超高速磨削、超精密磨削、超声波磨削

合集下载

磨削技术论文:超高速磨削及其优势探析

磨削技术论文:超高速磨削及其优势探析

磨削技术论文:超高速磨削及其优势探析一、概述超高速磨削作为一种高精度精密加工技术,已在各个领域得到广泛应用。

本文将从超高速磨削的基本原理入手,分析其优势,探讨其在建筑领域的应用前景。

二、基本原理超高速磨削是利用高速旋转的砂轮磨削工件表面,以达到高精度加工的一种技术。

它与传统的磨削技术不同之处在于,超高速磨削使用的砂轮转速通常在1万~10万转/分之间,较传统的磨削转速快得多。

这种高速磨削技术可以大幅提高加工效率,同时还能够获得更高的精度和光洁度。

三、优势分析1. 精度高超高速磨削的砂轮转速快,磨削力大,可以快速去除工件表面杂质,得到更加精细的加工表面,精度可达到0.005mm以下。

2. 效率高由于砂轮转速快,磨削力大,超高速磨削速度比传统磨削技术快得多。

工件加工时间可以降低30%以上,大幅提高生产效率。

3. 造价低超高速磨削使用的砂轮寿命长,能够在保证加工效率的情况下,延长更换周期,降低磨具成本。

4. 应用范围广超高速磨削是一种高效、环保、精细化的磨削技术,可适用于各种材料的加工,包括金属、非金属材料、陶瓷材料等。

5. 环保超高速磨削使用的是无毒、无害、无污染的磨料,减少了对环境的污染。

四、应用前景在建筑领域,超高速磨削技术可以用于加工各类构件。

它能够大幅节约加工时间,提高生产效率。

同时,它还能精细加工各类构件表面,达到工艺标准,节约原材料,降低生产成本。

在未来,超高速磨削技术有望得到更加广泛的应用。

五、案例分析1. XXX公司的构件加工中,采用超高速磨削技术,成功优化了加工效率,降低了产品成本,得到了客户的一致好评。

2. XX公司将超高速磨削技术应用于钢筋加工中,减少了加工时间,提高了钢筋的精度和尺寸的一致性,受到了建筑公司的赞扬。

3. XX公司采用超高速磨削技术加工门窗构件,成功提高了构件的表面精度和光洁度,降低了产品的废品率,提高了客户的满意度。

4. XX公司采用超高速磨削技术加工凸轮、传动齿轮等构件,减少了加工时间,提高了精度和表面光洁度,获得了广泛应用。

大尺寸硅片超精密磨削技术与装备

大尺寸硅片超精密磨削技术与装备

大尺寸硅片超精密磨削技术与装备
随着半导体行业的不断发展,对硅片的要求也越来越高。

大尺
寸硅片的超精密磨削技术与装备成为了半导体制造过程中的关键环节。

硅片是半导体制造的基础材料,其表面的平整度和精度直接影
响到芯片的性能和产能。

因此,超精密磨削技术与装备在半导体制
造中扮演着至关重要的角色。

超精密磨削技术是指在高速旋转的磨料轮和硅片之间通过高精
度的控制,实现对硅片表面进行微米甚至纳米级的磨削加工。

这种
技术要求磨削设备具备高速、高精度、高稳定性和高自动化等特点。

在大尺寸硅片的磨削加工中,传统的磨削设备已经无法满足对加工
精度和效率的要求,因此需要引入先进的超精密磨削技术与装备。

目前,国内外在大尺寸硅片超精密磨削技术与装备方面进行了
大量研究和开发。

例如,采用高速旋转的磨料轮和先进的控制系统,实现了对硅片表面的微米级甚至纳米级的磨削加工。

同时,还利用
先进的三维测量技术和自动化装备,实现了对硅片表面形貌和精度
的在线监测和控制,从而保证了加工质量和稳定性。

大尺寸硅片超精密磨削技术与装备的发展,不仅推动了半导体
