数学建模房地产

合集下载

研究生数学建模房地产行业的数学模型

研究生数学建模房地产行业的数学模型

研究生数学建模-房地产行业的数学模型题目房地产行业的数学模型摘要:本文以商品房为例,建立了房地产行业住房需求的BP神经网络模型、住房供给的GM(1,1)模型、房地产行业与国民经济其他行业关系的灰色关联度模型和房价预测的Markov模型.对于住房需求问题,选取商品房年度销售面积作为反映住房需求的指标,把年底城镇总人口数等七个变量作为影响需求的因素,建立了BP神经网络模型,对住房需求进行了很好的预测.对于住房供给问题,选取商品房年竣工面积作为商品房当年的供给量,建立了GM(1,1)模型,并用残差、关联度和后验差对所得的模型进行了检验,最后对全国房地产市场2011-2015年的商品房年竣工面积进行了合理预测.对于房地产行业与国民经济其他行业关系问题,运用灰色关联度分析和信息熵对全国房地产市场与其他行业的关联度进行了定量分析,并按其关联性的强弱进行了排序.对于房价预测问题,首先用三次插值多项式对1991-2009年商品房年销售价格进行模拟,运用Markov过程得到状态转移概率矩阵,建立了Markov模型,并对2010年的商品房年销售价格进行了预测.然后通过房地产开发综合景气指数的变化对我国近几年房地产市场的发展态势进行了分析,再用房屋销售价格环比指数对房地产政策的成效进行了评价,提出了房地产政策严厉度对政策的严厉性进行量化.最后,对模型的优缺点进行了分析,并对模型进行了评价.关键词:BP神经网络GM(1,1) 灰色关联度Markov预测一、问题重述房地产行业既是国民经济的支柱产业之一,又是与人民生活密切相关的行业之一,同时自身也是一个庞大的系统,该系统的状态和发展对国民经济的整个态势和全国人民的生活水平影响很大.近年来,我国房地产业发展迅速,不仅为整个国民经济的发展做出了贡献,而且为改善我国百姓居住条件发挥了决定性作用.但同时房地产业也面临较为严峻的问题和挑战,引起诸多争议,各方都坚持自己的观点,然而多是从政策层面、心理层面和资金层面等因素来考虑,定性分析多于定量分析.显然从系统的高度认清当前房地产行业的态势、从定量角度把握各指标之间的数量关系、依据较为准确的预见对房地产行业进行有效地调控、深刻认识房地产行业的经济规律进而实现可持续发展是解决问题的有效途径.因此通过建立数学模型研究我国房地产问题是一个值得探索的方向.利用附录中提供的及可以查找到的资料建立房地产行业的数学模型,建议包括1.住房需求模型;2.住房供给模型;3.房地产行业与国民经济其他行业关系模型;4.对我国房地产行业态势分析模型;5.房地产行业可持续发展模型;6. 房价模型等.并利用模型进行分析,量化研究该行业当前的态势、未来的趋势,模拟房地产行业经济调控策略的成效.希望在深化认识上取得进步,产生若干结论和观点.如果仅就其中几个问题建立模型也是适宜的,对利用附件给的天津市的数据建模并进行分析同样鼓励.研究房地产问题并不需要很多、很深的专业知识,问题也不难理解.作者也完全可以独立自主地提出自己希望解决的房地产中的新问题,建立相应的数学模型予以解决,所建的每个模型要系统、深入,至少应该自成兼容系统,数据可靠,结论和观点有较多的数据支撑、有较强的说服力、有实际应用价值.二、模型假设1. 城镇房地产市场是中国房地产行业的主要部分;2. 商品房本年竣工面积作为商品房当年的供给量;3. 近期内没有经济危机影响房地产行业.三、符号说明符号符号说明i A影响住房需求的因素()1,2,,7i =()()0x i 商品房年销售面积的原始序列值()1,2,,20i = ()()0ˆx i 商品房年销售面积的估计序列值()1,2,,20i = ()()0y i 商品房年竣工面积的原始序列值()1,2,,17i = ()()0ˆy i 商品房年竣工面积的估计序列值()1,2,,17i =()()1y i商品房年竣工面积原始值的累加生成序列()1,2,,17i =()i ε 原始序列()()0y i 与估计序列()()0ˆyi 的绝对误差()1,2,,17i = ()i δ 原始序列()()0y i 与估计序列()()0ˆy i 的相对误差()1,2,,17i =()i η关联度系数()1,2,,17i =ρ分辨率()01ρ<< r 关联度()0Y原始序列()()0y i 的均值ε 绝对误差()i ε的均值 i S方差()1,2i = C 方差比 P小误差概率0i ∆ 参考序列与比较序列的绝对差值()1,2,,13i =i H信息熵()1,2,,13i =i w 评价指标的熵权()1,2,,13i = t p商品房年销售价格()1,2,,19t =ˆt p 商品房年销售价格预测值()1,2,,19t =i Ω状态区域()1,2,,4i =V 状态转移矩阵 L房地产政策的严厉度四、模型的建立与求解房地产行业是一个庞大的系统,可以从微观和宏观两个角度进行分析,其中住房是房地产行业的核心部分.