分子动力学模拟

合集下载

第六章 分子动力学模拟ppt课件

第六章 分子动力学模拟ppt课件

2.4 Equations of motion
分子动力学模拟
为了在计算机上解运动方程,必须为微分方程建立一个 有限差分格式,从差分方程中再导出位置和速度的递推关系 式。这些算法是一步一步执行的,先算t 时刻的位置和速度, 然后在此基础上计算t+1时刻的位置和速度。
微分方程最为直接的离散化格式来自泰勒展开: r(th)r(t)n i 1 1hi!ir(i)(t)Rn
1.5
1
间间
0.5
rij 6 2
0
-0.5
-1
0.8
1
1.2 1.4 1.6 1.8 间间
2
2.2 2.4 2.6
对势能的最大贡献来自于粒子的近邻区域,位势截断
常用的方法是球形截断,截断半径一般取2.5σ或3.6 σ,对
截断距离之外分子间相互作用能按平均密度近似的方法进
行校正。
分子动力学模拟
The disk processed after the simulation is finished. It contains at least all the positions and velocities of all particles. This information is sufficient to calculate all the properties of the system. However, it is more economical to calculate properties during the simulation and store them in the than reading the calculating them afterwards.
➢二、分子动力学方法

分子动力学模拟分析

分子动力学模拟分析

分子动力学模拟分析分子动力学模拟(Molecular Dynamics Simulation,简称MD)是一种计算模拟分子运动的方法,可以研究分子的结构、动力学和相互作用等,对物质性质和功能的研究有重要作用。

在材料科学、化学、生物学等领域中得到广泛应用。

本文将从MD模拟基础、模拟流程及分析研究结果三个方面进行阐述。

一、MD模拟基础MD模拟的基础是牛顿力学和统计物理学,其中牛顿三定律和万有引力定律描述了分子的运动和相互作用;玻尔兹曼分布定律、统计力学中的最大熵原理以及热力学第二定律等描述了系统的宏观性质和热力学性质。

MD模拟将牛顿力学和统计物理学相结合,通过数值计算方法,从初状态的分子坐标、速度和势能等信息出发,重复计算分子在某个温度、压力下的运动轨迹和性质,模拟时间可以从纳秒到毫秒,有关联的分子之间,模拟精度可达到亚埃。

二、模拟流程MD模拟的主要流程包括体系构建、体系平衡和体系生产等阶段。

体系构建需要先定义体系的边界、所包含分子种类及其数量、分子初始坐标等,这一阶段可以是手动构建,也可以是从实验数据中获取分子坐标信息进行加工。

体系平衡一般需要先进行一个大规模的能量最小化,在此基础上,对体系进行一个温度和压力逐步升高或下降的过程,使体系逐步达到平衡态,也可以调整体系的偏倚参数,如盒子尺寸等,最终得到较为合理的平衡态体系。

在体系平衡的基础上,进行体系生产,对于所需要的性质,如动力学参数、能量铁达方程、径向分布函数、自相关函数等,在进行生产时需要对体系进行约束,如固定温度、压力、含水量等,得到精确的分子性质描述。

三、分析研究结果对MD模拟结果的分析对研究者而言极为重要,主要是对数据的可视化及其统计分析。

一般可以采用分析软件如VMD、GROMACS等对MD的轨迹文件进行可视化,对于分子的运动、某些物理性质的演化、分子图像变化等,可以做出一系列的动画或动图。

对于性质的统计分析,一般需要进行采样过程,对一定时刻内的数值进行平均,这样可减小误差。

分子动力学模拟方法

分子动力学模拟方法

分子动力学模拟方法Molecular Dynamics Simulation Method分子动力学模拟方法是一种计算方法,可以预测原子和分子在不同温度和压力下的运动和力学行为。

