第2章知识表示方法部分习题及答案(最新整理)
人工智能习题及答案-第2章-知识表示方法

人工智能习题及答案-第2章-知识表示方法第二章知识表示方法2-1状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?2-2设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?用S i(nC,nY)表示第i次渡河后,河对岸的状态,nC表示传教士的数目,nY表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。
考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3种情况:1.nC=02.nC=33.nC=nY>=0(当nC不等于0或3)用d i(dC,dY)表示渡河过程中,对岸状态的变化,dC表示,第i次渡河后,对岸传教士数目的变化,dY表示,第i次渡河后,对岸野人数目的变化。
当i为偶数时,dC,dY同时为非负数,表示船驶向对岸,i为奇数时,dC,dY同时为非正数,表示船驶回岸边。
初始状态为S0(0,0),目标状态为S0(3,3),用深度优先搜索的方法可寻找渡河方案。
在此,用图求法该问题,令横坐标为nY,纵坐标为nC,可行状态为空心点表示,每次可以在格子上,沿对角线移动一格,也可以沿坐标轴方向移动1格,或沿坐标轴方向移动2格。
第奇数次数状态转移,沿右方,上方,或右上方移动,第偶数次数状态转移,沿左方,下方,或左下方移动。
从(0,0)开始,依次沿箭头方向改变状态,经过11步之后,即可以到达目标状态(3,3),相应的渡河方案为:d1(1,1)--àd2(-1,0)--àd3(0,2)--àd4(0,-1)--àd5(2,0)--àd6(-1,-1)--àd7(2,0)--àd8(0,-1)--àd9(0,2)--àd10( -1,0)--àd11(1,1)2-3利用图2.3,用状态空间法规划一个最短的旅行路程:此旅程从城市A开始,访问其他城市不多于一次,并返回A。
《人工智能》--课后习题答案

《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。
人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
1.2答:“智能"一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有的智力和行为能力。
智力是针对具体情况的,根据不同的情况有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
1。
3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统.1。
4答:自然语言处理—语言翻译系统,金山词霸系列机器人-足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2。
1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S-状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分.与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念.一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识的方法.即用一个有向图表示概念和概念之间的关系,其中节点代表概念,节点之间的连接弧(也称联想弧)代表概念之间的关系。
人工智能本科习题

图8.22机械手堆积木规划问题
8-8指出你的过程结构空间求得的图8.23问题的路径,并叙述如何把你在上题中所得结论推广至包括旋转情况。
图8.23一个寻找路径问题
第一章绪论
1-1.什么是人工智能?试从学科和能力两方面加以说明。
1-2.在人工智能的发展过程中,有哪些思想和思潮起了重要作用?
1-3.为什么能够用机器(计算机)模仿人的智能?
1-4.现在人工智能有哪些学派?它们的认知观是什么?
1-5.你认为应从哪些层次对认知行为进行研究?
1-6.人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?
3-16下列语句是一些几何定理,把这些语句表示为基于规则的几何证明系统的产生式规则:
(1)两个全等三角形的各对应角相等。
(2)两个全等三角形的各对应边相等。
(3)各对应边相等的三角形是全等三角形。
(4)等腰三角形的两底角相等。
第四章计算智能(1):神经计算模糊计算
4-1计算智能的含义是什么?它涉及哪些研究分支?
5-2试述遗传算法的基本原理,并说明遗传算法的求解步骤。
5-3如何利用遗传算法求解问题,试举例说明求解过程。
5-4用遗传算法求的最大值
5-5进化策略是如何描述的?
5-6简述进化编程的机理和基本过程,并以四状态机为例说明进化编程的表示。
5-7遗传算法、进化策略和进化编程的关系如何?有何区别?
5-8人工生命是否从1987年开始研究?为什么?
2-10试构造一个描述你的寝室或办公室的框架系统。
第三章搜索推理技术
3-1什么是图搜索过程?其中,重排OPEN表意味着什么,重排的原则是什么?
