分子动力学结果分析汇编

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

径向分布函数 g(r)是距离一个原子为 r时找到另一个原子的概率 , g
(r)是一个量纲为 1的量。 如果在半径 r到 r + δr的球壳内的粒子数为
n(r) , 由此可以得到径向分布函数 g(r)为
静态结构因子
静态结构因子(static structure factor)也是判断结构无序程度的物理量。 它的表示式为
压力 P
压力通常通过虚功原理模拟得到。虚功定义为所有粒子坐标与作用在 粒子上的力的乘积的和 , 通常写为
式中 xi 为原子的坐标 ,
是动量沿坐标方向对时间的一阶导
数(根据牛顿定律 , 为力) 。
虚功原理给出虚功等于 -3NkB T。
实际体系的虚功为理想气体的虚功与粒子之间相互作用部分的虚功 的和 , 即
过统计物理联系起来。
物性参量可以根据原子的坐标和速度通过统计处理得出 , 在统计物理 中可以利用系综微观量的统计平均值来计算物性参量值 , 即
在分子动力学中 , 使用了时间平均等于系统平均的各态历经假设 , 即
虽然各态历经假设在热力学统计物理中没有证明 , 但它的正确性已被 实验结果证明是正确的.
分子动力学结果 分析
黄世萍
1 平均值
模拟产生大量的数据 , 对这些数据的分析可以得到相关的性质。 计算机
模拟必定会产生误差 , 必须对误差进行计算和评价。
计算机模拟的结果与实验一样存在两类误差 : 系统误差和统计误差。 系 统误差有时是由于在模拟中采用了不合适的算法或势函数 , 容易被发现 ; 系统误差也可能是在模拟中使用了不相关近似(有限差分方法的使用、计 算机的精度)造成的 , 这些误差不容易发现。 探测系统误差的一种方法 是观测一个简单热力学量的平均值及其分布。这些热力学量关于平均值的 分布应该是高斯分布 , 即发现一个特定值 A 的几率为
NVT
NPT
动力学性质
1 关联函数 假设有两套数据 x 和 y , 要确定它们之间在一定条件下的关联。 以定义很多关联函数 , 最普遍使用的为
分子动力学模拟可以提供特定时刻的值 , 这样使得我们可以计算一个时刻 的物理量与同一时刻或另一时刻(时间 t以后)的另一物理量的关联函数 , 这个值被称为时间关联系数 , 关联函数可以写为
上式用到了 lim t → 0 时 , Cxy (0) = 枙 x y枛和 lim t → ∞ 时 , Cxy (t) = x y
如果x和y是不同的物理量 , 则关联函数称为交叉关联函数(crosscorrelation function) 如果x和y是同一量 , 则关联函数称为自关联函数(autocorrelation function) 。
Structural properties:
径向分布函数
径向分布函数(radial distribution function)是描述系统结构的很有用的 方法 , 特别是对于液体。 考虑一个以选定的原子为中心 , 半径为 r , 厚度为 δr的球壳 , 它的体积为
如果单位体积的粒子数为 ρ 0 , 则在半径 r到 r + δr的球壳内的总粒子 数为 4πρ 0 r2δr , 因此体积元中原子数随 r2变化。
Jz 为物质的通量— 单位时间通过单位面积的物质的量 , D为扩散系数 , N 为粒子数密度(单位体积的数目) , 负号表示物质是从浓度高的区 域向浓度低的区域扩散。
扩散行为随时间的演化由 Fick 第二定律来描述 , 即
A 为样品的截面积 , N0 为 t = 0 时在 z = 0 处的粒子数。 上式是 一高斯函数 , 在 z = 0处有一尖锐的峰 , 随时间的增长 , 峰逐渐抹 平。
σ2为方差 ,
标准偏差为方差的平方根。
微观领域往往研究单个粒子的行为 , 宏观性质是大量粒子的综合行为。 分子动力学(MD)方法能够再现宏观行为 , 同时又存储了大量的微观信 息 , 因此是联系宏观和微观的重要工具。 利用此方法可以研究由热力学
统计物理能够给出的各种性能参数。 统计力学将系统的微观量与宏观量通
N 代表原子总数 , K为倒格矢 , rj 为原子 j 的位置矢量 。 对理想晶体 而言 , 其静态结构因子为1 , 而对理想流体 , 则为0 。 静态结构因 子在研究晶体的熔化与相变的研究中很有用。
热力学性质
比热容的计算
在相变时 , 比热容会呈现与温度相关的特征(对一级相变点 , 比热容呈 现无限大 ; 对二级相变点 , 比热容呈现不连续变化) , 因此监控比热 容随温度的变化可以帮助探测到相变的发生。
自关联函数就是一个量对先前的值的记忆程度 , 或者反过来说 , 就是 系统需要多长时间忘记先前的值。 一个简单例子是速度自关联函数意义 就是0 时刻的速度与时刻 t的速度关联程度。 一些关联函数可以通过系 统内所有粒子求平均得到 , 而另外一些关联函数是整个系统粒子的函 数。 速度自关联函数可以通过模拟过程对 N 个原子求平均得到 , 即
当模拟的材料为纯的材料时 , 扩散系数被称为自扩散系数。 扩散系数与 平均平方位移有关。由爱因斯坦关系知 , 平均平方位移等于 2Dt , 在 三维情况下 ,
Slope here gives D
r2
1 r 2 (t ) N ri2 (t )
归一化的速度自关联函数为
2
输运性质
输运性质是指物质从一个区域流动到另一个区域的现象 , 比如非平衡溶质分 布的溶液 , 溶质原子会发生扩散直到溶质浓度均匀。如果体系存在温度梯度 , 就会发生能量输运直到温度达到平衡 , 动量梯度产生粘滞性。 输运意味着体
系处于非平衡态 。
扩散的通量用 Fick 第一定律来描述 , 即
Baidu Nhomakorabea
温度 T
在正则系综 (NVT )中 , 体系的温度为一常数 ; 然而在微正则系综 中 , 温度将发生涨落。温度是体系最基本的热力学量 , 它直接与系 统的动能有关 , 即
pi 为质量 mi 粒子的总动量 , N 为粒子总数 , NC 为系统的受限制的 自由度数目 , 通常 NC= 3 。


体系的热力学能可以很容易通过体系能量的系综平均得到 , 即
相关文档
最新文档