该方法已被广泛应用于物理、化学、生物学和材料科学等领域,用于研究材料性质、生物分子结构和动态、相变等现象。

本文将介绍分子动力学模拟的基本原理、模拟过程以及如何用该方法研究材料或生物分子。

1. 基本原理分子动力学模拟基于牛顿力学原理,用原子和分子之间的势能函数描述系统内部的相互作用力。

根据牛顿第二定律 F=ma,通过求解系统中每个分子的运动方程来推导出分子的运动轨迹。

在计算中,采用的势能函数决定了分子之间的相互作用,包括范德华力、静电作用、键角等力。

基于这些相互作用力和分子的运动轨迹,可以计算出分子的位置、速度、加速度和能量等物理量。

2. 模拟过程分子动力学模拟的过程包括初始化、模拟和分析三个阶段。

2.1 初始化初始化阶段主要是为模拟设置一些参数,包括分子数、模拟时间、初速度、初位置和系统温度等。

初速度可以根据玻尔兹曼分布生成,初位置随机分布,系统温度也可以通过控制分子初速度实现。

模拟阶段分为两个步骤:计算分子运动和更新分子位置。

计算分子运动:在每个时间步中,使用牛顿运动方程计算每个分子的运动。

分子与其他分子之间的相互作用通过势能函数计算。

时间步长各不相同,一般为1-10飞秒。

更新分子位置:根据计算出的分子运动轨迹和速度,使用欧拉法更新分子位置。

在此过程中,通过周期性边界条件保证系统的连续性。

2.3 分析分析阶段主要是对模拟结果进行分析和处理,如计算能量、相变、速度相关的分布函数等。

有效的分析可以给出关键参数和物理量,如分子动力学能量、热力学性质和动力学行为。

3. 应用分子动力学模拟方法已经被广泛应用于物理、化学、生物学和材料科学等研究领域,尤其是材料和生物分子方面的研究具有广泛的前景。

3.1 材料科学分子动力学模拟可用于研究材料的力学、热力学和电学等性质。

分子动力学模拟

分子动力学模拟

分子动力学模拟分子动力学模拟是一种重要的计算方法,用来研究分子体系的运动和相互作用。

该方法基于牛顿力学和统计力学的原理,通过数值模拟来预测和描述分子在不同条件下的行为。

在分子动力学模拟中,通过计算每个分子的受力和相互作用,可以得到关于分子位置、速度和能量等物理量的时间演化。

这些信息可以被用来研究分子体系的动力学、热力学和结构性质等。

为了进行分子动力学模拟,需要确定分子的力场和初始状态。

力场是一组描述分子分子间相互作用的数学函数,包括键的强度、键角的刚度、电荷分布等。

初始状态则是给定分子的初始位置和速度。

在分子动力学模拟中,分子受到的力主要来自于势能函数的梯度。

通过运用牛顿运动方程,可以计算得到每个分子的加速度,并进一步更新位置和速度。

这个过程重复进行,直到达到所需的模拟时间。

分子动力学模拟可以用来研究各种不同类型的分子体系。

例如,可以模拟液体中分子的运动和结构,以研究其流变性质和相变行为。

还可以模拟气体中分子的运动和相互作用,以研究化学反应和传输过程。

此外,分子动力学模拟还可以用来研究固体材料的力学性质和热导率等。

通过模拟材料内部原子的动力学行为,可以计算材料的弹性模量、杨氏模量等力学性质。

同时,还可以计算材料的热导率,从而了解其热传导性能。

分子动力学模拟已经成为了许多领域的重要工具。

它在材料科学、生物科学、化学工程和环境科学等领域中都得到了广泛应用。

通过模拟和理解分子体系的行为,我们可以更好地设计新材料、药物和催化剂,以及解决各种科学和工程问题。

然而,分子动力学模拟也有一些局限性。

首先,模拟的时间尺度受到限制,通常只能模拟纳秒或微秒级别的时间。

其次,模拟的精度也受到一定的限制,特别是在处理量子效应和极化效应等方面。

为了克服这些限制,研究人员正在发展和改进分子动力学模拟的方法。

例如,开发更精确的势能函数和更高效的计算算法,可以提高模拟的时间尺度和精度。