从微观角度看,房地产市场上存在住房需求与住房供给的经济运动.从宏观角度看,房地产行业作为国民经济的支柱产业,与整个国家的经济发展密切相关,政府的调控政策对房地产市场的发展也会产生一定影响.以下用住房需求、住房供给、房地产行业与国民经济其他行业关系和房价预测四个模型对房地产业进行分析. 1. 住房需求模型本节以商品房的住房需求为例,构建BP 神经网络模型,并利用Matlab 神经网络工具箱中的相关函数对住房需求进行预测.选取商品房本年销售面积()()0x i 作为反映住房需求的指标,把年底城镇总人口数1A 、城镇家庭平均每人可支配收入2A 、人均国内生产总值(现价)3A 、城镇新建住宅面积4A 、城镇固定资产投资5A 、城镇储蓄存款6A 和城镇家庭平均每人全年实际收入7A 七个变量作为影响住房需求的因素 (具体数据见附录) .其中人是住房的最终消费者,人口数量的增长必然会对住房的需求提出更高的要求,所以人口数量是决定住房需求的基本因素.城镇人均可支配收入指城镇居民家庭人均可用于最终消费支出和其它非义务性支出以及储蓄的总和,即居民家庭可以用来自由支配的收入,它从购买力方面影响住房需求.人均国内生产总值是一个国家核算期内实现的国内生产总值与这个国家的常住人口的比值,是衡量人民生活水平的一个标准,它从宏观层面影响住房需求.城镇新建住宅面积和城镇固定资产投资反映了国家的城镇化水平,是城镇吸引力的体现,具有较强吸引力的城镇会吸引周边地区乃至全国范围内的住房购买需求. 城镇储蓄存款和城镇家庭平均每人全年实际收入反映了城镇家庭拥有财富的能力.购买住房就需要支出,所以住房需求受制于家庭的收入.神经网络是一种模仿人脑结构及其功能的信息处理方法,它通过对样本数据的反复训练实现对未知信息的推理.由于神经网络对数据没有特殊的要求,输出结果能够达到很高的精度,且非常适合用于预测.其预测原理为神经网络的训练是根据样本数据反复进行的,训练过程中,处理单元对数据进行汇总和转换,它们之间的连接被赋予不同的权值.当输出的结果在指定的精度级别上与已知结果相吻合时,对网络的训练就不再进行.通过对神经网络的训练和学习,使网络可以总结出内在的规律,从而对输出变量进行预测.本节所创建的BP 神经网络的指标分别取:学习速率选取为0.01,网络输入变量为7,隐藏层神经元的个数选为13,网络输出误差精度设为0.001. [1]该神经网络图1所示.输入层隐藏层 输出层图1 神经网络图假定输入层的第i 个节点得到的输入为i A ,输入到隐藏层的第h 个节点的则为这些值的加权平均ihi iwA ∑,最终通过传输函数f 从输出层输出()ih i if w A θ-∑,θ为隐藏层神经元的阈值.由于原始数据的单位不同,造成了指标量纲不统一的情况.为了加快网络的收敛速度,在训练前对数据做了标准化变换.标准化准则为*,ij jij jA A A σ-=其中11n j ij i A A n ==∑,11()()1nj ti i tj j t A A A A n σ==---∑.采用Levenberg-Marquardt 算法对数据进行训练,由下面的训练结果图可以看出,网络训练6次后即可达到误差要求,预测值的均方误差达到了0.000054175,预测效果较好.