3-2试举例比较各种搜索方法的效率。
第二章 知识的表示

动物识别系统
规则1 规则2 规则3 3 规则4 如果 那么 如果 那么 如果 那么 如果 那么 该动物有毛发 它是哺乳动物 该动物能产乳 它是哺乳动物 该动物有羽毛 它是鸟类动物 该动物能飞行 它能生蛋 它是鸟类动物
规则5
如果 那么 如果
规则6
规则7
那么 如果 那么 如果
规则8
该动物是哺乳动物 它吃肉 它是食肉动物 该动物是哺乳动物 它长有爪子 它长有利齿 它眼睛前视 它是食肉动物 该动物是哺乳动物 它长有蹄 它是有蹄动物 该动物是哺乳动物 它反刍 那么 它是有蹄动物,并且是偶蹄动物
3. Set_Down(x) 条件:At(robot,x) ∧Table(x) ∧Holds(robot,box) 动作:删除 Holds(robot,box) 增加 On(box,x) ∧ Empty(robot)
注:在执行动作前先要检查条件是否满足
At(robot,c) Empty(robot) On(box,a) Table(a) Table(b) Goto(x,y)---c/x,a/y At(robot,a) Empty(robot) On(box,a) Table(a) Table(b) Pick_Up(x)---a/x
r1不匹配 r2匹配——该动物是哺乳动物,加入综合数 据库
该动物身上有深色斑点,有长勃子,有长腿, 产乳,有蹄,,加入综合数据库 该动物身上有深色斑点,有长勃子,有长腿, 产乳,有蹄,是哺乳动物,有蹄动物 r11匹配——该动物是长颈鹿
2.3 框架表示法
规则13
如果
规则14
那么 如果
规则15
那么 如果 那么
该动物是鸟类 它不会飞 它有长颈 它有长腿 它的颜色是黑色和白色相杂 它是鸵鸟 该动物是鸟类 它不能飞行 它能游水 它的颜色是黑色和白色 它是企鹅 该动物是鸟类 它善于飞行 它是海燕
高中数学必修2第二章知识点+习题+答案

第二章 直线与平面的地点关系空间点、直线、平面之间的地点关系平面含义:平面是无穷延展的 2 平面的画法及表示( 1)平面的画法: 水平搁置的平面往常画成一个平行四边形,DC锐角画成 45 0 ,且横边画成邻边的 2 倍长(如图)( 2)平面往常用希腊字母α、β、γ等表示,如平面α、平α面β等,也能够用表示平面的平行四边形的四个极点或许相对ABAC 、平面 ABCD 等。
的两个极点的大写字母来表示,如平面3 三个公义:( 1)公义 1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A ∈ LB ∈L => LαAα ·A ∈αB ∈α公义 1 作用:判断直线能否在平面内( 2)公义 2:过不在一条直线上的三点,有且只有一个平面。
A B符号表示为: A 、 B 、C 三点不共线 => 有且只有一个平面α, α ·C ·使 A ∈α、 B ∈α、 C ∈α。
·公义 2 作用:确立一个平面的依照。
( 3)公义 3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
β符号表示为: P ∈α∩β => α∩β =L ,且 P ∈ LP公义 3 作用:判断两个平面能否订交的依照αL·空间中直线与直线之间的地点关系1 空间的两条直线有以下三种关系:订交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点; 异面直线:不一样在任何一个平面内,没有公共点。
2 公义 4:平行于同一条直线的两条直线相互平行。
符号表示为:设 a 、b 、 c 是三条直线a ∥ b=>a ∥ cc ∥ b重申:公义 4 本质上是说平行拥有传达性,在平面、空间这个性质都合用。
公义 4 作用:判断空间两条直线平行的依照。
3 等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a' 与 b' 所成的角的大小只由 a 、b 的相互地点来确立,与 O 的选择没关,为了简易,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0, ) ;2a ⊥b ;③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作④ 两条直线相互垂直,有共面垂直与异面垂直两种情况;⑤ 计算中,往常把两条异面直线所成的角转变为两条订交直线所成的角。
人工智能教程习题及答案第2章习题参考解答

第二章知识表示习题参考解答2.3 练习题2.1 什么是知识?它有哪些特性?有哪几种分类方法?2.2 何谓知识表示? 陈述性知识表示法与过程性知识表示法的区别是什么?2.3 在选择知识的表示方法时,应该考虑哪些主要因素?2.4 一阶谓词逻辑表示法适合于表示哪种类型的知识?它有哪些特点?2.5 请写出用一阶谓词逻辑表示法表示知识的步骤。