同时,与实验相结合,通过验证和修正模型,也可以提高模拟的可靠性和预测能力。

分子动力学模拟方法

分子动力学模拟方法

分子动力学模拟方法分子动力学模拟是一种用于研究分子系统在原子尺度上运动规律的计算方法。

通过模拟分子在一定时间范围内的运动轨迹,可以揭示分子在不同条件下的结构、动力学和热力学性质,为理解分子系统的行为提供重要信息。

本文将介绍分子动力学模拟的基本原理、常用方法和应用领域。

分子动力学模拟的基本原理是利用牛顿运动方程描述分子系统中原子的运动。

根据牛顿第二定律,分子系统中每个原子受到的力可以通过势能函数求得,从而得到原子的加速度,再通过数值积分方法求解原子的位置和速度随时间的演化。

通过大量的时间步长积分,可以得到分子系统在一段时间内的运动轨迹。

在实际应用中,分子动力学模拟可以采用不同的数值积分方法,如Verlet算法、Leap-Frog算法等。

这些算法在计算效率和数值稳定性上有所差异,根据模拟系统的特点和研究目的选择合适的数值积分方法至关重要。

此外,分子动力学模拟还需要考虑原子间相互作用的描述方法,如分子力场、量子力场等,以及边界条件和初值设定等参数的选择。

分子动力学模拟方法在材料科学、生物物理、化学反应动力学等领域有着广泛的应用。

在材料科学中,可以通过模拟材料的力学性能、热学性质等,为新材料的设计和开发提供参考。

在生物物理领域,可以研究蛋白质、核酸等生物大分子的结构和功能,揭示生物分子的运动规律和相互作用机制。

在化学反应动力学研究中,可以模拟分子在化学反应中的动力学过程,为理解反应机理和优化反应条件提供理论支持。

总之,分子动力学模拟方法是一种强大的研究工具,可以深入理解分子系统的运动规律和性质。

随着计算机硬件和软件的不断发展,分子动力学模拟在科学研究和工程应用中的地位将更加重要,为解决现实世界中的科学和工程问题提供重要的理论和技术支持。

通过本文的介绍,相信读者对分子动力学模拟方法有了更深入的了解。

希望本文可以为相关领域的研究工作提供一定的参考和帮助,促进分子动力学模拟方法在更多领域的应用和发展。

分子动力学模拟概述

分子动力学模拟概述

分子动力学模拟概述
分子动力学模拟是一种计算机模拟方法,用于分析原子和分子的物理运动。

以下是分子动力学模拟的概述:
基本原理:
分子动力学模拟基于牛顿运动定律,模拟分子体系的运动,在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。

模拟过程:
分子动力学模拟首先需要建立所模拟体系的模型,包括体系内粒子的结构特性及其粒子间的相互作用。

接着,赋予体系内各粒子初始位置和初始速度,使其满足一定的统计规律,然后解体系的牛顿运动方程直至体系达到平衡。

最后,对平衡后的体系进行宏观物理量的统计平均,得到所需要的模拟结果。

应用领域:
分子动力学模拟广泛应用于物理、化学、生物和材料科学等领域。

例如,在材料科学中,分子动力学模拟可用于研究材料的力学性质、热学性质、电学性质等;在生物学中,分子动力学模拟可用于研究生物大分子的结构和功能,以及药物与生物大分子的相互作用等。

优缺点:
分子动力学模拟的优点在于能够模拟体系的动态过程,揭示体系的微观机制,并可用于预测体系的宏观性质。

然而,分子动力学模拟也存在一些缺点,例如模拟结果受到模拟时间、模拟体系大小和力场参数等因素的影响,可能存在误差和不确定性。

总的来说,分子动力学模拟是一种强大的计算工具,可用于研究复杂体系的物理和化学过程,为理解和预测材料的性质和行为提供重要手段。

分子动力学模拟(两篇)

分子动力学模拟(两篇)

引言概述:分子动力学模拟(MD)是一种模拟系统内原子或分子运动的计算方法,通过计算原子之间的相互作用力和运动方程,可以研究材料的物理和化学性质、相互作用和动态行为等。