图2 训练结果图下面对给定的商品房年销售面积的原始序列()()()()()()(){}{}00001,2,,203025.5,4288.9,,104349X x x x ==进行估计,得出的估计值()()0ˆxi 如表1: 表1 销售面积的原始序列及估计序列(单位:万平方米)年度1991199219931994199519961997原始序列()()0x i 3025.5 4288.9 6688 7230 7906 7900901估计序列()()0ˆx i 3703.3 5189.4 7660 8268 8731 87629684年度1998199920002001200220032004原始序列()()0x i 12185 14557 18637 22412 26808 33718 38232估计序列()()0ˆx i 12767 14875 18729 22209 26337 33241 37544年度200520062007200820092010原始序列()()0x i 55486 61857 77355 65970 94755 104349估计序列()()0ˆx i 54018 60408 75839 65290 92490 100744图3展示了商品房年销售面积的原始序列及估计序列的曲线,从图中可以看出两个序列的拟合程度较高.4时间(年)销售面积(万平方米)商品房本年销售面积模型估计值图3销售面积的原始值及估计值序列图本节对影响住房需求的影响因素进行了分析,采用BP 神经网络建立了住房需求的预测模型,估计值与原始值之间的均方误差很小,证明了采用神经网络进行住房需求预测的有效性.2. 住房供给模型2.1 GM(1,1)模型的建立根据全国房地产市场1994-2010年的年度商品房本年竣工面积的统计资料,下面采用灰色系统理论,建立灰色GM(1,1)预测模型,对未来五年的商品房销售价格做出合理预测.对给定的商品房竣工面积的原始序列()()()()()()(){}{}00001,2,,1711637,14873.85,,75961Y y y y ==,作累加生成1—AGO 序列()()()()101,1,2,,17.ki y k y i k ===∑详细数据见表2:年份 1994 1995 1996 1997 1998 1999 原始序列()()0y i1163714873.85 15356.7115819.717566.621410.8生成116326514186576875259666序列()()1y i7 0.85 7.56 7.26 3.86 4.66年份 2000 2001 2002 2003 2004 2005 原始序列()()0y i25104.929867.434975.841464.142464.953417生成序列()()1y i121769.56 151636.96 186612.76 228076.86 270541.76 323958.76 年份 2006 2007 2008 2009 2010 原始序列()()0y i55830.960606.766544.872677.475961生成序列()()1y i379789.66 440396.36 506941.16 579618.56 655579.56图4为原始序列及1—AGO 生成序列的散点图,图中清晰地展现了每年商品房的竣工面积及其累计和.012345675时间(年)住房供给量(万平方米)原始序列生成序列图4 竣工面积原始序列及1—AGO 生成序列的散点图采用一阶单变量微分方程进行估计,得到白化形式的GM(1,1)模型()()11,dY aY u dt+= (1) 式中,a u 为待估计参数.求解白化方程(1),得到GM(1,1)模型的形式为()()()()10ˆ11,0,1,,16,ai u u yi y e i a a -⎛⎫+=-+= ⎪⎝⎭(2)还原后的预测模型为()()()()()()011ˆˆˆ11,1,,16,y i y i y i i +=+-=(3)其中()()()()0ˆ11yy =. 记参数向量[]ˆTaa u =,用最小二乘法求解得 ()1ˆ.T T N aB B B Y -= (4) 式中,B 为累加生成矩阵,N Y 为向量,二者的构造为()()()()()()()()()()()()()()()11111111212-19073.92511-34189.20512312-617599.0611161712y y y y B y y ⎡⎤-+⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-+⎢⎥⎣⎦,()()()()()()[]0002,3,,1714873.85,15356.71,,75961.N Y y y y ⎡⎤==⎣⎦将,N B Y 带入(4)式得到[]ˆ0.111213693Ta=-. 