2.6 设有下列语句,请用相应的谓词公式把它们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
(2)他每天下午都去玩足球。
(3)太原市的夏天既干燥又炎热。
(4)所有人都有饭吃。
(5)喜欢玩篮球的人必喜欢玩排球。
(6)要想出国留学,必须通过外语考试。
2.7 房内有一只猴子、一个箱子,天花板上挂了一串香蕉,其位置关系如图2. 11所示,猴子为了拿到香蕉,它必须把箱子推到香蕉下面,然后再爬到箱子上。
请定义必要的谓词,写出问题的初始状态(即图2.16所示的状态)、目标状态(猴子拿到了香蕉,站在箱子上,箱子位于位置b)。
图2.11 猴子摘香蕉问题2.8 对习题2.7中的猴子摘香蕉问题,利用一阶谓词逻辑表述一个行动规划,使问题从初始状态变化到目标状态。
2.9 产生式的基本形式是什么?它与谓词逻辑中的蕴含式有什么共同处及不同处?2.10 何谓产生式系统?它由哪几部分组成?2.11 产生式系统中,推理机的推理方式有哪几种?在产生式推理过程中,如果发生策略冲突,如何解决?2.12 设有下列八数码难题:在一个3×3的方框内放有8个编号的小方块,紧邻空位的小方块可以移入到空位上,通过平移小方块可将某一布局变换为另一布局(如图2.12所示)。
请用产生式规则表示移动小方块的操作。
2831231684754765S0S g图2.12 习题2.12的图图2.13 习题2.13的图2.13 推销员旅行问题:设有五个相互可直达且距离已知的城市A、B、C、D、E,如图2.13所示,推销员从城市A出发,去其它四城市各旅行一次,最后再回到城市A,请找出一条最短的旅行路线。
人工智能及其应用第四版答案

人工智能及其应用第四版答案【篇一:人工智能及其应用习题参考答案第9章】txt>9-1 分布式人工智能系统有何特点?试与多艾真体系统的特性加以比较。
分布式人工智能系统的特点:(1) 分布性系统信息(数据、知识、控制)在逻辑上和物理上都是分布的(2) 连接性各个子系统和求解机构通过计算机网络相互连接(3) 协作性各个子系统协调工作(4) 开放性通过网络互连和系统的分布,便于扩充系统规模(5) 容错性具有较多的冗余处理结点、通信路径和知识,提高工作的可靠性(6) 独立性系统把求解任务归约为几个相对独立的子任务,降低了问题求解及软件开发的复杂性9-2 什么是艾真体?你对agent的译法有何见解?agent是能够通过传感器感知其环境,并借助执行器作用于该环境的实体,可看作是从感知序列到动作序列的映射。
其特性为:行为自主性,作用交互性,环境协调性,面向目标性,存在社会性,工作协作性,运行持续性,系统适应性,结构分布性,功能智能性把agent 译为艾真体的原因主要有:(1) 一种普遍的观点认为,agent是一种通过传感器感知其环境,并通过执行器作用于该环境的实体。
(2) “主体”一词考虑到了agent具有自主性,但并未考虑agent还具有交互性,协调性,社会性,适应性和分布性的特性(3) “代理”一词在汉语中已经有明确的含义,并不能表示出agent的原义(4) 把agent译为艾真体,含有一定的物理意义,即某种“真体”或事物,能够在十分广泛的领域内得到认可(5) 在找不到一个确切和公认的译法时,宜采用音译9-3 艾真体在结构上有何特点?在结构上又是如何分类的?每种结构的特点为何?真体=体系结构+程序(1) 在计算机系统中,真体相当于一个独立的功能模块,独立的计算机应用系统。
(2) 真体的核心部分是决策生成器或问题求解器,起到主控作用(3) 真体的运行是一个或多个进程,并接受总体调度(4) 各个真体在多个计算机cpu上并行运行,其运行环境由体系结构支持。
苏教版高中数学必修一同步辅导练习:第2章 函数的表示方法(附答案)

第2章 函数2.1 函数的概念2.1.2 函数的表示方法A 级 基础巩固1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:因为f (x )=⎩⎨⎧10,x <0,10x ,x ≥0,所以f (-7)=10.f (f (-7))=f (10)=10×10=100.答案:A2.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32满足f (f (x ))=x ,则常数c 等于() A .3 B .-3C .3或-3D .5或-3解析:f (f (x ))=c ⎝ ⎛⎭⎪⎪⎫cx 2x +32⎝ ⎛⎭⎪⎪⎫cx 2x +3+3=c 2x 2cx +6x +9=x ,即x [(2c +6)x +9-c 2]=0,所以⎩⎨⎧2c +6=0,9-c 2=0,解得c =-3. 答案:B3.