函数y=sinx与y=cosx的图像

合集下载

1.4.1正弦函数、余弦函数的图像

1.4.1正弦函数、余弦函数的图像
B
y 1
7 6
描图:用光滑曲线 将这些正弦线的终 点连结起来
3 2 11 6
O1
A O
-1
6
3
2
2 3
5 6

4 3
5 3
2
x
y=sinx ( x [0, 2 ] )
问题2:如何画函数y =sinx(x∈R)的图象?
f ( x 2k ) f ( x)
利用图象平移
(1)写出满足不等式cos x 0, x 0,2 的x的取值集合;
1 (2)写出满足不等式 sin x , x 0,2 的x的取值集合; 2
练习讲解: (1)写出满足不等式cos x 0, x 0,2 的x的取值集合;
y 1
2

o -1
2

3 2

y
1
2
o
-1
2

3 2
2
x
y cos x

y 1
2
o -1
2

3 2
2
x
例2.画出函数
x
0
y 1
y cos x,x [0,2 ] 的简图: 3
2
0 0

cosx - cosx
1 -1
-1 1
2 0 0

2
1 -1
y=cosx,x[0, 2]
2
几何画法
五点描图法
2.注意与诱导公式、三角函数线等知识的联系
y 1
2
y=cosx,x [0, 2π]
2
o -1

3 2
2
x
y=sinx,x [0, 2π]