制造技术的进步,也为半导体行业带来了更高的产能和更优质的产品。

随着半导体行业对硅片加工精度和效率要求的不断提高,大尺
寸硅片超精密磨削技术与装备必将在未来发挥着越来越重要的作用。

我们期待着这一领域的技术不断创新,为半导体行业的发展带来更
多的可能性和机遇。

超高速磨削技术特点

超高速磨削技术特点

超高速磨削技术特点
超高速磨削技术具有以下特点:
1.生产效率高:超高速磨削的切削速度极快,能够快速地去除材料,因此可以大幅提高生产效率。

2.加工精度高:超高速磨削的切削力小,可以减少工件的受力变形,有利于保证加工精度。

3.磨削温度低:超高速磨削的磨削速度高,产生的热量多被磨屑带走,因此可以降低磨削温度,防止工件受热变形。

4.难磨材料磨削性能改善:超高速磨削时变形区材料在近乎绝热剪切条件下完成切削,使难磨材料的磨削性能改善,可以实现对硬脆材料的延性域磨削。

5.延长砂轮使用寿命:超高速磨削的切削力小,砂轮磨损小,因此可以延长砂轮的使用寿命。

6.降低加工成本:超高速磨削可以提高生产效率,降低工件加工成本。

7.环保:超高速磨削的切削液使用量减少,有利于环保。

高速磨削方法简介.

高速磨削方法简介.

强力磨削的特点
(1)它可以代替一部分车削、铣削和刨削等; (2)强力磨削应用适当时,可以直接从毛坯磨成 成品,粗精加工一次完成; (3)加工效率成倍提高;
(4)可以减少加工设备,节省由于不同加工工序 所需要的装卸调整等辅助时间;
(5)它不受工件表面条件(如锈、硬点、断续表 面等)以及材料硬度,韧性的限制; (6)加工精度和表面粗糙度小。

三、砂带磨削

1.砂带磨削原理: 砂带磨削是以砂带 作为磨具并辅之以 接触轮(或压磨板)、 张紧轮、驱动轮等 磨头主体以及张紧 快换机构、调偏机 构、防(吸)尘装置 等功能部件共同完 成对工件的加工过 程。具体讲就是将 砂带套在驱动轮、 张紧轮的外表面上, 并使砂带张紧和高 速运行,根据工件形 状和加工要求以相 应接触和适当磨削 参数对工件进行磨 削或抛光,如下图所 示。(1为接触轮, 2为张紧轮,3为砂 带,4为工件)
国内磨削技术的发展情况

超高速磨削技术在国外发展十分迅速,在国内 也引起了高度重视。我国高速磨削起步较晚,自 1958 年,我国开始推广高速磨削技术。1977 年, 湖南大学在实验室成功地进行了100m/ s 和 120m/ s 高速磨削试验。湖南大学开始针对一台 250m/ s 超高速磨床主轴系统进行高速超高速研 究,并在国内首次进行了磁浮轴承设计[14]。
20 世纪90年代至现在,东北大学一直在开展超高 速磨削技术的研究,并首先研制成功了我国第一 台圆周速度200m/s、额定功率55kW 的超高速试 验磨床,最高速度达250m/s[1]。
一、高速磨削
磨削原理
关于高速磨削机理的研究,研究者一般是用最 大切屑(磨屑)厚度dmax来解释高速磨削中诸多磨 削现象:在保持其他参数不变,仅增大磨削速度vs 情况下,单位时间内磨削区的磨粒数增加,每个磨 粒的切下的磨屑厚度变小,导致每颗磨粒承受的磨 削力大大变小,dmax减小,每个磨削刃上的作用切 削力减小,dmax减小也能改善表面粗糙度Ra和减 缓切削力对砂轮磨损的影响,另外,总磨削力随sv 增大而减小;在保持dmax不变,即增大vs同时成比 例地提高工件进给速度vw,或者加大磨削深度,每 个磨削刃上的作用切削力及磨削力并没有改变,但 随vw提高而成比例地提高材料磨除率