根据以上数据带入式子(3)和(4)可求得商品房竣工面积的GM(1,1)预测模型为:()()0.11121ˆ1134780123140,0,1,,16i yi e i +=-=()()()()()()()()0.111210.1112000ˆ1134780,1,,16.ˆ11i i y i ee i y x -⎧+=-=⎪⎨=⎪⎩ (5)由(5)式可得到1994-2010年住房竣工面积的估计值,并将其与原始序列的真实值比较,详见表3:年份 原始序列()()0y i估计序列()()0ˆyi年份 原始序列()()0y i估计序列()()0ˆyi1994 11637 116372003 41464.1 38582.8300 1995 14873.85 15851.4776 2004 42464.9 43120.5826 1996 15356.71 17715.7805 2005 5341748192.0234 1997 15819.7 19799.3454 2006 55830.9 53859.9198 1998 17566.6 22127.9598 2007 60606.7 60194.4213 199921410.824730.4441200866544.867273.92782000 25104.9 27639.0083 2009 72677.4 75186.0598 2001 29867.4 30889.6507 20175961 84028.7430 200234975.834522.6033图5展示了实际值与估计值这两个序列,从图中可以看出,两个序列之间拟合的程度高.1234567894时间(年)住房供给量(万平方米)实际值估计值图5竣工面积实际值及估计值序列图2.2 模型检验下面从残差、关联度和后验差三个方面对所得的模型进行检验. (1) 残差检验计算原始序列()()0y i 与估计序列()()0ˆy i 的绝对误差()i ε及相对误差()i δ,其中()()()()()()()()()()0000ˆ,1,2,,17,100%,1,2,,17.i y i yi i i i i y i εεδ=-==⨯=(2)关联度检验关联度系数定义为()()()()()()()()min max ,1,2,,17.max i i i i i i ερεηερε+==+其中ρ为分辨率且01ρ<<,本例中取0.5ρ=.运用Matlab 求解,得到的结果详见表4:年份 绝对误差()i ε相对误差()i δ关联度系数()i η19940 0 1 1995 977.6276 6.5728% 0.8049 1996 2359.0705 15.3618% 0.6310 1997 3979.6454 25.1563% 0.5034 1998 4561.3598 25.9661% 0.4693 1999 3319.6441 15.5045% 0.5486 2000 2534.1083 10.0941% 0.6142 2001 1022.2507 3.4226% 0.7978 2002 453.1967 1.2957% 0.8990 2003 2881.2700 6.9488% 0.5833 2004 655.6826 1.5441% 0.8602 2005 5224.9766 9.7815% 0.4357 2006 1970.9802 3.5303% 0.6718 2007 412.2787 0.6803% 0.9073 2008 729.1278 1.0957% 0.8469 2009 2508.6598 3.4518%0.61662010 8067.7430 10.6209%0.3333由于关联度系数的信息较为分散,不便于比较.为此,综合各个时刻的关联度系数,得到关联度r .通常0.5ρ=时,0.6r >便可认为关联度可以满意[2]. 关联度r 定义为()11.ni r i n η==∑本例中,()110.6778ni r i n η===∑.(3)后验差检验首先计算原始数列的()0Y 的均值()0Y 及均方差1S ,其定义为()()()0011,ni Y y i n ==∑ ()()()()2011.1ni y i Y S n =-=-∑然后计算绝对误差()i ε的均值ε及方差2S ,其定义为()11,ni i n εε==∑()()212.1ni i S n εε=-=-∑计算方差比21C S S =及小误差概率(){}10.6745P i S εε=-<. 