6.1_正弦函数和余弦函数的图像与性质

6.1_正弦函数和余弦函数的图像与性质

6.1 正弦函数和余弦函数的图像与性质1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx , x ∈[0,2π]的图像中,五个关键点是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)3.定义域:正弦函数、余弦函数的定义域都是实数集R[或(-∞,+∞)],分别记作: y =sin x ,x ∈R y =cos x ,x ∈R4.值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1. ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1. 而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.5.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界; 2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0))3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.6.奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称7.单调性 正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.例1 求下列函数的周期:(1)y =3cos x ,x ∈R ;(2)y =sin2x ,x ∈R ;(3)y =2sin(21x -6π),x ∈R .一般地,函数y =A sin(ωx +ϕ),x ∈R 及函数y =A cos(ωx +ϕ),x ∈R (其中A 、ω、ϕ为常数,且A ≠0,ω>0)的周期T =ωπ2.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期,如对于上述例子:(1)T =2π,(2)T =22π=π,(3)T =2π÷21=4π 例2不通过求值,指出下列各式大于0还是小于0.(1)sin(-18π)-sin(-10π); (2)cos(-523π)-cos(-417π).例3 求函数y =2cos 1cos 3++x x 的值域.例4.f (x )=sin x 图象的对称轴是 .例5.(1)函数y =sin(x +4π)在什么区间上是增函数?(2)函数y =3sin(3π-2x )在什么区间是减函数?【当堂训练】1.函数y =cos 2(x -12π)+sin 2(x +12π)-1是( )A.奇函数而不是偶函数B.偶函数而不是奇函数C.奇函数且是偶函数D.非奇非偶函数2.函数y =sin (2x +25π)图象的一条对称轴方程是( )A.x =-2πB.x =-4πC.x =8πD.x =45π3.设条件甲为“y =A sin(ωx +φ)是偶函数”,条件乙为“φ=23π”,则甲是乙的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件4.函数y =sin 4x +cos 4x 的最小正周期为 .5.函数y =sin2x tan x 的值域为 .6.函数y =x -sin x ,x ∈[0,π]的最大值为( ) A.0 B. 2π-1 C.π D. 2243-π7.求函数y =2sin 22x +4sin2x cos2x +3cos 22x 的最小正周期.8.求函数f (x )=sin 6x +cos 6x 的最小正周期,并求f (x )的最大值和最小值.9.已知f (x )=xx x x cos sin 1cos sin 1+-,问x 在[0,π]上取什么值时,f (x )取到最大值和最小值.10.给出下列命题:①y =sin x 在第一象限是增函数; ②α是锐角,则y =sin(α+4π)的值域是[-1,1]; ③y =sin |x |的周期是2π; ④y =sin2x -cos2x 的最小值是-1;其中正确的命题的序号是 .11.求下列函数的单调递增区间:①y =cos(2x +6π); ②y =3sin(3π-2π)12.求函数y =-|sin(x +4π)|的单调区间.13.函数y =sin(2x +25π)的图象的一条对称轴方程是( ) A.x =-2π B.x =-4π C.x =8π D.x =45π【家庭作业】1.在下列区间中函数y =sin(x +4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 2.若函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,试求a 的值. .]4,3[sin 2)( .3的取值范围上递增,求在是正数,函数已知例ωππωω-=x x f4.求下列函数的定义域、值域:(1); (2) ; (3) .5.求下列函数的最大值,并求出最大值时 的集合:(1) , ; (2) , ; (3)(4) .6.要使下列各式有意义应满足什么条件?(1); (2) .37.函数,的简图是()8.函数的最大值和最小值分别为()A.2,-2 B.4,0 C.2,0 D.4,-4 9.函数的最小值是()A.B.-2 C. D.10.如果与同时有意义,则的取值范围应为()A. B. C.D.或11.与都是增函数的区间是()A., B.,C., D.,12.函数的定义域________,值域________,时的集合为_________.13.求证:(1)的周期为;(2)的周期为;(3)的周期为.参考答案:例1解:(1)∵y =cos x 的周期是2π∴只有x 增到x +2π时,函数值才重复出现.∴y =3cos x ,x ∈R 的周期是2π.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且函数y =sin Z ,Z ∈R 的周期是2π.即Z +2π=2x +2π=2(x +π).只有当x 至少增加到x +π,函数值才能重复出现.∴y =sin2x 的周期是π.(3)令Z =21x -6π,那么x ∈R 必须并且只需Z ∈R ,且函数y =2sin Z ,Z ∈R 的周期是2π,由于Z +2π=(21x -6π)+2π=21 (x +4π)-6π,所以只有自变量x 至少要增加到x +4π,函数值才能重复取得,即T =4π是能使等式2sin [21 (x +T)-6π]=2sin(21x -6π)成立的最小正数.从而y =2sin(21x -6π),x ∈R 的周期是4π. 从上述可看出,这些函数的周期仅与自变量x 的系数有关.例2解:(1)∵-2π<-10π<-18π<2π. 