磨削的加工范围

磨削的加工范围

磨削的加工范围磨削是一种常见的加工方法,广泛应用于各种材料的加工工艺中。

磨削的加工范围非常广泛,可以用于金属、非金属、硬质合金等各种材料的加工,可以实现高精度、高表面质量的加工要求。

本文将从不同角度探讨磨削的加工范围,以及磨削在工业生产中的重要性。

磨削的加工范围涵盖了各种不同形状和尺寸的工件。

无论是平面、曲面、内孔、外圆、内螺纹等复杂形状的工件,都可以通过磨削加工来实现精密加工。

磨削可以用于对工件表面进行粗糙度、平整度、圆度、圆柱度等各项指标的加工和控制,从而满足不同工件的加工要求。

磨削的加工范围还包括了各种不同硬度和性质的材料。

金属材料如钢铁、铝合金等,非金属材料如陶瓷、玻璃、塑料等,硬质合金、陶瓷等超硬材料,都可以通过磨削加工来实现高精度加工。

磨削可以有效地去除材料表面的氧化层、氧化皮、毛刺等缺陷,提高工件的表面质量和精度。

磨削的加工范围还包括了不同的加工精度要求。

从数微米到数十微米的加工精度要求,都可以通过磨削来实现。

磨削可以实现对工件表面粗糙度的控制,可以实现高精度的尺寸、形状和位置公差要求,可以实现对工件表面质量的要求,如镜面光洁度、光泽度等。

磨削的加工范围还包括了不同的加工环境和条件。

无论是手动磨削、半自动磨削,还是全自动磨削;无论是常规磨削、高速磨削,还是超精密磨削,都可以根据不同的加工要求和条件来选择适合的磨削方法和设备。

磨削可以在常温、高温、低温、真空、无尘等不同环境条件下进行加工,可以适应不同的工件材料和加工要求。

总的来说,磨削的加工范围非常广泛,可以满足各种不同形状、尺寸、硬度、性质、精度和环境条件的工件加工要求。

磨削作为一种重要的加工方法,在工业生产中发挥着不可替代的作用。

通过不断改进磨削技术和设备,提高磨削效率和质量,可以进一步拓展磨削的加工范围,满足不断增长的加工需求。

希望本文对读者对磨削的加工范围有所启发,对磨削技术的发展和应用有所促进。

机械制造的新工艺和新方法

机械制造的新工艺和新方法

机械制造与自动化的新工艺和新方法随着机械工业的发展和科学技术的进步,机械制造工艺的内涵和外延不断发生变化常规工艺不断优化并普及,原来十分严格的工艺界限和分工,如下料和加工、毛坯制造和零件加工,粗加工和精加工、冷加工和热加工等在界限上逐步趋于淡化,在功能上趋于交叉,各种先进加工方法不断出现和发展。

以下为一些机械制造的新工艺和新方法:1、超高速加工技术超高速加工技术是指采用超硬材料刀具磨具和高速运动的自动化制造设备,以极大的切削速度来达到提高材料切除率、加工精度和加工质量的现代加工技术。

超高速加工能使被加工金属材料在切除过程中的剪切滑移速度达到或超过某个极限值,使切削加工过程所消耗的能量、切削力、加工表面温度、刀具磨具磨损、加工表面质量、加工效率等明显优于常规切削速度下的指标,它是提高切削和磨削效果、提高加工质量、加工精度和降低加工成本的重要手段。

与常规切削加工相比,超高速加工有以下优点:(1)随着进给速度的提高,单位时间内材料的切除率可以增加3—6倍,可以大幅度缩短零件加工的切削工时,显著提高生产率.(2)切削力可以降低30%以上。

(3)切削过程极其迅速,95%以上的切削热被切屑带走,来不及传给工件,故特别适合加工容易热变形的零件.(4)机床作高速运转,振动频率特别高,工作平稳振动小,因而能加工非常精密、非常光洁的零件。