如果二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可以是( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:由题意设f (x )=a (x -1)2+b (a >0),由于点(0,0)在图象上,所以a +b =0,a =-b ,故符合条件的是D.答案:D4.某同学从家里赶往学校,一开始乘公共汽车匀速前进,在离学校还有少许路程时,改为步行匀速前进到校.下列图形纵轴表示该同学与学校的距离s ,横轴表示该同学出发后的时间t ,则比较符合该同学行进实际的是( )解析:依题意:s 表示该同学与学校的距离,t 表示该同学出发后的时间,当t =0时,s 最远,排除A 、B ,由于汽车速度比步行快,因此前段迅速靠近学校,后段较慢.故选D.答案:D5.g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),则f ⎝ ⎛⎭⎪⎫12=( ) A .1 B .3 C .15 D .30解析:由g (x )=12得:1-2x =12⇒x =14, 代入1-x 2x 2得:1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15. 答案:C6.(2015·陕西卷)设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,x 2,x <0,则f (f (-2))=( ) A .-1 B.14 C.12 D.32解析:f (-2)=(-2)2=4.所以f (f (-2))=f (4)=1-4=-1.答案:A7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+3x ,x ≤0,2,x >0,则方程f (x )=x 的解的个数为________.解析:x >0时,x =f (x )=2;x ≤0时,x 2+3x =x ⇒x =0或-2. 答案:38.如图所示,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2))=________.解析:由图象及已知条件知f (2)=0,即f (f (f (2)))=f (f (0)),又f (0)=4,所以f (f (0))=f (4)=2.答案:29.若某汽车以52 km/h 的速度从A 地驶向260 km 远处的B 地,在B 地停留32h 后,再以65 km/h 的速度返回A 地.则汽车离开A 地后行走的路程s 关于时间t 的函数解析式为________________.解析:因为260÷52=5(h),260÷65=4(h),所以s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝⎛⎭⎪⎫t -132,132<t ≤212. 答案:s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝⎛⎭⎪⎫t -132,132<t ≤21210.设f (x )=⎩⎨⎧x +1,x ≥0,1x ,x <0.若f (a )>a ,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=a +1>a 恒成立.当a <0时,f (a )=1a>a ,所以a <-1. 综上a 的取值范围是a ≥0或a <-1.答案:{a |a ≥0或a <-1}11.已知二次函数满足f (3x +1)=9x 2-6x +5,求f (x ).解:设f (x )=ax 2+bx +c (a ≠0),则f (3x +1)=a (3x +1)2+b (3x +1)+c =9ax 2+(6a +3b )x +a +b +c .因为f (3x +1)=9x 2-6x +5,所以9ax 2+(6a +3b )x +a +b +c =9x 2-6x +5.比较两端系数,得⎩⎪⎨⎪⎧9a =9,6a +3b =-6,a +b +c =5⇒⎩⎪⎨⎪⎧a =1,b =-4,c =8.所以f (x )=x 2-4x +8.12.已知f (x )=⎩⎪⎨⎪⎧x 2(-1≤x ≤1),1(x >1或x <-1). (1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].B 级 能力提升13.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1.若f (f (0))=4a ,则实数a 的值为( )A .2B .1C .3D .4解析:易知f (0)=2,所以f (f (0))=f (2)=4+2a =4a ,所以a =2. 答案:A14.任取x 1,x 2∈[a ,b ]且x 1≠x 2,若f ⎝ ⎛⎭⎪⎫x 1+x 22>12[f (x 1)+f (x 2)],则f (x )在[a ,b ]上是凸函数,在以下图象中,是凸函数的图象是( )解析:只需在图形中任取自变量x 1,x 2,分别标出它们对应的函数值及x 1+x 22对应的函数值,并观察它们的大小关系即可. 