且函数y =sin x ,x ∈[-2π,2π]是增函数. ∴sin(-10π)<sin(-18π) 即sin(-18π)-sin(-10π)>0 (2)cos(-523π)=cos 523π=cos 53π cos(-417π)=cos 417π=cos 4π ∵0<4π<53π<π 且函数y =cos x ,x ∈[0,π]是减函数∴cos53π<cos 4π 即cos 53π-cos 4π<0 ∴cos(-523π)-cos(-417π)<0 例3解:由已知:cos x =⇒--y y 312|y y --312|=|cos x |≤1⇒(yy --312)2≤1⇒3y 2+2y -8≤0 ∴-2≤y ≤34∴y max =34,y min =-2 例4解:由图象可知:对称轴方程是:x =k π+2π(k ∈Z ) 例5解:(1)函数y =sin x 在下列区间上是增函数:2k π-2π<x <2k π+2π (k ∈Z ) ∴函数y =sin(x +4π)为增函数,当且仅当2k π-2π<x +4π<2k π+2π 即2k π-3π<x <2k π+4π(k ∈Z )为所求. (2)∵y =3sin(3π-2x )=-3sin(2x -3π) 由2k π-2π≤2x -3π≤2k π+2π 得k π-12π≤x ≤k π+125π (k ∈Z )为所求. 或:令u =3π-2x ,则u 是x 的减函数 又∵y =sin u在[2k π-2π,2k π+2π](k ∈Z )上为增函数, ∴原函数y =3sin(3π-2x )在区间[2k π-2π,2k π+2π]上递减. 设2k π-2π≤3π-2x ≤2k π+2π 解得k π-12π≤x ≤k π+125π(k ∈Z ) ∴原函数y =3sin(3π-2x )在[k π-12π,k π+125π](k ∈Z )上单调递减. 【当堂训练】 1.A 2.A 3.B 4.2π 5.[0,2) 6.C 7. 2π 8.T=2π 函数最大值为1 函数最小值为41. 9.x =4π时,f (x )取到最小值31; x =43π时,f (x )取到最大值3. 10.分析:①y =sin x 是周期函数,自变量x 的取值可周期性出现,如反例:令x 1=4π,x 2=6π+2π,此时x 1<x 2 而sin 3π>sin(6π+2π)∴①错误;②当α为锐角时,4π<α+4π<2π+4π 由图象可知22<sin(α+4π)≤1 ∴②错误;③∵y =sin |x |(x ∈R )是偶函数.其图象是关于y 轴对称,可看出它不是周期函数.∴③错误;④y =sin 2x -cos 2x =-cos2x ,最小值为-1∴④正确.答案:④11. 解:①设u=2x +6π,则y =cos u当2k π-π≤u≤2k π时y =cos u 随u 的增大而增大 又∵u=2x +6π随x ∈R 增大而增大 ∴y =cos(2x +6π)当2k π-π≤2x +6π≤2k π(k ∈Ζ) 即k π-127π≤x ≤k π-12π时,y 随x 增大而增大 ∴y =cos(2x +6π)的单调递增区间为: [k π-127π,k π-12π](k ∈Z ) ②设u=3π-2π,则y =3sin u 当2k π+2π≤u≤2k π+23π时,y =3sin u随x 增大在减小, 又∵u=3π-2x 随x ∈R 增大在减小 ∴y =3sin(3π-2x )当2k π+2π≤3π-2x ≤2k π+23π 即-4k π-37π≤x ≤-4k π-3π时,y 随x 增大而增大 ∴y =3sin(3π-2x )的单调递增区间为 [4k π-37π,4k π-3π](k ∈Z )12. 解:利用“五点法”可得该函数的图象为:显然,该函数的周期为π在[k π-4π,k π+4π](k ∈Z )上为单调递减函数;在[k π+4π,k π+43π](k ∈Z )上为单调递增函数. 13. 方法一:运用性质1′,y =sin(2x +25π)的所有对称轴方程为x k =2πk -π(k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应. 故选A.方法二:运用性质2′,y =sin(2x +25π)=cos2x ,它的对称轴方程为x k =2πk (k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应,故选A. 【家庭作业】 1.分析:函数y =sin(x +4π)是一个复合函数即y =sin [ϕ(x )],ϕ (x )=x +4π,欲求y =sin(x +4π)的单调增区间,因ϕ (x )=x +4π在实数集上恒递增,故应求使y 随ϕ (x )递增而递增的区间.方法一:∵ϕ (x )=x +4π在实数集上恒递增,又y =sin x 在[2k π-2π,2k π+2π](k ∈Z )上是递增的,故令2k π-2π≤x +4π≤2k π+2π ∴2k π-43π≤x ≤2k π+4π ∴y =sin(x +4π)的递增区间是[2k π-43π,2k π+4π] 取k =-1、0、1,分别得[-411π,47π]、[-43π,4π]、[45π,49π], 对照选择支,可知应选B像这类题型,上述解法属常规解法,而运用y =A sin(ωx +ϕ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,如本题倘若运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.方法二:函数y =sin(x +4π)的对称轴方程是: x k =k π+2π-4π=k π+4π (k ∈Z ),对照选择支,分别取k =-1、0、1,得一个递增或递减区间分别是[-43π,4π]或[4π,45π],对照选择支思考即知应选B. 注:一般运用正、余弦函数的对称轴方程求其单调区间,可先运用对称轴方程求其一个单调区间,然后在两端分别加上周期的整数倍即得.2. 解:显然a ≠0,如若不然,x =-8π就是函数y =sin2x 的一条对称轴,这是不可能的. 当a ≠0时,y =sin2x +a cos2x =)2cos(1)2sin 112cos 1(12222θ-+=++++x a x a x a aa其中cos θ=2211sin ,1aaa +=+θ即tan θ=a1cos sin =θθ 函数y =21a +cos(2x -θ)的图象的对称轴方程的通式为2x k =k π+θ(k ∈Z )∴x k =22πθk +,令x k =-⇒8π22πθk +=-8π∴θ=-k π-4π∴tan θ=tan(-k π-4π)=-1.即a1=-1,∴a =-1为所求. 3. 解:由题设得)(2222Z k k x k ∈+≤≤-ππωππ.230.42,32.2222,0⎪⎩⎪⎨⎧≤<≥-≤-∴+≤≤-∴>ωπωππωπωπωπωπωπω解得k x k故ω的取值范围为].23,0(4. 解:(1) ,(2)由 ()又∵ ,∴∴定义域为 (),值域为. (3)由 (),又由∴∴定义域为(),值域为 .指出:求值域应注意用到 或 有界性的条件.5.解:(1)当,即()时,取得最大值∴函数的最大值为2,取最大值时的集合为.(2)当时,即()时,取得最大值.∴函数的最大值为1,取最大值时的集合为.(3)若,,此时函数为常数函数.若时,∴时,即()时,函数取最大值,∴时函数的最大值为,取最大值时的集合为.(4)若,则当时,函数取得最大值.若,则,此时函数为常数函数.若,当时,函数取得最大值.∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.思考:此例若改为求最小值,结果如何?6.解:(1)由,∴当时,式子有意义.(2)由,即∴当时,式子有意义.7.B 8.B 9.A 10.C 11.D12.;;13.分析:依据周期函数定义证明.证明:(1)∴的周期为.(2)∴的周期为.(3)∴的周期为.。