本文将深入探讨分子动力学模拟的相关内容,包括模拟算法、分子模型构建、初始条件设定、系统参数调优、结果分析等。

正文内容:一、模拟算法1.1简单分子动力学模拟算法:介绍经典分子动力学模拟的基本原理和算法。

1.2高级模拟算法:介绍一些基于统计力学和量子力学原理的高级分子动力学模拟算法,如MonteCarlo方法和量子分子动力学模拟。

二、分子模型构建2.1原子选择:根据研究对象和目的,选择适合的原子种类。

2.2原子间相互作用模型:介绍常用的原子间相互作用势函数模型,如LennardJones势和Coulomb势等。

2.3拓扑构建:说明如何根据分子结构构建拓扑,包括原子连接方式和键长、键角、二面角等参数。

三、初始条件设定3.1初始构型:介绍如何原子或分子的初始位置和速度。

3.2温度控制:讨论如何在模拟中控制温度,包括使用温度计算公式和应用恒温算法等。

3.3压力控制:介绍如何在模拟中控制压力,包括应用压力计算公式和应用恒压算法等。

四、系统参数调优4.1时间步长选择:讲解如何选择合适的时间步长,以确保模拟结果的准确性和稳定性。

4.2模拟时间长度:介绍如何选取适当的模拟时间长度,以获得足够的统计样本。

4.3系统尺寸选择:探讨系统尺寸对模拟结果的影响,包括边界条件的选择和静电相互作用的处理。

五、结果分析5.1动力学参数计算:介绍如何通过模拟数据计算动力学参数,包括径向分布函数和速度自相关函数等。

5.2结构参数分析:讨论如何分析模拟结果中的结构特征,如配位数、键长分布和角度分布等。

5.3物理性质计算:讲解如何通过模拟数据计算材料的物理性质,如热力学性质和动力学性质等。

总结:分子动力学模拟是一种强大的计算工具,可以模拟和研究材料的动态行为和性质。

从模拟算法、分子模型构建、初始条件设定、系统参数调优到结果分析,每个步骤都需要仔细考虑和调整,以保证模拟结果的准确性和可靠性。

分子动力学模拟步骤和意义

分子动力学模拟步骤和意义

分子动力学模拟步骤和意义摘要:一、分子动力学简介二、分子动力学模拟步骤1.准备模型和初始条件2.计算相互作用力3.更新位置和速度4.检查收敛性及输出结果5.重复步骤2-4,直至达到预定模拟时间三、分子动力学模拟意义1.增进对分子结构和性质的理解2.预测分子间相互作用3.优化化学反应条件4.辅助药物设计和材料研究正文:分子动力学是一种计算化学方法,通过模拟分子间的相互作用和运动轨迹,以揭示分子的结构和性质。

这种方法在许多领域具有广泛的应用,如生物化学、材料科学和药物设计等。

分子动力学模拟的主要步骤如下:1.准备模型和初始条件:在进行分子动力学模拟之前,首先需要构建分子模型,包括原子类型、原子间相互作用力等。

同时,为模拟设定初始条件,如温度、压力和分子位置等。

2.计算相互作用力:根据分子模型,利用力学原理(如牛顿第二定律)计算分子间相互作用力。

这些力包括范德华力、氢键、静电相互作用等,对分子的运动和相互作用起关键作用。

3.更新位置和速度:根据相互作用力,对分子的位置和速度进行更新。

通常采用Verlet积分法或Leap-Frog算法等数值方法进行计算。

4.检查收敛性及输出结果:在每次迭代过程中,需要检查模拟的收敛性。

若达到预设的收敛标准,则输出当前时刻的分子结构和性质。

否则,继续进行下一次迭代。

5.重复步骤2-4,直至达到预定模拟时间:分子动力学模拟通常需要进行大量迭代,以获得足够准确的结果。

在达到预定模拟时间后,可得到完整的分子动力学轨迹。

分子动力学模拟在科学研究和实际应用中具有重要意义。

通过模拟,我们可以更好地理解分子的结构和性质,预测分子间的相互作用,从而为实验设计和理论研究提供有力支持。

此外,分子动力学模拟还有助于优化化学反应条件,为药物设计和材料研究提供理论依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子动力学模拟
分子动力学就是一门结合物理,数学与化学的综合技术。

分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。

这门技术的发展进程就是:
1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)
1983年:非平衡态动力学方法(Gillan and Dixon)
1984年:恒温条件下的动力学方法(能势‐フーバーの方法)
1985年:第一原理分子动力学法(→カー・パリネロ法)
1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、
最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。