确定模型级别,方法如表5.表5 模型级别 等级 好合格 勉强合格不合格取值PC P C PC PC 0.95>0.35<0.8> 0.5< 0.7> 0.65<0.7≤ 0.65≥将实际数据代入计算,得到后验差检验结果如表6.项目()0Y1Sε2SC P模型级别结果 43.856410⨯ 84.825210⨯32.450410⨯64.86110⨯ 0.0093 1好(I 级)由模型的检验可知,关联度0.6778r =,大于0.6,,C P 的取值均满足I 级模型的要求,说明模型的精确度较高,可用于实际预测.利用公式(5)对全国房地产市场2011-2015年的商品房竣工面积进行预测,得到表7:年份2011 2012 2013 2014 2015预测值()()0ˆyi 93911 104960 117300 131100 1465103. 房地产行业与国民经济其他行业关系模型本节以《中国统计年鉴2011》国民经济核算中的分行业增加值为基础数据,运用灰色关联度分析并结合信息熵对房地产相关行业进行权重赋值的方法,对全国房地产业与其他行业的关联度进行定量分析,进一步确定了全国房地产业与其他行业的关联程度,为制定合理的政策和战略提供参考.下面对灰色关联度模型的理论作一下简单阐述.设系统有n 个待优选的评价对象,对每个对象又有m 个评价因素,每个评价对象在相应各个评价因素下的属性值构成如下属性矩阵:1112121222121,2,,.1,2,n n ik m m mn x x x x x x i m X k n x x x ⎡⎤⎢⎥=⎢⎥= , ⎢⎥=⎢⎥⎣⎦这里的ik x 表示第k 个评判对象在第i 个评判因素下的指标属性.根据实际情况确定参考因素和比较因素.设:参考序列为0()x k ,且1,2,,k n =;比较序列为()i x k ,且1,2,,i m =和1,2,,k n=.根据国民经济体系的行业分类,选取以下13个行业:A 农林牧渔业,B 工业,C 建筑业,D 交通运输、仓储和邮政业,E 信息传输、计算机服务和软件业,F 批发和零售业,G 住宿和餐饮业,H 金融业,I 租赁和商务服务业,J 科学研究、技术服务和地质勘查业,K 居民服务和其他服务业,L 卫生、社会保障和社会福利业,M 公共管理和社会组织.全国房地产业与以上行业的国内生产总值增加值如表8所示:行年份业2005 2006 2007 2008 2009 A 22420 24040 28627 33702 35226B 77230.779091310.9363110534.8760130260.2387135239.9499C 10367.315012408.605315296.481618743.200022398.8267D 10666.163012182.984614601.039416362.503216727.1098E 4904.06875683.45196705.58077859.67318163.7861F 13966.175016530.722320937.835326182.339028984.4658G 4195.71664792.58575548.11376616.071297118.1671H 6086.82628099.082212337.549314863.250517767.5262I 3129.13883790.76934694.85405608.21776191.3598J 2163.98752684.78593441.33983993.35144721.7311K 3127.98863541.69993996.48294628.04855271.4826L 2987.3034 3326.2433 4013.7670 4628.7477 5082.5559 M 7361.1579 8836.6491 10830.4327 13783.7177 15161.7375 X8516.432410370.456013809.746314738.699318654.8792上表最后一行为房地产业的国内生产总值,作为参考序列0X .由行A M →构成比较序列()1,2,,i X i m =,也就是上面提到的属性矩阵ik X .