函数y=sinx与y=cosx的图像【优质PPT】

函数y=sinx与y=cosx的图像【优质PPT】

x0
π π3 π 2 π
2
2
c o 1s 0 x - 1 0 1
- co - 1 s 0x 1 0- 1
y ycos,x[0,2π]
1
O
π π 3π2π x
2
2
-1
ycos,xx[0,2π]
小结
体会推导新知识时的数形结合思想; 理解解决类三角函数图像的整体思想; 对比理解正弦函数和余弦函数的异同。
谢谢!
人教版 高中数学必修4 三角函数 第10课时
畅想网络
Imagination Network
感谢观看!
文章内容来源于网络,如有侵权请联系我们删除。
-2
-
y 1 yco,s x x R
o
2
3
x
-1
例1:画出y=1+sinx ,
π
x0
sinx
2
x∈[0,2]的简图
π
3π 2

0
1
0
-1 0
1sinx
1
2
1
01
2 y . y1sinx x[,0,2π
1.
.
.
o
π
.

-1
2
2
2
x
ys i nxx[,0 , 2 π ]
课堂练习:画出y=- cosx , x∈[0,2 ]的简图
正弦函数、余弦函数的图像
引入: sina ,coas,tana 的几何意义是什么?
复习:三角函数线
作出 135 o 的三角函数线: y
135 o P
Mo
A(1,0) x
T
135°角的 正弦线为 MP; 余弦线为 OM; 正切线为 AT。

