 用单纯形法求问题的满意解;
解:x1 70, x2 20, d 3 25, d1 10
满足P、P2 , 不满足P3 1
(2)若目标函数变为:
min
P d
1 1
运筹学教程(第二版) 习题解答
运筹学教程
第四章习题解答
4.1 若用以下表达式作为目标规划的目标函数, 其逻辑是否正确?为什么?
(1) max 不正确 (3) min 正确 (5) max
d d d

d d d

(2) max 不正确
d d d

d d d
page 16 28 December 2013
School of Management
运筹学教程
第四章习题解答

运筹学习题答案(第四章)

运筹学习题答案(第四章)

售价( /kg) 售价(元/kg) 5.5 5.0 4.8
解: x11 = 1125 , x12 = 300 , x13 = 75 , x 21 = 1125 , x 22 = 200 , x 23 = 675 , x 31 = 0 , x 32 = 1000 , x 33 = 0 , d 1− = 225 , d 3− = 50 , d 5− = 375 , d 7+ = 250 满足所有目标
} } }
(2) max 不正确
{d {d {d

−d+ −d+
}

(4) min

} }
d + = 0时正确
+
(6) min
+
−d−
d + = 0时正确
d − = 0时正确
page 2 24 September 2011
School of Management
运筹学教程
第四章习题解答
4.2 用图解法解下列目标规划问题: 用图解法解下列目标规划问题:
page 13 24 September 2011
School of Management
运筹学教程
第四章习题解答
表4-15 项 目 维生素A mg) 维生素A(mg) 维生素B mg) 维生素B(mg) 维生素C mg) 维生素C(mg) 胆固醇(单位) 胆固醇(单位) 费用( 费用(元) 牛奶 牛肉 鸡蛋 500g) 500g) 500g) (500g) (500g) (500g) 1 100 10 70 1.5 1 10 100 50 8 10 10 10 120 4 每日最少 需要量 1 30 10
page 14 24 September 2011

运筹学习题答案(第四章)

运筹学习题答案(第四章)
9 page 9 23 May 2012
School of Management
运筹学教程
第四章习题解答
4.5 某成品酒有三种商标 红、黄、蓝),都是由 某成品酒有三种商标(红 , 三种原料酒(等级 Ⅱ 等级Ⅰ 兑制而成。 三种原料酒 等级 Ⅰ ,Ⅱ, Ⅲ )兑制而成。 三种等级的原 兑制而成 料酒的日供应量和成本见表4-13,三种商标的成品酒 料酒的日供应量和成本见表 , 的兑制要求和售价见表4-14。决策者规定 : 首先必须 的兑制要求和售价见表 。 决策者规定: 严格按规定比例兑制各商标的酒;其次是获利最大; 严格按规定比例兑制各商标的酒 ; 其次是获利最大 ; 再次是红商标的酒每天至少生产2 000kg。试列出该问 再次是红商标的酒每天至少生产 。 题的数学模型。 题的数学模型。
13 page 13 23 May 2012
School of Management
运筹学教程
第四章习题解答
已知单位牛奶、牛肉、 4.7 已知单位牛奶、牛肉、鸡蛋中的维生素及胆 固醇含量等有关数据见表4 15。 固醇含量等有关数据见表4 - 15 。如果只考虑这三种食 并且设立了下列三个目标: 物,并且设立了下列三个目标: 第一,满足三种维生素的每日最小需要量; 第一,满足三种维生素的每日最小需要量; 第二,使每日摄人的胆固醇最少; 第二,使每日摄人的胆固醇最少; 第三,使每日购买食品的费用最少。 第三,使每日购买食品的费用最少。 要求建立问题的目标规划模型。 要求建立问题的目标规划模型。
售价( /kg) 售价(元/kg) 5.5 5.0 4.8
解: x11 = 1125 , x12 = 300 , x13 = 75 , x 21 = 1125 , x 22 = 200 , x 23 = 675 , x 31 = 0 , x 32 = 1000 , x 33 = 0 , d 1− = 225 , d 3− = 50 , d 5− = 375 , d 7+ = 250 满足所有目标

运筹学习题集(第四章)

运筹学习题集(第四章)

