磨削技术及精密、超精密加工
精密和超精密加工技术

电子材料,磁性材料的镜面磨削:大尺寸硅片;铁金氧磁头 光学材料的镜面磨削:记录用光学材料,光学镜片研磨抛光前 陶瓷材料的镜面磨削 高精度钢铁材料及复合材料,硬质合金
4、脆性材料精密磨削
尖锐压头下的材料变形过程
(a) 初始加载: 接触区产生—永久塑性变形区,没有任何 裂纹破坏。变形区尺寸随载荷增加而变大。 (b) 临界区: 载荷增加到某一数值时,在压头正下方应力 集中处产生中介裂纹(M edian Crack)。 (c) 裂纹增长区: 载荷增加, 中介裂纹也随之增长。 (d) 初始卸载阶段: 中介裂纹开始闭合,但不愈合。 (e) 侧向裂纹产生: 进一步卸载,由于接触区弹塑性应力 不匹配,产生一个拉应力叠加在应力场中,产生系列向侧 边扩展的横向裂纹(L ateral Crack)。 (f) 完全卸载: 侧向裂纹继续扩展,若裂纹延伸到表面则 形成破坏的碎屑。
精密、超精密磨削、镜面磨削形成的零散刻痕
1、精密和超精密磨削加工基础
精密和超精密磨削分类
将磨料或微粉与结合剂粘合在一起, 形成一定的形状并具有一定强度,再 采用烧结、粘接、涂敷等方法形成砂 轮、砂条、油石、砂带等磨具。
精密和超精 密磨料加工 固结磨 料加工
磨料或微粉不是固结在一起, 而是成游离状态。
3、在线电解磨削技术
ELID磨削的特点
磨削过程具有良好的稳定性; ELID修整法使金刚石砂轮不会过快的磨耗,提高了贵重磨料的利用率; ELID修整法使磨削过程具有良好的可控性;
采用ELID磨削法,容易实现镜面磨削,并可大幅度减少超硬材料被磨零件的 残留裂纹。
3、在线电解磨削技术
1、精密和超精密磨削加工基础
切削和磨削的比较
常用精密加工和超精密加工方法

常用精密加工和超精密加工方法(1)钻削加工:是将工件上的金属材料在刀具作用下进行来回转动,把车削面旋转出来,是加工圆柱形、锥形、凹形孔和凹陷、螺纹等零部件表面等的单一机床加工方法。
(2)车削加工:是指加工零件时借助车刀切削,用于加工外螺纹、花键、形状方程式曲面及其他复杂曲面等外形精密零部件。
(3)铣削加工:是指利用滚筒式或刀片式的刀具的移动和旋转,把工件表面形成各种曲面的一种机床加工方法,主要用于加工工件体上的平面、槽、沟等工件表面。
(4)磨削加工:是指采用研磨轮加工工件表面,采用悬磨或抛光技术将其加工精度提高,使其表面光洁度、粗糙程度达到要求的一种机床加工方法。
(5)拉铆加工:是指拉铆头将两个工件紧固在一起,从而使两个工件处于相对固定的位置,而不受旋转影响的一种加工方法,是将机械元件拉铆加工的技术。
(1)水切削加工:是将工件表面由削刀削成薄片,然后由水冲刷把薄片去除,达到精密加工表面粗糙度和平整度要求的一种加工方法。
(2)气刀加工:是将刀具用空气喷射动力使得刀具旋转,切削工件的加工方法,可以实现高速、大功率的切削,适用于切削金属界面、铸件、钢材等表面加工。
(3)超声波加工:是指使用超声波让工件表面产生振动,来切削、拉分和焊接工件表面等加工方法,可以达到更高的精度和更小的表面粗糙度,并且可以实现连续加工。
(4)电火花加工:是一种快速高效的切削方法,主要是通过产生火花后,再通过冲击脉冲和热能来融化微小部份表面材料,从而实现准确切削的一种加工方法。
(5)激光加工:是通过产生强大的激光能,对工件表面进行破碎溶解而实现加工的一种加工方法,可以获得极高的切削精度、平整度和极好的加工质量,和小尺寸孔、槽加工。
第七讲精密加工和超精密加工

工艺过程的优化
五、游离磨料的高效加工
(一)超声研磨工艺
• 超声研磨是一种采用游离磨料(研磨膏或研磨液)进 行切削的加工方法。磨料通过研磨工具的振动产生切 削功能,从而把研磨头(工具)的形状传递到工件 上。 • 超声研磨正是利用脆性材料的这一特点。有目的有控 制地促进材料表层的断裂和切屑的形成。
二、金刚石车削技术及其应用
1. 金刚石车床的技术关键
• 除了必须满足很高的运动平稳性外,还必须具有很高 的定位精度和重复精度。镜面铣削平面时,对主轴只 需很高的轴向运动精度,而对径向运动精度要求较 低。金刚石车床则须兼备很高的轴向和径向运动精 度,才能减少对工件的形状精度和表面粗糙度的影 响。 • 目前市场上提供的金刚石车床的主轴大多采用气体静 压轴承,轴向和径向的运动误差在50nm以下,个别主 轴的运动误差已低于25nm。金刚石车床的滑台在90年 代以前绝大部分采用气体静压支承,荷兰的Hembrug 公司则采用液体静压支承。进入90年代以来,美国的 Pneumo公司(现已与Precitech公司合并)的主要产品 Nanoform600和250也采用了具有高刚性、高阻尼和高