正弦函数、余弦函数的图象_优质课件

正弦函数、余弦函数的图象_优质课件

3) y 3sin(1 x ), x R 一般
35
结论:
函数y Asin(x )及y Acos(x ), x R
( A,,为常数, A 0, 0)的周期T 2
新课讲解. 正弦函数、余弦函数的性质 (三)关于奇偶性(复习)
一般地, •如果对于函数f( x )的定义域内任意一个x, 都有f(- x )= f( x ),那么就说f( x )是偶函数 •如果对于函数f( x )的定义域内任意一个x, 都有f(- x )= -f( x ),那么就说f( x )是奇函数
小结回顾
正切函数的基本性质
4 5
应用提升
练习1:试着画出y | tan x | 和y tan | x |
并讨论它们的单调性,周期性和奇偶性.
练习2.如果、
(
,
)且
tan
cot
,
2
那么必有( )
A.
B.
C. 3 D. 3
2
2
应用提升
例3.求函数y tan x 1 的定义域 3 tan x
例4.试讨论函数y loga tan x的单调性
2
2
y=cosx
y cos x : 定义域为R,值域[1,1]
1
最-6大 值1,此-5时 x
2-k4; 最小值-3-1,
此时x
-2
2k
-;
-1
2 3 2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
(2) y sin x, y cosx与y Asin(x ), y Acos(x )间的换元思想

1126三角函数图像及性质

1126三角函数图像及性质

4-1.4.1正弦、余弦函数的图象(1)函数y=sinx 的图象 (2)余弦函数y=cosx 的图象正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是 (0,1) (2π,0) (π,-1) (23π,0) (2π,1) 讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2) y=|sinx |, (3)y=sin |x |例2 用五点法作函数2cos(),[0,2]3y x x ππ=+∈的简图.例3 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x 的集合:1(1)sin ;2x ≥ 15(2)cos ,(0).22x x π≤<<课后作业:作业:补充:1.分别用单位圆中的三角函数线和五点法作出y=sinx 的图象 2.分别在[-4π,4π]内作出y=sinx 和y=cosx 的图象 3.用五点法作出y=cosx,x ∈[0,2π]的图象“五点(画图)法”-----描点、连线,画出简图。

例1. 画出下列函数的简图:(1) y =1+sinx ,x∈〔0,2π〕 (2) y=-cosx ,x∈〔0,2π〕 一、 合作学习 ●探究1如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到(1)y =1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x- π/3)的图象?小结:函数值加减,图像上下移动;自变量加减,图像左右移动。

●探究2如何利用y=cos x ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y =-cosx ,x∈〔0,2π〕的图象?小结:这两个图像关于X 轴对称。

三角函数的图像与性质(名师经典总结)

三角函数的图像与性质(名师经典总结)

三角函数的图像与性质(正弦、余弦、正切)【知识点1】函数y =sin x ,y =cos x ,y =tan x 的图象性质题型1:定义域例1:求下列函数的定义域(1)xx y cos 2cos 1+=; (2)x y 2sin = 2lg(4)x -题型2:值域 例2:求下列函数值域 (1))3π2,6π(,sin 2-∈=x x y (2)y=2sin(2x-3π),x 5,46ππ⎡⎤∈⎢⎥⎣⎦(3) )3π,2π(),3π2cos(2-∈+=x x y(4)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合题型3:周期例3:求下列函数的周期: (1)f(x)=2sin2x (2)y=cos(123x π-) (3)y=tan(2x 4π-) (4)y=sin x 例4: 若函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,则自然数k 的值为______.例5:若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________.例6:使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为【 】A .π25B .π45C .πD .π23例7:设函数f(x)=2sin(25x ππ+),若对于任意的x R ∈,都有f(1x )2()()f x f x ≤≤成立,则12x x -的最小值是A.4B.2C.1D.12题型4:奇偶性 例8:函数y =sin (x +2π)(x ∈[-2π,2π])是【 】A.增函数B.减函数C.偶函数D.奇函数例9:判断下列函数的奇偶性 (1)y=xsin(x π+) (2)y=cos 1sin x x+例10:已知函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=________ 题型5:单调性例11:函数y =21log sin(2x +4π)的单调递减区间是【 】 A.(k π-4π,k π](k ∈Z ) B.(k π-8π,k π+8π](k ∈Z ) C.(k π-83π,k π+8π](k ∈ D.(k π+8π,k π+83π](k ∈Z )例12:.求1cos()3412logx y π+=的单调区间例13:求下列函数的单调增区间(1))3π21cos(-=x y ; (2) ]0,π[),6π2sin(2-∈+=x x y ;(3))23πsin(2x y -=例14:(1)求函数y=2sin(2x-3π)的单调递减区间。