答案:D15.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧C x ,x <A ,C A ,x ≥A ,A ,C 为常数.已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是( ) A .75,25B .75.16C .60,25D .60,16解析:由条件可知,x ≥A 时所用时间为常数,所以组装第4件产品用时必须满足第一段分段函数,即f (4)=C 4=30⇒C =60, f (A )=60A=15⇒A =16. 答案:D16.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2. (1)求f (2),f (f (2))的值;(2)若f (x 0)=8,求x 0的值.解:(1)因为0≤x ≤2时,f (x )=x 2-4,所以f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23∉[0,2],故无解. 当x 0>2时,由2x 0=8,得x 0=4.因此f (x 0)=8时,x 0的值为4.17.某市出租车的计价标准是:4 km 以内10元,超过4 km 且不超过18 km 的部分1.2 元/km ,超过18 km 的部分1.8 元/km.(1)如果不计等待时间的费用,建立车费与行车里程的函数关系式;(2)如果某人乘车行驶了20 km ,他要付多少车费?解:(1)设车费为y 元,出租车行驶里程为x km.由题意知,当0<x ≤4时,y =10;当4<x ≤18时,y =10+1.2(x -4)=1.2x +5.2;当x >18时,y =10+1.2×14+1.8(x -18)=1.8x -5.6.所以,所求函数关系式为y =⎩⎪⎨⎪⎧10,0<x ≤4,1.2x +5.2,4<x ≤18,1.8x -5.6,x >18.(2)当x =20时,y =1.8×20-5.6=30.4.所以乘车行驶了20 km 要付30.4元的车费.18.某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系用图①表示,该商品在30天内日销售量Q (件)与时间t (天)之间的关系如下表所示:(1)根据提供的图象(图①),写出该商品每件的销售价格P 与时间t 的函数解析式;(2)在所给平面直角坐标系(图②)中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定一个日销售量Q 与时间t 的函数解析式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天(日销售金额=每件的销售价格×日销售量).解:(1)根据图象,每件的销售价格P 与时间t 的函数解析式为:P =⎩⎨⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N.(2)描出实数对(t ,Q )的对应点,如下图所示.从图象发现:点(5,35),(15,25),(20,20),(30,10)似乎在同一条直线上,为此假设它们共线于直线l :Q =kt +b .由点(5,35),(30,10)确定出l 的解析式为Q =-t +40,通过检验可知,点(15,25),(20,20)也在直线l 上.所以日销售量Q 与时间t 的一个函数解析式为Q =-t +40(0<t ≤30,t ∈N).(3)设日销售金额为y (元),则y =⎩⎨⎧-t 2+20t +800,0<t <25,t ∈N ,t 2-140t +4 000,25≤t ≤30,t ∈N.因此y =⎩⎨⎧-(t -10)2+900,0<t <25,t ∈N ,(t -70)2-900,25≤t ≤30,t ∈N.若0<t <25(t ∈N),则当t =10时,y max =900;若25≤t ≤30(t ∈N),则当t =25时,y max =1 125.因此第25天时销售金额最大,最大值为1 125元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章知识表示方法部分2.8设有如下语句,请用相应的谓词公式分别把他们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
解:定义谓词P(x):x是人L(x,y):x喜欢y其中,y的个体域是{梅花,菊花}。
将知识用谓词表示为:∃(x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))(2) 有人每天下午都去打篮球。