(二)超声研磨加工玻璃
• 在玻璃上钻孔时,超声加工已经可以与金刚石钻削竞 争,优化后的超声钻孔已经达到金刚石钻削时的材料 切除速度。根据孔径和孔深的不同,超声钻孔时的进 钻速度可也达到20~40mm/min。 • 用金刚石钻削玻璃上的孔时,需要从两面进刀,以免 钻透时出现玻璃崩裂,采用超声钻孔时,则可从一侧 直接钻通,工具出口时不会出现玻璃的崩裂。从而可 以省去金刚石钻孔时的校正和倒角等加工工序。 • 在玻璃上钻小孔时,超声研磨的作用变得更为重要。 普通的金刚石钻孔,最小孔径大约在2mm左右。超声 钻孔时的最小孔径几乎没有任何限制,目前在实验室 中进行的实验表明,用超声研磨可在3mm厚的玻璃上 钻出直径为0.5~1.0mm的小孔
精密和超精密加工技术

1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。
而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。
2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。
3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。
4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。
5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。
6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。
7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:1)超精密切削、磨削的基本理论和工艺。
2)超精密设备的关键技术、精度、动特性和热稳定性。
3)超精密加工的精度检测、在线检测和误差补偿。
4)超精密加工的环境条件。
5)超精密加工的材料。
8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。
9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。
10、为实现超精密切削,刀具应具有如下性能:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。
2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。
3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。
4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。
11、SPDT——金刚石刀具切削和超精密切削。
12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。
《精密和超精密加工技术(第3版)》第3章精密磨削和超精密磨削

2018/3/11
第1节 概述
二、精密和超精密砂轮磨料磨具
磨料及其选择
超硬磨料制作的磨具在以下几方面能够满足精密加工和超精密加工 的要求,因此使用广泛。
1)磨具在形状和尺寸上易于保持,使用寿命高,磨削精度高。
2)磨料本身磨损少,可较长时间保持切削性,修整次数少,易于保持精度。
3)磨削时,一般工件温度较低,因此可以减小内应力、裂纹和烧伤等缺
磨具的形状和尺寸及其基体材料
根据机床规格和加工情况选择磨具的 形状和尺寸。 基体材料与结合剂有关。
2018/3/11
第1节 概述
三、精密和超精密涂覆磨具
涂覆磨具分类
根据涂覆磨具的形状、基底材料和工作条件与用途等,分类见下表
涂 覆 磨 具
工 作 条 件
基 底 材 料
形 状
耐 水 (N)
2018/3/11
精密砂带磨削:砂带粒度F230~F320,加
工精度1μm,Ra0.025; 超精密砂带磨削:砂带粒度W28~W3,加工精 度0.1μm,Ra0.025~0.008μm。
2018/3/11
第1节 概述
一、精密和超精密加工分类
游离磨料加工