正弦函数图像1_

正弦函数图像1_
2
y=cosx,x[0, 2]
( ,0)
2
o -1
2

( ,-1)
3 ( ,0) 2 3 2
(2 ,1)
2
x
方法总结: 在精确度要求不太高时,先作出函数y=sinx 和y=cosx的五个关键点,再用光滑的曲线将它 们顺次连结起来,就得到函数的简图。这种 作图法叫做“五点(画图)法”。
其定义域为R。
知识回顾:三角函数线
三角函数 正弦函数
sin=MP
cos=OM tan=AT
y P
-1
T
三角函数线
正弦线MP
余弦线OM 正切线AT
余弦函数
正切函数
O
M
A(1,0)
x
作法: (1) 等分 (2) 作正弦线 问题:如何作出比较精确的正弦函数图象? (3) 平移 途径:利用单位圆中正弦线来解决。 (4) 连线
五点作图法


(1) 列表(列出对图象形状起关键作用的 五点坐标) (2) 描点(定出五个关键点) (3) 连线(用光滑的曲线顺次连结五个点)
类型1
用“五点法”作三角函数的图象
例1:用五点作图法列函数的简图
y=1+sinx, x [0, 2 ]
画出函数y=1+sinx,x[0, 2]的简图 解:
正弦函数 余弦函数图象
高一数学组 崔萌
学习目标


学会利用单位圆中的正弦线作出正弦函数 图象的方法 正确运用五点画图法作出三角函数简图 掌握三角函数图象的简单应用
正弦函数、余弦函数的定义
实 数
一 一对应

唯一确定
正余 弦弦 值值
任意给定的一个实数x,有唯一确定的值sinx (或cosx)与之对应。由这个法则所确定的函数 y=sinx (或y=cosx)叫做正弦函数(或余弦函数),

正弦函数余弦函数的图像和性质

正弦函数余弦函数的图像和性质

f ( x) = 3cos x = 3cos( x + 2π ) = f ( x + 2π )
所以T=2π
2、y=sin2x x ∈R 解、令z=2x,那么x∈R必须并且只需z∈R,且函 数y=sinz,z∈R的T=2π,即变量z只要并且至少 要增加到z+2π,函数y=sinz,z∈R的值才能重复 取得,而z+2π=2x+2π=2(x+π) 故变量x只要并且至少要增加到x+π,函数值 x x+π 就能重复取得,所以y=sin2x,x∈R的T=π 即 f ( x) = sin 2 x = sin(2 x + 2π ) = sin 2( x + π ) = f ( x + π ) 所以T=π
例1.画出下列函数的简图 .
(1)y= 2sinx ,x∈[0, 2π], ) ∈ π (2)y=sin2x , x∈[0,2π] ) 解: (1) 列表 ) Y 2 1 0
x y=2sinx
0 0
π
2
π 0
3π 2
2π π 0
2
-2
(2)描点作图 描点作图
y=2sinx y=sinx
π