判断题判断正误,如果错误请更正第四章目标规划1.正偏差变量大于等于0,负偏差变量小于等于0。

2.系统约束中最多含有一个正或负的偏差变量。

3.目标约束一定是等式约束。

4.一对正负偏差变量至少一个大于0。

5.一对正负偏差变量至少一个等于0。

6.要求至少到达目标值的目标函数是maxZ=d+。

7.要求不超过目标值的目标函数是minZ=d+。

8.目标规划没有系统约束时,不一定存在满意解。

9.超过目标的差值称为正偏差。

10.未达到目标的差值称为负偏差。

选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。

第四章目标规划1.要求不超过第一目标值,恰好完成第二目标值,目标函数是A minZ=P1d1-+P2(d2-+d2+)B minZ= P1d1++P2(d2-+d2+)C minZ=P1(d1-+d1+)+P2(d2-+d2-)D minZ=P1(d1-+d1+)+ P2d2-2.下列正确的目标规划的目标函数是 A minZ=P1d1-- P2d2- B maxZ= P1d1-+P2d2- CminZ=P1d1--+P2(d2--d2+) D minZ=P1(d1-+d1+)+P2(d2-+d2-) E minZ=P1d1- +P2d2+3.下列线性规划与目标规划之间正确的关系是A线性规划的目标函数由决策变量构成,目标规划的目标函数由偏差变量构成 B 线性规划模型不包含目标约束,目标规划模型不包含系统约束C线性规划求最优解,目标规划求满意解。

D 线性规划模型只有系统约束,目标规划模型可以有系统约束和目标约束 E 线性规划求最大值和最小值,目标规划只求最小值4.目标函数minZ= P1(d1-+d2-)+ P2d3- 的含义是A第一和第二目标恰好达到目标值,第三目标不超过目标值。

B第一、第二和第三目标同时不超过目标值。

C首先第一和第二同时不超过目标值,然后第三目标不超过目标值。

运筹学第四章作业的参考答案

运筹学第四章作业的参考答案

第四章作业的参考答案151P 5、判断下列函数是否为凸函数.(3)31322123222126293)(x x x x x x x x x x f ++-++=解: )(x f 的Hesse 矩阵为⎪⎪⎪⎭⎫⎝⎛--=∇1862662222)(2x f .)(2x f ∇的各阶主子式分别为.01862662224,07218666,03418222,086222,018,06,02=-->=>=>=-->>>因而)(2x f ∇为半正定矩阵,所以)(x f 是凸函数。

152P 9、用0.618法求以下问题的近似解 5060212)(min 230+-+-=≥t t t t t ϕ已知函数的单谷区间]5.3,5.0[,要求最后区间精度8.0=ε。

解:迭代过程用下表给出:第三轮迭代开始时有ε=<=-=-8.0708.0646.1354.2a b 。

所以近似最优解为084.2*=t 。

152P 14、求以下无约束非线性规划问题的最优解.(1)2122122211620)(2)(min x x x x x x x f --+++=解:化简目标函数,得.1620223)(21212221x x x x x x x f --++=所以,)(x f 的Hesse 矩阵为⎪⎪⎭⎫ ⎝⎛=∇4226)(2x f . 因为)(2x f ∇是正定矩阵,所以)(x f 是凸函数。

另一方面,目标函数的梯度向量为 .)1624,2026()(1221Tx x x x x f -+-+=∇ 令0)(=∇x f ,即⎩⎨⎧=-+=-+01624020261221x x x x , 求得目标函数的驻点为T x )514,512(*=. 所以,原问题的最优解为T x )514,512(*=.152P 16、求最速下降法求解以下问题,要求迭代进行三轮。

(1)22212131min x x +,取初始点.)2,3(0T x = 解:由题意知.),32(),()(2121T T x x x f x f x f =∂∂∂∂=∇ 第一轮迭代:T x f p )2,2()(00--=-∇=。

运筹学第四章习题答案

运筹学第四章习题答案

即:4y1+6y2=﹣8 ① 又由于原问题的最优解X1*>0,X2*<0是松约束,故对偶问题的 约束必为紧约束,即对偶问题的前两个约束必为等式:
y1+y2=﹣2 y1+ky2=﹣2 ∴由①②解得y1*=﹣2 Y*=(﹣2,0)
② ③ y2*=0,即对偶问题的最优解为
将y1*,y2*的值代入③式得k=﹣1
(2)max z=4x1-2x2+3x3-x4
X1+x2+2x3+x4≤7
2x1-x2+2x3-x4=﹣2
s、t
X1-2x2+x4≥﹣3
X1、x3≥0 x2、x4无符号约束
解:其对偶问题为:
Min w=7y1-2y2-3y3
y1+2y2+y3≥4
y1-y2-2y3=﹣2
s、t
2y1+2y2≥3
y1-y2+y3=﹣1
y1≥0 y2无符号约束 y3≤0
4、已知线性规划问题:
Max z=x1+2x2+3x3+4x4
x1+2x2+2x3+3x4≤20
s、t
2x1+x2+3x3+2x4≤20
xj≥0 j=1、2、3、4
其对偶问题最优解为y1=1.2 y2=0.2,由对偶理论直接求出原问题的 最优解。
解:将Y*=(1.2,0.2)代入对偶问题的约束条件:
1、写出下列线性规划问题的对偶问题。
(1)min z=x1+x2+2x3
X1+2x2+3x3≥2
2x1+x2-x3≤4
s.t
3x1+2x2பைடு நூலகம்4x3≤6