磨料或微粉不是固结在一起, 而是成游离状态。 传统方法:研磨和抛光 新方法:磁性研磨、弹性发射 加工、液体动力抛光、液中研 抛、磁流体抛光、挤压研抛、 喷射加工等。
第3章 精密磨削和超精密磨削 3.1 概述
3.2 精密磨削 3.3 超硬磨料砂轮磨削
3.4 超精密磨削
3.5 精密和超精密砂带磨削
2018/3/11
第1节 概述
精密和超精密磨料加工是利用细粒度的磨粒和 微粉对黑色金属、硬脆材料等进行加工,得到高 加工精度和低表面粗糙度值。对于铜、铝及其 合金等软金属,用金刚石刀具进行超精密车削是 十分有效的,而对于黑色金属、硬脆材料等,用 精密和超精密磨料加工在当前是最主要的精密 加工手段。
第5章 精密、超精密加工技术

• 和表面粗糙度的检验,而且要测量加工设备 的精度和基础零部件的精度。 • 高精度的尺寸和几何形状可采用分辨率为 0.1~0.01µ m,的电子测微计、分辨率为 0.01~0.001µ m的电感测微仪或电容测微仪来 测量。圆度还可以用精度为0.01µ m的圆度仪 来测量。
加工设备必须具有高精度的主轴系统、进给 系统(包括微位移装臵),现在的超精密车 床,其主轴回转精度可达0.02µ m,导轨直线 度可达1000000:0.025,定位精度可达 0.013µ m,进给分辨率可达0.005µ m。其回转 零件应进行精密的动平衡。
• 2)高刚度
• 包括静刚度和动刚度,不仅要注意零件本身
• 精密和超精密磨料加工是利用细粒度的磨粒 和微粉主要对黑色金属、硬脆材料等进行加 工,按具体地加工方法分为精密和超精密磨 削,加工精度可达5~0.5µ m,表面粗糙度 Ra0.05~0.008µ m);精密和超精密研磨(加 工精度可达10~0.1µ m,表面粗糙度 Ra0.01~0.008µ m);
合金等刀具进行精密和超精密切削,这些刀
具材料的切削效果不如金刚石,但能加工黑
色金属。对黑色金属等硬脆材料的精密加工
和超精密加工,一般多采用磨削、研磨、抛
光等方法。
• 精密和超精密磨削时,通常采用粒度240#~W7
或更细的白刚玉或铬刚玉磨料和树脂结合剂
制成的紧密组织砂轮,经金刚石精细修整后
• 进行加工。
• 出现了精密电火花加工、精密电解加工、精
密超声波加工、分子束加工、电子束加工、
离子束加工、原子束加工、激光加工、微波
加工、等离子体加工、光刻、电铸及变形加
工等。
• 4.复合加工
• 复合加工是将几种加工方法叠合在一起,发 挥各种加工方法的长处,达到高质量(加工
精密磨削和超精密磨削概述

精密磨削和超精密磨削概述精密磨削和超精密磨削是现代机械加工中的高级技术,主要用于高精度、高效率的零件加工。
以下是关于这两种磨削技术的概述:1. 精密磨削:精密磨削是一种采用高精度磨具和磨削液,在精确控制磨削条件下进行的磨削工艺。
其目的是在保持高效率的同时,实现高精度、低表面粗糙度的磨削效果。
精密磨削的主要特点包括:* 高精度:磨削后的零件尺寸精度和表面粗糙度要求较高,通常达到微米甚至纳米级别。
* 高效率:精密磨削可实现高速磨削和高进给速度,提高生产效率,降低加工成本。
* 低损伤:磨具材质和磨削工艺能够减小对工件表面的损伤,延长零件使用寿命。
* 环保:精密磨削通常采用干式磨削和绿色制造技术,减少加工过程中的环境污染。
精密磨削广泛应用于航空航天、汽车、电子、光学等领域,特别适用于难加工材料和高精度零件的加工。
2. 超精密磨削:超精密磨削是一种在极高的工艺精度和极低的表面粗糙度下进行的磨削工艺。
它通过采用先进的磨具制造技术、高精度磨床和环境控制技术,实现微米甚至亚微米级别的加工精度和纳米级别的表面粗糙度。
超精密磨削的主要特点包括:* 高精度:超精密磨削的加工精度可达到微米甚至亚微米级别,满足高精度零件的加工要求。
* 超低表面粗糙度:超精密磨削能够实现纳米级别的表面粗糙度,提高零件的表面完整性,延长零件使用寿命。
* 高材料去除率:超精密磨削可实现高速磨削和高进给速度,提高材料去除率,缩短加工时间。
* 高度集成:超精密磨削技术通常与其他先进制造技术相结合,实现零件的高效制造和整体集成。
超精密磨削技术在航空航天、汽车制造、微电子、光学等领域具有广泛应用前景。
它特别适用于高效制造高精度零件,如精密轴承、齿轮、高速电机等。
总之,精密磨削和超精密磨削是现代机械加工中的重要技术,能够实现高精度、高效率、低损伤的零件制造。
随着制造业的不断发展,这些技术将在未来发挥更加重要的作用,为先进制造和高精度零件的生产提供有力支持。