根据房地产行业与相关行业的关系,采用公式min 1,2,,1,2,,max min ik ikiik ik iki ix x i m Z k n x x ⎛⎫-=⎪= , ⎪=-⎝⎭(6)对指标进行归一化处理.由公式(6)对ik X 进行无量纲化处理结果如表9.行业 年份 2005 2006 20072008 2009A 0 0.1265 0.4847 0.8810 1B 0 0.2427 0.5741 0.9142 1C 0 0.1697 0.4097 0.6962 1D 0 0.2503 0.6492 0.9398 1E 0 0.2391 0.5527 0.9067 1F 0 0.1708 0.4642 0.8134 1G 0 0.2042 0.4628 0.8282 1 H0.1723 0.5351 0.75141I 0 0.2161 0.5113 0.8096 1 J 0 0.2036 0.4994 0.7152 1 K 0 0.1930 0.4052 0.6998 1 L 0 0.1618 0.4899 0.7834 1 M 0 0.1892 0.4447 0.8233 1 X0.1829 0.5221 0.61371需要说明的是,后面我们会用到所有其他行(比较序列)与参考序列的差计算绝对差值序列,所以这里把参考序列也放入属性矩阵中进行归一化,如上表9中的X 行.表9即为归一化后的矩阵ik Z (参考序列不包括在内).绝对差值序列是参考序列与比较序列的绝对差值00()().i i z k z k ∆=- (7)运用公式(7),得到绝对差序列详见表10.表10 全国房地产业的国内生产总值增加值的绝对差值序列i∆行业 年份 2005 2006 20072008 2009A 0 0.0564 0.0374 0.2673 0B 0 0.0599 0.0520 0.3004 0C 0 0.0132 0.1124 0.0824 0D 0 0.0674 0.1271 0.3261 0E 0 0.0562 0.0306 0.2930 0F 0 0.0121 0.0579 0.1997 0G 0 0.0214 0.0593 0.2145 0 H0.0106 0.0130 0.1376I 0 0.0332 0.0108 0.1958 0 J 0 0.0207 0.0227 0.1015 0 K 0 0.0101 0.1169 0.0861 0 L 0 0.0211 0.0322 0.1697 0 M0.0063 0.0774 0.2096根据上式(公式7)可以得出min ∆和max ∆分别为绝对差值的最小值和最大值.其中min 0max 0,,min ()(),max 1,2,,.1,()()2,,,.i i i ki kz k z k z k i k n z m k ∆=-∆===-由上式可得,min max 0,0.3261.∆=∆=()i Y k 对0()Y k 的灰色关联度系数如下min max0max().i k ρηρ∆+∆=∆+∆(8)式中ρ是分辨率,本文取0.5ρ=.利用公式(8),灰色关联度系数矩阵如表11所示.表11 灰色关联度系数()k η行业 年份 20052006200720082009A 1 0.7431 0.8134 0.3789 1B 1 0.7315 0.7582 0.3518 1C 1 0.9251 0.5919 0.6642 1D 1 0.7076 0.5619 0.3333 1E 1 0.7436 0.8422 0.3576 1F 1 0.9309 0.7380 0.4495 1G 1 0.8842 0.7332 0.4319 1H 1 0.9390 0.9260 0.5423 1I 1 0.8309 0.9379 0.4543 1J 1 0.8871 0.8778 0.6163 1K 1 0.9415 0.5824 0.6545 1L 1 0.8854 0.8351 0.4900 1M 1 0.9629 0.6782 0.4375 1由于灰色关联度系数仅表示各年度数据间的灰色关联程度,为了进一步对整个序列进行比较,即()i Z k 和0()Z k 的比较,根据信息论知识可知,某项指标值变化程度越大,信息熵越小,该指标权重就应该越大,反之也成立.