解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:∃∀(x )(y) (A(y)→B(x)∧P(x))(3)新型计算机速度又快,存储容量又大。
解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:∀(x) (NC(x)→F(x)∧B(x))(4) 不是每个计算机系的学生都喜欢在计算机上编程序。
解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:∀¬ (x) (S(x)→L(x, pragramming)∧U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。
解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:∀(x) (P(x)∧L(x,pragramming)→L(x, computer))2.9用谓词表示法求解机器人摞积木问题。
设机器人有一只机械手,要处理的世界有一张桌子,桌上可堆放若干相同的方积木块。
机械手有4个操作积木的典型动作:从桌上拣起一块积木;将手中的积木放到桌之上;在积木上再摞上一块积木;从积木上面拣起一块积木。
积木世界的布局如下图所示。
图机器人摞积木问题解:(1) 先定义描述状态的谓词CLEAR(x):积木x上面是空的。
ON(x, y):积木x在积木y的上面。
ONTABLE(x):积木x在桌子上。
HOLDING(x):机械手抓住x。
HANDEMPTY:机械手是空的。
其中,x和y的个体域都是{A, B, C}。
问题的初始状态是:ONTABLE(A)ONTABLE(B)ON(C, A)CLEAR(B)CLEAR(C)HANDEMPTY问题的目标状态是:ONTABLE(C)ON(B, C)ON(A, B)CLEAR(A)HANDEMPTY(2) 再定义描述操作的谓词在本问题中,机械手的操作需要定义以下4个谓词:Pickup(x):从桌面上拣起一块积木x。
Putdown(x):将手中的积木放到桌面上。
Stack(x, y):在积木x上面再摞上一块积木y。
Upstack(x, y):从积木x上面拣起一块积木y。
其中,每一个操作都可分为条件和动作两部分,具体描述如下:Pickup(x)条件:ONTABLE(x),HANDEMPTY,CLEAR(x)动作:删除表:ONTABLE(x),HANDEMPTY添加表:HANDEMPTY(x)Putdown(x)条件:HANDEMPTY(x)动作:删除表:HANDEMPTY(x)添加表:ONTABLE(x),CLEAR(x) ,HANDEMPTYStack(x, y)条件:HANDEMPTY(x),CLEAR(y)动作:删除表:HANDEMPTY(x),CLEAR(y)添加表:HANDEMPTY,ON(x, y) ,CLEAR(x)Upstack(x, y)条件:HANDEMPTY,CLEAR(y) ,ON(y,x)动作:删除表:HANDEMPTY,ON(y, x)添加表:HOLDING(y),CLEAR(x)(3) 问题求解过程利用上述谓词和操作,其求解过程为:2.10用谓词表示法求解农夫、狼、山羊、白菜问题。
农夫、狼、山羊、白菜全部放在一条河的左岸,现在要把他们全部送到河的右岸去,农夫有一条船,过河时,除农夫外船上至多能载狼、山羊、白菜中的一种。
狼要吃山羊,山羊要吃白菜,除非农夫在那里。
似规划出一个确保全部安全过河的计划。
请写出所用谓词的定义,并给出每个谓词的功能及变量的个体域。
解:(1) 先定义描述状态的谓词要描述这个问题,需要能够说明农夫、狼、羊、白菜和船在什么位置,为简化问题表示,取消船在河中行驶的状态,只描述左岸和右岸的状态。
并且,由于左岸和右岸的状态互补,因此可仅对左岸或右岸的状态做直接描述。
本题选择对左岸进行直接描述的方法,即定义谓词如下:AL(x):x在左岸其中,x的个体域是{农夫,船,狼,羊,白菜}。
对应地,¬AL(x)表示x在右岸。
问题的初始状态:AL(农夫)AL(船)AL(狼)AL(羊)AL(白菜)问题的目标状态:¬AL(农夫)¬AL(船)¬AL(狼)¬AL(羊)¬AL(白菜)(2) 再定义描述操作的谓词本题需要以下4个描述操作的谓词:L-R:农夫自己划船从左岸到右岸L-R(x):农夫带着x划船从左岸到右岸R-L:农夫自己划船从右岸到左岸R-L(x) :农夫带着x划船从右岸到左岸其中,x的个体域是{狼,羊,白菜}。
对上述每个操作,都包括条件和动作两部分。