ELID磨削_硬脆材料精密和超精密加工的新技术

EL ID磨削硬脆材料精密和超精密加工的新技术张飞虎 朱 波 栾殿荣 袁哲俊( 哈尔滨工业大学机械工程系 哈尔滨 150001 )文 摘 金属基超硬磨料砂轮在线电解修整(E lectrolytic In2process Dressing,简称E L ID)磨削技术是国外近年发展起来的一种硬脆材料精密和超精密加工新技术。
本文介绍了E L ID磨削技术的基本原理、工艺特点和国内外研究应用情况。
应用E L ID磨削技术,可对工程陶瓷等硬脆材料实现高效率磨削和精密镜面磨削。
关键词 精密和超精密加工,磨削,砂轮,修整EL ID Grinding A New Technology for Precision andUltraprecision Machining of Hard and Brittle MaterialsZhang Feihu Zhu Bo Luan Dianrong Yuan Zhejun( Department of Mechanical Engineering,Harbin Institute of Technology Harbin 150001 )Abstract EL ID grinding which applies metal bonded grinding wheel with superhard abrasives and electrolytic in2process dressing is a newly developed technology for precision and ultraprecision machining of hard and brittle ma2 terials.In this paper the basic principle,characteristics,research and application of EL ID grinding are introduced.By EL ID,efficient grinding and mirror surface grinding of ceramics and other hard and brittle materials can be realized.K ey w ords Precision and ultraprecision machining,Grinding,Grinding wheel,Dressing1 引言金刚石、CBN超硬磨料具有硬度高、耐磨性好等优良的切削性能,自美国GE公司1957年和1969年批量生产人造金刚石、CBN磨料以来,除少数做成刀具外,大部分都用于制造磨具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州工业安全职业学院毕业论文题目:磨削技术及精密、超精密加工姓名:赵会海系别:机电工程系专业:机电一体化年级:08 机电二班指导教师:年月日毕业论文成绩评定表学生姓名赵会海学生所在系机电工程系专业班级机电技术二班毕业论文课题名称磨削技术及精密超精密加工指导教师评语:成绩:指导教师签名:年月日系学术委员会意见:签名:年月日目录前言 (1)第一章磨削理论的研究 (2)第一节磨削机理 (2)第二节表面完整性 (2)第二章砂带磨削技术 (5)第一节沙袋磨削简介 (5)第二节磨削工艺的进展 (5)第三节精密及超精密磨削 (6)第四节砂带磨削趋势 (7)第三章精密与超精密磨削技术 (9)第一节塑性磨削 (9)第二节镜面磨削 (10)第四章结论及展望 (14)参考文献 ............................................. 错误!未定义书签。
致谢 (16)内容摘要摘要:磨削在现代制造业中占有重要地位,技术发展迅速,国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微米级以下切深磨削的研究,以获得亚微米级的尺寸精度。
当前磨削除向超精密、高效率和超硬磨料方向发展外,自动化也是磨削技术发展的重要方向之一。
本文就精密和超精密磨削,砂带磨削,磨削自动化进行了研究与论述。