X
2、五点作图法 、
y = sin( x + ), x ∈ R 3 4
例4利用三角函数的单调性,比较下列各组数的大小:
(1) sin 250 (2) cos
15 π 8
o

sin 260o
与 cos 14 π 9
例5 求函数 y = sin( 2 x + 3 ), x ∈ [−2π , 2π ] 的单调递增区间. 解: 令
( 0 , 0 ) (π , 0 ) (2π ,0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦函数、余弦函数的图像
引入: sin a ,cos a ,tan a 的几何意义是什么? 复习:三角函数线
作出 135 o 的三角函数线: y
135 o P
Mo
A(1,0) x
T
135°角的 正弦线为 MP; 余弦线为 OM; 正切线为 AT。
思考:如何用几何方法在直角坐标系中作出点
P
Y
. C(π,sinπ) ?
-------周而复始的原因
正弦函数图像是由无数个这样的单元组成的
1
-4π -3π -2π
-
o /2 3/2 2π
3π 4π
x
-1
函数y=sinx, xR的图象 正弦曲线
y sinx, x[0,2] y sin x, x R
二、五点法作正弦函数的简图
如何快捷地画出正弦函数的图象呢?
2 2π
sinx 0
1
Y 1
.
0
-1
0
.
O
π
.π 3π
.
2π X
2
-1
2.
三、作余弦函数 y=cosx (x∈R) 的图象
思考:如何将余弦函数用诱导公式写成正弦函数?
cos
x

sin(π 2

x)
注:余弦曲线的图象可以通过将正弦曲线 向左平移π2 个单位长度而得到。余弦函数 的图象叫做余弦曲线。
正弦、余弦曲线
2
32
567643
3
2
y
3
y=sinx ( x [0, 2] )
1






7 4 3 5 11
6
6 3 2 3 6 2

2 0


2 5 ●
11
6 32 3 6


x

5
6
-1



3
y
根据:终边相同的角的同一 三角函数值相等。
即:sin(2kπ+x)=sinx
2
3
2 5
7
36
6
4 3
3 2
5 3
11 6
2
x
-1 -
图象的最高点 (0,1) (2 ,1)
与x轴的交点
(

2
,0)
(
3 2
,0)
图象的最低点 ( ,1)
正弦曲线 y
1
y sinx,x R
-2
-
o

-1
2
3
x
4
余弦曲线
-2
-
y 1 y cosx , x R
o
2
3
x
-1
例1:画出y=1+sinx
sinx
,
π 2
x∈[0,2]的简图
π
3π 2
π
1 sinx
2y . 1.
y 1 sinx,x [0,2π ]
.
.
o -1
.
π


2
2
2
x
y sinx,x [0,2π]
课堂练习:画出y=- cosx , x∈[0,2 ]的简图
y
(五点作图法)
1-
-
-1
o
6


3
2
2 3
5 6

7 6
4 3
3 2
5 3
11 6
2
x
-1 -
图象的最高点 ( ,1)
2
与x轴的交点 (0,0) ( ,0) (2 ,0)
图象的最低点
(
3 2
,1)
二.用五点法作y=sinx , x∈[0,2π ]的简图
π

x
0
2
π
C(π,sinπ) 3
3
π
33
3
O1
MO
π

π
X
3
3
[引入]能否借助上面作点C的方法,在直角坐标系
中作出正弦函数y=sinx(xR)的图象呢?
二、新课讲解
如何画出 y=sinx 的图象呢?
一、描点法:列表、描点、连线 二、几何作图法:
一、用几何方法
作正弦函数y=sinx, x [20, ]的图象:
x
0
π
π 3π 2π
2
2
cosx 1
0
-1
0
1
- cosx - 1 0
1
0 -1
y y cosx , x [0,2π]
1
O
π 2
π
3π 2
2π x
-1
y cosx , x [0,2π]
小结
体会推导新知识时的数形结合思想; 理解解决类三角函数图像的整体思想; 对比理解正弦函数和余弦函数的异同。
y 1
y = sin x, x∈R
-2
-
o
-1
x

2
3
4
y = cos x, x∈R
如何快捷地画出正弦函数的图象呢?
-
五点法作余弦函数的简图
(1) 列表(列出对图象形状起关键作用的五点坐标) (2) 描点(定出五个关键点) (3) 连y 线(用光滑的曲线顺次连结五个点)
1-
-1
o
6

相关文档
最新文档