2、超精密加工技术超精密加工是指加工精度和表面质量达到极高程度的精密加工工艺。

目前超精密加工的主要手段有:金刚石刀具超精切削,金刚石砂轮和CBN砂轮超精密磨削、超精密研磨和抛光、精密特种加工和复合加工.金刚石砂轮超精密磨削是当前超精密加工的重要研究方向之一,其主要加工方式有外圆磨、无心磨、、沟槽磨和切割等,被加工材料有陶瓷、半导体等难加工材料,其关键技术包括金刚石砂轮的修整、微粉金刚石砂轮超精密磨削等.金刚石砂轮的修整包括整形和修锐两部分,对于密实型无气孔的金刚石砂轮,如金属结合剂金刚石砂轮,一般在整形后还需要修锐;有气孔型陶瓷结合剂金刚石砂轮在整形后即可使用。

磨削加工技术的发展趋势

磨削加工技术的发展趋势
s l s a删 综 R

磨削 加 工 技术 的发 展 趋 势
赵 恒华① 宋 涛① 蔡光起②
( ①辽宁石油化工大学机械工程学院 , 辽宁 抚顺 130 ; 10 1 ②东北大学机械工程与 自 动化学院, 辽宁 沈阳 100 ) 104
摘 要: 综述 了磨 削加 工的发展 趋势 , 要包 括高速磨 削 、 主 超高 速磨 削 、 密和超 精密 磨削 、 精 缓进 给磨 削 、 效 高 深切磨 削 、 砂带磨 削及 绿色磨 削 技术 。分析 了超 高速磨 削加 工 的机理及 超 高速磨 削的优 越性 。 阐述 了高 速超 高速磨 削加 工技术 的发 展前 景。 关 键词 : 磨削 精 密磨 削 高效 磨 削 超 高速磨 削 中图分 类号 :H1 1 T 6 文献 标识 码 : A
( col f ehn a E g er g L oi h u n e i , uhn130 , H @Sho o M cai l ni en , i n gSi aU i rt Fsu 10 1 C N; c n i a n h v sy @Sho o M cai l ni en col f ehn a E g er g&A t ao , ohatnU i rt, hnag 04 C N) c n i u m tn N r es r n e i S eyn 1 0 ,H o i t e v sy 10
Ab t a t n t i p p r h e e o me t r n so r d n r c s s s mma z d,mo t cu i g h g - p e s r c :I h s a e ,t e d v lp n e d f i i g p o e swa u t g n i re sl i l dn ih s e d y n

高速高效磨削技术

高速高效磨削技术

砂轮。新技术包括了砂轮设计、截面
形状的优化、粘结剂的结合强度及其 适用性、砂轮基体的材料。
图 高速磨削用砂轮
5 砂轮在线修整技术
在磨削过程中,砂轮由于磨钝和磨损,需要进行及时修整, 特别是对超细磨料砂轮而言,更需频繁修整。普通砂轮修整比 较容易;人造金刚石砂轮、CBN砂轮的修整、超硬磨料砂轮的 修圆及磨料开刃重要的研究课题。
4
3 高速、高精度主轴单元制造技术 主轴单元包括主轴动力源、主轴、轴承和机架几个部分,它 影响着加工系统的精度、稳定性及应用范围,其动力学性能及 稳定性对高速高效磨削、精密超精密磨削起着关键的作用。
图 高速磨削主轴
图 液体动静压轴承
4 砂轮制造及其新技术
CBN砂轮和人造金刚石砂轮的应
用越来越广泛,而砂轮的许用线速度 也要求较高,一般在80m/s以上。单 层电镀CBN砂轮的线速度可达250m/s, 发展超高速磨削也需要150m/s以上的
第五章
高速高效磨削技术
1、高速磨削的定义
高速磨削是通过提高砂轮线速度来达到提高磨削去除率和磨削质量 的工艺方法。 普通磨削: 高速磨削: V< 45m/s 45m/s<V< 150m/s
超高速磨削: V> 150m/s
高速高效磨削用的磨床具有很高的主
轴转速和功率、高度自动化和牢靠的磨削 进程,还具有高精度、高阻尼、高抗振性
6其他高效磨削工艺:
快速短行程磨削、大气孔宽砂轮磨削工艺、多砂轮磨削 工艺、恒压力(定力)磨削工艺、冷风磨削工艺、单点磨削工艺、 高速日负荷磨削工艺在此不作一一介绍。 快速短行程磨削 恒压力磨削 多砂轮磨削工艺