关键词:磨削技术, 砂带磨削, 磨削自动化Abstract:The grinding holds the important status in the modern manufacturing industry, the technological development is rapid, domestic and foreign all uses the ultra microfinishing, the precise conditioning, the tiny grinding compound grinding tool carries on the submicron level to undercut the deep grinding the research, obtains the submicron level the size precision.Outside the current grinding except to ultra precise, the high efficiency and the ultra hard grinding compound direction develops, the automation also is one of grinding technological development important directions.This article on precise and the ultra microfinishing, the belt grinding, the grinding automation has conducted the research and the elaboration.Key word:ELID grinding technology, belt grinding, grinding automation.前言磨削加工是机械制造中重要的加工工艺。
随着机械产品的精度、可靠性及寿命的要求不断提高,高硬度、高强度、高耐磨性、高功能性的新型材料应用增多,给磨削加工提出了许多新问题,如材料的磨削加工性及表面完整性、超精密磨削、高效磨削和磨削自动化等问题。
所以,当前磨削技术发展的趋势是:发展超硬磨料磨具,研究精密及超精密磨削、高速高效磨削机理并开发其新的磨削工艺技术,研制高精度、高刚性的自动化磨床。
应该注意的是,近几年来国外磨削技术发展迅速,例如对硬脆材料磨削机理及工艺的研究,利用干磨削热量同时进行工件热处理,以及不使用磨削液的无污染磨削等方面,与之相比我国均有相当差距。
为此,我们一方面要把握国际科学研究的最新动态,积极开展引进国外先进磨削技术的研究工作;同时在国内应结合生产,开展符合国情的实用性研究,普及先进的磨削技术,推动我国的机械制造业的发展。
第一章磨削理论的研究磨削机理(如磨削力、磨削功率、磨削热及磨削温度的分布及磨削区接触弧长、磨粒切削机理、切削形成等),不同工件材料磨削工艺条件的优化,磨削表面完整性的影响因素和条件,磨削工艺过程的监控与检测技术等。
第一节磨削机理过去对普通磨削的机理已经开展了广泛而深入的研究。
如对磨削热,近年来国内外学者先后建立了多种热模型进行研究,包括Lavine的磨粒传热模型、Morgan的改进圆锥磨粒模型、C.Guo的砂轮一磨削液复合体模型、高航教授建立的断续磨削热源模型、Rowe建立的简化传热模型等。
随后,C.Guo综合了前人的研究基础,建立了单磨粒热模型,利用移动热源理论和温度匹配法 ( 匹配磨粒一工件接触面的最高温度同冷却液一工件接触面的最高温度) 计算得到了磨削的能量分布。
再譬如对磨削区接触弧长的研究,早期提出的是利用几何计算法推出几何接触弧长度。
随后,E.Salje 提出了最大砂轮与工件最大接触面积的概念;我国湖南大学周志雄教授也建立了砂轮与工件的啮合模型; 1 9 9 3年 W.B.Rowe建立了砂轮与工件的接触模型来研究磨削接触弧长。
目前,此问题也处于进一步研究之中。
而对于精密及超精密磨削、高速高效磨削方面,虽然国内外针对不同的工程材料 ( 如陶瓷和玻璃) 都开展了一些理论研究,但是还不全面,还没有形成完整的理论体系。
第二节表面完整性一般来说,磨削表面完整性的研究包括:磨削表面的波纹、振纹、残余应力、加工硬化层、磨削烧伤及裂纹等。
提高表面完整性需要尽量减低磨削区温度,采用合理的磨削条件。
当前,研究表明使用 C B N砂轮和高效深切磨削技术能有效控制磨削件的表面完整性。
Guoxian xiao 在研究磨削球墨铸铁的残余应力时,建立了一种简单两栅结构的模型,应用 X射线衍射法对残余应力进行测量。
对于磨削残余应力的检测,目前的方法主要有:X射线衍射法,巴克豪森噪声检测和脆化检测法。