《管理运筹学》第四版 第4章 线性规划在工商管理中的应用 课后习题解析教学资料

《管理运筹学》第四版 第4章 线性规划在工商管理中的应用 课后习题解析教学资料

《管理运筹学》第四版第4章线性规划在工商管理中的应用课后习题解析《管理运筹学》第四版课后习题解析第4章线性规划在工商管理中的应用1.解:为了用最少的原材料得到10台锅炉,需要混合使用14种下料方案。

设14种方案下料时得到的原材料根数分别为x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,如表4-1所示。

表4-1 各种下料方式min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14s.t. 2x1+x2+x3+x4≥80x2+3x5+2x6+2x7+x8+x9+x10≥350x3+x6+2x8+x9+3x11+2x12+x13≥420x4+x7+x9+2x10+x12+2x13+3x14≥10x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14≥0通过管理运筹学软件,我们可以求得此问题的解为:x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0,x9=0,x10=0,x11=140,x12=0,x13=0,x14=3.333最优值为300。

2.解:(1)将上午11时至下午10时分成11个班次,设x i表示第i班次新上岗的临时工人数,建立如下模型。

min f=16(x1+x 2+x3+x4+x5+x6+x7+x8+x9+x10+x11)s.t.x1+1≥9x1+x2+1≥9x1+x2+x3+2≥9x1+x2+x3+x4+2≥3x2+x3+x4+x5+1≥3x3+x4+x5+x6+2≥3x4+x5+x6+x7+1≥6x5+x6+x7+x8+2≥12x6+x7+x8+x9+2≥12x7+x8+x9+x10+1≥7x8+x9+x10+x11+1≥7x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥0通过管理运筹学软件,我们可以求得此问题的解如下:x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0,x10=0,x11=0,最优值为320。

运筹学习题答案(第四章)(课堂PPT)

运筹学习题答案(第四章)(课堂PPT)


1500
6

2000
4.5

1000
3
page 9 28 April 2020
School of Management
运筹学教程
第四章习题解答
表4-14
商标
兑制要求
售价(元/kg)

Ⅲ少于10% Ⅰ多于50%
5.5

Ⅲ少于70% Ⅰ多于20%
5.0

Ⅲ少于50% Ⅰ多于10%
4.8
解:x11 1125, x12 300, x13 75, x21 1125,
x2
d1
d
2
d3
d1
d
2
d3
150 40 40
x1
,
x2
,
d
i
,
d
i
0, i
1,2,3
解:x1
55, x2
40,
d
2
15
满足P1,不满足P2
page 3 28 April 2020
School of Management
运筹学教程
第四章习题解答
min
P1
(d
3
d
4
第四章习题解答
解:目标规划模型如下:
min
P1d1
,
P2
(d
2
d
3
d
4
),
P3d
5
,
P4
d
6
x1 x2 x3 1000
x1
d1
d1
300,
x2
d
3
d
3
350,
x1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目标规划补充习题
1、某单位领导在考虑单位职工的升级调资方案时,依次有以下规定:
(1)月工资总额不超过60000元;
(2)每级的人数不超过定编规定的人数;
(3)现有II、III级中人的升级面尽可能达到现有人数的20%;
(4)III级不足编制的人数可录用新职工,又I级职工有10%要退休。

其它资料见下表。

问该单位领导应如何拟订一个满意的方案。

123
Ⅲ级的新职工人数。

2、某厂装配线装配黑白与彩色两种电视机,每装配一台电视机,需占用装配线1小时,装配线每周开动40小时,预计市场每周彩电销量为24台,每台可获利80元,黑白电视机销量为30台,每台可获利40元,该厂的目标是:第1优先级:充分利用装配线每周开动40小时;
第2优先级:允许装配线加班,但每周加班时间不超过10小时;
第3优先级:装配电视机数量尽量满足市场需要,但因彩电利润高,彩电的权因子取2。

试建立目标规划模型。

相关文档
最新文档