它们对应的条件和动作如下:L-R:农夫划船从左岸到右岸条件:AL(船),AL(农夫),¬AL(狼)∨¬AL(羊),¬AL(羊)∨¬AL(白菜)动作:删除表:AL(船),AL(农夫)添加表:¬AL(船),¬AL(农夫)L-R(狼):农夫带着狼划船从左岸到右岸条件:AL(船),AL(农夫),AL(狼),¬AL(羊)动作:删除表:AL(船),AL(农夫),AL(狼)添加表:¬AL(船),¬AL(农夫),¬AL(狼)L-R(羊):农夫带着羊划船从左岸到右岸条件:AL(船),AL(农夫),AL(羊),AL(狼),AL(白菜)或:AL(船),AL(农夫),AL(羊),¬AL(狼),¬AL(白菜)动作:删除表:AL(船),AL(农夫),AL(羊)添加表:¬AL(船),¬AL(农夫),¬AL(羊)L-R(白菜):农夫带着白菜划船从左岸到右岸条件:AL(船),AL(农夫),AL(白菜),¬AL(狼)动作:删除表:AL(船),AL(农夫),AL(白菜)添加表:¬AL(船),¬AL(农夫),¬AL(白菜)R-L:农夫划船从右岸到左岸条件:¬AL(船),¬AL(农夫),AL(狼)∨AL(羊),AL(羊)∨AL(白菜)或:¬AL(船),¬AL(农夫) ,¬AL(狼),¬AL(白菜),AL(羊)动作:删除表:¬AL(船),¬AL(农夫)添加表:AL(船),AL(农夫)R-L(羊) :农夫带着羊划船从右岸到左岸条件:¬AL(船),¬AL(农夫),¬AL(羊) ,¬AL(狼),¬AL(羊),AL(白菜)动作:删除表:¬AL(船),¬AL(农夫),¬AL(羊)添加表:AL(船),AL(农夫),AL(羊)(3) 问题求解过程这条船将所有的人都运过河去,但要受到以下条件限制:(1) 修道士和野人都会划船,但船一次只能装运两个人。
(2) 在任何岸边,野人数不能超过修道士,否则修道士会被野人吃掉。
假定野人愿意服从任何一种过河安排,请规划出一种确保修道士安全的过河方案。
要求写出所用谓词的定义、功能及变量的个体域。
解:(1)定义谓词先定义修道士和野人人数关系的谓词:G(x,y,S):在状态S下x大于yGE(x,y,S):在状态S下x大于或等于y其中,x,y分别代表修道士人数和野人数,他们的个体域均为{0,1,2,3}。
再定义船所在岸的谓词和修道士不在该岸上的谓词:Boat(z,S):状态S下船在z岸EZ(x,S):状态S下x等于0,即修道士不在该岸上其中,z的个体域是{L,R},L表示左岸,R表示右岸。
再定义安全性谓词:Safety(z,x,y,S)≡(G(x,0,S)∧GE(x,y,S))∨(EZ(x,S))其中,z,x,y的含义同上。
该谓词的含义是:状态S下,在z岸,保证修道士安全,当且仅当修道士不在该岸上,或者修道士在该岸上,但人数超过野人数。
该谓词同时也描述了相应的状态。
再定义描述过河方案的谓词:L-R(x, x1, y, y1,S):x1个修道士和y1个野人渡船从河的左岸到河的右岸条件:Safety(L,x-x1,y-y1,S’)∧Safety(R,3-x+x1,3-y+y1,S’)∧Boat(L,S)动作:Safety(L,x-x1,y-y1,S’)∧Safety(R,3-x+x1,3-y+y1,S’)∧Boat(R,S’)R-L (x, x1, y, y1,S):x2个修道士和y2个野人渡船从河的左岸到河的右岸条件:Safety(R,3-x-x2,3-y-y2,S’)∧Safety(L,x+x2,y+y2,S’)∧Boat(R,S)动作:Safety(R,3-x-x2,3-y-y2,S’)∧Safety(L,x+x2,y+y2,S’)∧Boat(L,S’)(2) 过河方案∧Safety(R,0,0,S0)∧ ∧Safety(R,1,1,S1)∧ ∧Safety(R,0,1,S2)∧∧Safety(R,0,3,S3)∧Boat(R,S3)∧Safety(R,0,2,S1)∧Boat(L,S4)∧Safety(R,2,2,S5)∧Boat(R,S5)∧Safety(R,1,1,S6)∧Boat(L,S6)∧Safety(R,3,1,S7)∧Boat(R,S7)∧Safety(R,3,0,S8)∧Boat(L,S8)∧Safety(R,3,2,S9)∧Boat(R,S9)∧Safety(R,2,2,S10)∧Boat(L,S10)∧Safety(R,3,3,S11)∧Boat(R,S11)2.18 请对下列命题分别写出它们的语义网络:(1) 每个学生都有一台计算机。
解:(2)高老师从3月到7月给计算机系学生讲《计算机网络》课。
解:(3) 学习班的学员有男、有女、有研究生、有本科生。
解:参例2.14(4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。
解:参例2.10(5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。
解:2.19 请把下列命题用一个语义网络表示出来:(1)树和草都是植物;解:(2) 树和草都有叶和根;解:(3) 水草是草,且生长在水中;解:(4) 果树是树,且会结果;解:(5) 梨树是果树中的一种,它会结梨。