进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。

在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。

另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。

由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。

用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。

作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。

但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。

分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。

太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。

但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能
力。

以下就是做模拟的一般性步骤,具体的步骤与过程依赖于确定的系统或者软件,但这不影响我们把它当做一个入门指南:
1)首先我们需要对我们所要模拟的系统做一个简单的评估,三个问题就是我们必须要明确的:
做什么(what to do)为什么做(why to do)怎么做(how to do)
2)选择合适的模拟工具,大前提就是它能够实现您所感兴趣的目标,这需要您非常谨慎的查阅文献,瞧瞧别人用这个工具都做了些什么,有没有与您相关的,千万不要做到一半才发现原来这个工具根本就不能实现您所感兴趣的idea,切记!
考虑1:软件的选择,这通常与软件主流使用的力场有关,而软件本身就具有一定的偏向性,比如说,做蛋白体系,Gromacs,Amber,Namd均可;做DNA,RNA体系,首选肯定就是Amber;做界面体系,DI_POLY比较强大,另外做材料体系,Lammps会就是一个不错的选择。

考虑2:力场的选择。

力场就是来描述体系中最小单元间的相互作用的,就是用量化等方法计算拟合后生成的经验式,有人会嫌它粗糙,但就是它确确实实给我们模拟大系统提供了可能,只能说关注的切入点不同罢了。

常见的有三类力场:全原子力场,联合力场,粗粒化力场;当然还有所谓的第一代,第二代,第三代力场的说法,这里就不一一列举了。

再次提醒注意:必须选择适合我们所关注体系与我们所感兴趣的性质及现象的力场。

3)通过实验数据或者就是某些工具得到体系内的每一个分子的初始结构坐标文件,之后,我们需要按我们的想法把这些分子按照一定的规则或就是随机的排列在一起,从而得到整个系统的初始结果,这也就是我们模拟的输入文件。

4)结构输入文件得到了,我们还需要力场参数输入文件,也就就是针对我们系统的力场文件,这通常就是由所选用的力场决定,比如键参数与非键参数等势能函数的输入参数。

5)体系的大小通常由您所选用的box大小决定,我们必须对可行性与合理性做出评估,从而确定体系的大小,这依赖于具体的体系,这里不细说了。

6)由于初始构象可能会存在两个原子挨的太近的情况(称之为bad connect),所以需要在正式模拟开始的第一步进行体系能量最小化,比较常用的能量最小化有两种,最速下降法与共轭梯度法,最速下降法就是快速移除体系内应力的好方法,但就是接近能量极小点时收
敛比较慢,而共轭梯度法在能量极小点附近收敛相对效率高一些,所以我们一般做能量最小化都就是在最速下降法优化完之后再用共轭梯度法优化,这样做能有效的保证后续模拟的进行。

7)以平衡态模拟为例,您需要设置适当的模拟参数,并且保证这些参数设置与力场的产生相一致, 举个简单的例子,gromos力场就是用的范德华势双截断来定范德华参数的,若您也用gromos力场的话也应该用双截断来处理范德华相互作用。

常见的模拟思路就是,先在NVT下约束住您的溶质(剂)做限制性模拟,这就是一个升温的过程,当温度达到您的设定后,接着做NPT模拟,此过程将调整体系的压强进而使体系密度收敛。

经过一段时间的平衡模拟,在确定系统弛豫已经完全消除之后,就可以开始取数据了,如何判断体系达到平衡,这个问题就是比较技术性的问题,简单的讲可以通过以下几种方式,一,瞧能量(势能,动能与总能)就是否收敛;二,瞧系统的压强,密度等等就是否收敛;三瞧系统的RMSD就是否达到您能接受的范围,等等。

8)运行足够长时间的模拟以确定我们所感兴趣的现象或就是性质能够被观测到,并且务必确保此现象的可重复性。

9)数据拿到手后,很容易通过一些可视化软件得到轨迹动画,但这并不能拿来发文章。

真正的工作才刚刚开始——分析数据,您所感兴趣的现象或性质只就是表面,隐含在它们之中的机理才就是文章中的主题。

分子动力学可以用于NPT,NVE,NVT等系综的计算,就是一种基于牛顿力学确定论的热力学计算方法,与蒙特卡洛法相比在宏观性质计算上具有更高的准确度与有效性,可以广泛应用于物理,化学,生物,材料,医学等各个领域。

另外,在实际应用中,经常把分子动力学方法与蒙特卡罗法联合使用。

相关文档
最新文档