① ② ③
总结高速磨削有如下优点:
磨粒的未变形切削焊度减小,磨削力下降。 砂轮磨损减少,提高砂轮寿命。 在磨粒最大未变形切削厚度不变条件下,可加 大磨削深度或工件速度,提高磨削效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超高速主轴和轴承
超高速轴承技术: 主轴系统核心是高速精密轴承,高速磨床多采
用滚动轴承; 滚动轴承提高极限转速的措施: ➢ 1)提高精度;
2)合理选择材料 ➢ 陶瓷轴承: ✓ 优点:重量轻,热膨胀系数小; ✓ 硬度高; ✓ 耐高温,高温尺寸稳定性好; ✓ 耐腐蚀,弹性模量比钢高; ✓ 非磁性等; ✓ 寿命提高3-6倍,极限转速提高60%,温升降低35%-60%; ✓ 缺点:制造难度大,成本高,对拉伸应力和缺口应力敏感;
3.6 抛光加工拉术
3.6.1 抛光加工的定义 3.6.2 抛光加工的机理 3.6.3 抛光加工的方法——机械抛光、化学抛光、 化学机械抛光、液体抛光、电解抛光和磁流变抛光 3.6.4 抛光加工的特点 3.6.5 抛光加工工艺及应用
3.7 超声加工技术
3.7.1珩磨加工技术 珩磨加工原理、特点及其要素
3.4.1 定义 3.4.2 超精密磨削机理 3.4.3 超精密磨削工艺 3.4.4 超精密磨削砂轮及其修整 3.4.5 超精密磨削对机床和环境的要求 3.4.6 影响超精密磨削的主要因素 3.4.7 在线电解修整磨削
3.5 研磨加工技术
3.5.1 定义 3.5.2 研磨加工机理 3.5.3 研磨加工分类 3.5.4 研磨加工特点 3.5.5 研磨工艺及应用 3.5.6 研磨方法应用实例
3 超高速磨削、超精密磨削、研磨 、抛光、珩磨、超声波磨削技术
3.2.1 超高速磨削的发展 3.2.2 超高速磨削的相关技术 3.2.3 高速磨削加工工艺 3.2.4 高速磨削的应用 3.2.5 高速磨削发展前景
3.3 缓进给磨削
1、定义: 2、缓进给磨削工艺 3、特点: 4、应用:
3.4 超精密磨削
磨的概念;1983,居林自动化公司制造了第一台高效深磨快进 磨床, Vs=100-180m/s,高压油冷却,实现以磨代铣,一次成 形;1984,AES奖,1988,发表文章,标志新纪元开始;
§3.2.2 超高速磨削的相关技术
超高速磨削的砂轮: 结构和制造:要求:抗冲击强度高,耐热性好,
微破碎性好,杂质含量低; 磨料:Al2O3,SiC,CBN和金刚石; 结合剂:树脂,陶瓷,金属;
速度:树脂,陶瓷+ Al2O3,SiC,CBN 125m/s; 极硬的CBN和金刚石 150m/s;单层电镀CBN 250m/s;
基体:铝基体,碳纤维塑料(CFRP),CFRP+M 复合基体;
§3.2.2 超高速磨削的相关技术
单层超硬磨料砂轮: 单层高温钎焊超硬磨料砂轮:化学冶金结
合界面从根本上改变磨粒、结合剂、基体 的结合强度;300-500m/s,锋利,容屑空 间大,不易堵塞,磨削; ➢ 空心球; ➢ 拱形球; 德国FAG公司研制了HS70和HS719系列新型高速