也有学者研究结合 x射线衍射和中子衍射对残余应力进行测量,该方法在对检测航天部件工作状态时的残余应力极为有效。
随着加工过程自动化的不断升温,为顺应市场不断变化着的需求,磨床制造企业开始将关注焦点从产量、品种转向磨床制造技术与自动化加工的融合,以及如何采用数字化手段进一步提高磨床的精度。
一般来说,磨削加工是机械加工中保证最终工艺尺寸和精度的精密加工,这就要求磨床具有很高的制造和装配精度。
但现代制造业对磨床的要求还不仅限于此,还要求磨床有很高的自动化程度,但是如果有人问磨床具备什么样的功能才能称得上是自动化的磨床,因为磨削工艺千差万别,所以不能一概而论。
目前自动化无非分为四种:首先,自动化以达到人工(或者说非熟练技工)不能达到的精度;其次,自动化以达到人工不能达到的产品精度一致性;再其次,自动化以达到人工所难以达到的效率;最后,自动化以缩短人工所带来的设置、调整和装卡的时间。
但在追求自动化的过程中,首先应该清楚的一点是,实现自动化要达到的目的是什么?答案无非是在保证质量的同时,最大化地降低生产成本。
这主要应考虑两个因素,一是机床本身,二是加工工艺。
自动化的实现程度对机床本身的要求是非常高的,不是所有的设备都具有这些功能。
机床需要具有一个模块化的设计,可以满足不同用户的需求,来进行柔性化的加工。
除此之外,机床还需要具有非常高的运算速度,以及非常广泛的接口以增强与自动化系统之间的匹配。
另外,加工工艺对自动化系统来说也同样重要。
自动化要实现的是一种无人化的操作,从送料到加工完成,其间的各个步骤都需要借助人工去实时检测。
如果没有达到预期目标,如何干预机床做出调整呢?一般磨削工艺分为磨前、磨中和磨后,目的就是能够进行稳定、可靠的生产,任何一个环节出现问题,都不能实现机床自动化的加工。
CNC是用来磨削冲头的。
由机床本身和自动上下料系统组成,可进行无人化操作。
它的高自动化体现在几个方面:全自动无人化操作;自动上下料系统,机器人自动存放工件的仓库一次可存放一个星期的工件;自动测量系统,工件在磨削前后可进行测量;高精度,高效率,低损耗的伺服电机驱动的自动修整系统,具有自动补偿功能。
在砂带磨削装备的柔性化及自动化方面,要求机床控制系统和数字伺服驱动系统的控制精度,动态响应特性都很高,因此加强对高精度数控系统和伺服驱动系统的研发,通过对磨削加工过程自动实时监控系统的研究,解决磨削过程中信号识别、信息采集、数据处理、反馈控制等技术,从而实现高效、高精度磨削砂带磨床的自动化。
在此基础上进行砂带磨削设备系统化设计与制造,开发CNC砂带磨削机床、砂带磨削机器人、并联机构数控砂带磨床、砂带磨削FMS等,实现我国砂带磨削设备的柔性化及自动化.第二章砂带磨削技术第一节沙袋磨削简介砂带由基材、磨料和粘结剂三要素组成。
采用不同磨料的砂带所产生的磨削效果有所不同。
不同磨料组成的砂带所产生的磨削效果明显不同。
在单层涂附的砂带磨粒中,通常用氧化铝比碳化硅磨粒制成的砂带能获得更大的切除率。
但在以小切除率进行磨削时则相反。
特种磨粒的的砂带(多层涂附磨粒的砂带和空心球复合磨粒及软木复合磨粒砂带)与普通砂带相比,明显具有更高的材料切除率;而在特种磨粒砂带中,空心球复合磨粒又比多层涂附磨粒砂带具有更高的材料切除率。
另外,砂带影响材料表面粗糙度主要是磨粒粒度的影响,随粒度变细,粗糙度降低。
尽管砂带磨削被称为“冷态”磨削,但所谓“冷态”是相对于砂轮磨削而言,这是因为磨削中砂带磨粒锐利,因而与工件摩擦较小,而且大多数情况下砂带周长较大,容易散热,容易获得空气冷却的效果。
因此在切削余量不大、零件尺寸较大、表面粗糙度不高的情况下,可采用干磨方式。
但是,带磨削在很多情况下要采用湿磨,因为这有利于控制磨削温度,改善表面粗糙度,并可加大进给量,提高效率,延长砂带寿命。
第二节磨削工艺的进展磨削按其加工精度的不同可分为普通磨削、精密磨削、超精密磨削。
按磨削效率又可以将磨削分为普通磨削、高效磨削。
高效磨削技术包括高速磨削、超高速磨削、缓进给磨削、高效深切磨削 (H E D G)、高速重负荷磨削、砂带磨削、快速短行程磨削。
高速磨削是指磨削速度为 4 5 m/ s ~1 5 0 m/ s 的磨削,而≥ 1 5 0 m/s 的磨削称为超高速磨削。
现在工业上实用的磨削速度已经达到60 m/ s ~ 2 5 0 m/ s,工件进给速度为 ( 1 0 0 0~1 0 0 0 0)m/ mi n。
高效深切磨削 ( H E D G) 是一种集超高速、大切深、快进给于一体的新技术,被誉为“现代磨削技术的高峰”。