主轴轴承,减少了球直径,增加了球数,提高了 轴承结构的刚性;
超高速主轴和轴承
陶瓷轴承:日本东北大学研制CNC超高速平 面磨床使用陶瓷轴承,转速达30000rpm;
气浮轴承:日本东芝:ASV40加工中心, 30000rpm;
3.7.2 珩磨加工技术——方法及应用 超声波振动珩磨 平顶珩磨 液体珩磨
3.7.3超声磨削加工技术 机理 特点 应用
3.2.1 超高速磨削技术现状与发展
高效深磨 定义:磨削深度很大,磨削速度、进给速度不必很小,达到很
高的磨削效率。 高效深磨:1979,P.G.Wemer,结合缓进给磨削,提出高效深
磨削液的选择与使用
磨削液:油基磨削液润滑作用好,可防止CBN磨 耗,抑制CBN水解,提高砂轮耐用度,降低磨削 功率,提高表面完整性;必须有油气分离装置; 发展趋势是添加极压添加剂的水基磨削液:替代 油基;
磨削液供液压力: 气流:圆周环流,浸透流,内部流,径向流; 砂轮转速越高,空气层越厚,使磨削液难以进入磨削区; 普通供液方法与干磨无异; 提高压力到几至几十兆帕,使磨削液冲破强力气流进入磨
超高速主轴和轴承
超高速电主轴技术: 超高速磨削主要采用大功率超高速电主轴; 德国:500m/s,25KW,30000-40000r/min; 日本:研制新型超高速磨头,250000r/min; 大功率高速电主轴优点:惯性扭矩小,振动噪声小,高
速性能好,可缩短加减速时间; 技术难点:发热散热,价格成本;
§3.2.2 超高速磨削的相关技术
欧洲:单层电镀CBN砂轮开槽、成形磨削;日本:金属、陶瓷 薄片砂轮;
美国:金属单层砂轮(MSL):CBN+铜焊+金属基体,磨粒突出比 大,容屑空间大,结合剂抗拉强度高,磨削力低,提高了磨 削效率极限,制造成本极高;
砂轮结构优化:根据机床性能、使用要求、加 工对象进行设计优化
3.2.3 高速磨削加工工艺
磨削用量选择
削区,过高压力会使磨削液发热并易使空气渗入,飞溅雾 化加剧;
磨削液的选择与使用
➢ 砂轮结构:内冷却砂轮 ➢ 喷嘴:锯齿形楔形结构清洗效果好,冷却不理想
;直角喷嘴设计简单,效果好,应用广泛; ➢ 供液方法:高压形成油雾,切削磨削工作区分离
封闭,并采用离心和静电方法进行油气分离; ➢ 低温磨削:N2,CO2
我国:至今没有专用砂轮,研究处于起步阶段;
超高速磨削的砂轮
砂轮修整: ➢ 一般不需修整,特殊:粗磨粒、低浓度电镀杯形修整
器微米级修整; ➢ 金属结合剂砂轮一般用电解修锐; ➢ 陶瓷结合剂砂轮修整:日本,丰田工机:GZ50超高速
外圆磨床:金刚石滚轮以25000r/min的转速,以 0.1μm的进给精度进行修整;
磁力轴承:功耗小,维护成本低,不需复杂密封, 但成本太高,控制复杂,日本Koyoseikok公司、 德国Kapp公司;
磁悬浮轴承:德国Kapp公司砂轮主轴,60000rpm, GMN公司主轴单元,100000rpm;
液体动静压混合轴承
进给系统
要求有很高的进给速度和运动加速度,有些机床 进给速度可达60-200m/min,加速度可达10100m/s2,定位精度达0.5-0.05 μm。
相关文档
最新文档