所以,可根据各个指标的变化情况,利用客观赋值法中的信息熵法计算出评价因素权重,以便能够更加准确和科学地计算灰色关联度.按照熵思想,人们在决策中获得信息的多少和质量,是决策的精度和可靠性大小的决定因素之一.所以熵在应用于不同决策过程中的评价或案例的效果评价时是一个很理想的尺度. [3]评价指标的信息熵如下面公式所示,1ln .ni ij ij j H K f f ==-∑在此,我们得到的信息熵值为()0.7479,0.7936,0.7617,0.7984,0.7915,0.7660,0.7766,0.7744,0.7854,0.7826,0.7693,0.7662,0.7698.i H =假定,0ij f =时,ln 0ij ij f f =;其中,1ijij nijj z f z==∑,1ln K n=.计算得0.6213K =.评价指标的熵权i w 公式11i i mii H w m H =-=-∑.计算得到()0.0864,0.0708,0.0817,0.0691,0.07150,0.0802,0.0766,0.0774,0.0736,0.0745,0.0791,0.0802,0.0789.w =灰色关联度的计算公式为1().mi k i r w i η==∑带入数据,得到()0.3401,0.2719,0.3416,0.2490,0.2819,0.3304,0.3102,0.3409,0.3107,0.3266,0.3305,0.3376,0.3219.r =对0()Z k 和评价因素()i Z k ,其关联度分别为()1,2,,i r i m =,按从大到小的顺序,即得灰色关联度顺序,例如设12m r r r >>>,表明1Z 和0Z 的关联度最大,或者对0Z 的影响最大,2Z 次之.由上面得到的灰色关联度如图6.卫生福居民服批发零科研技公共管租赁商住宿餐信息软工业交通邮建筑金融农林牧图6 灰色关联度条形图根据以上对全国的房地产业与相关产业的关联度的计算和分析可以看出:全国房地产业与建筑业的关联程度最大,关联度为0.3416;此处房地产业与金融业、农林牧渔业、卫生、社会保障和社会福利业、居民服务和其他服务业、 批发和零售业、科学研究、技术服务和地质勘查业和公共管理和社会组织的关联度也较大,灰色关联度分别为0.3409,0.3401,0.3376,0.3305,0.3304,0.3266,0.3219.可见,房地产业的发展将对相关产业的发展起到很强的拉动作用,同时对国民经济的发展也具有重大的影响. 4. 房价预测模型Markov 链是时间和状态均为离散变量的随机过程.它的特点是无后效性,即在0t 时刻的状态为已知时,它在时刻0t t >的状态与其在0t 之前的状态无关[4].Markov 模型能充分利用历史数据给予的信息,为随机波动较大的数据预测工作提供了一种新的方法,提高预测的精度.因此本文采用Markov 模型对房价进行预测.依据附录中1991-2009年商品房年销售价格{},1,2,,19t p t =,其中2010年商品房年销售价格从中国统计年鉴中查到,详细数据见表12:年份 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000销售价格tp7869951291 1409 1591 1806 1997 2063 2053 2112年份 2001 2002 2003 2004 2005 2006 2007 2008 2009销售价格tp2170 2250 2359 2778 3168 3367 3864 3800 4681将时间1991-2009年离散为时间序列1-19,商品房年销售价格t p 用三次插值多项式进行拟合,得到其拟合曲线为32ˆ 1.431136.2213394.6141387.8186,1,2,,19.t pt t t t =-++=运用Markov 模型预测2010年商品房的销售价格.首先对商品房年销售价格t p 的数据序列进行状态区间划分,为保证预测的准确度和计算的方便性,并结合近几年商品房销售价格的具体情况,将数据序列化分为四个状态,分别记为,1,2,,4i i Ω=,这里i Ω的划分按与拟合曲线ˆt p的变化趋势相一致的准则,即以ˆt p 为基准曲线,作四条平行于ˆt p的曲线而得到四个条形区域,每一个条形区域代表一个状态,即使i Ω所属于的一个状态区域,如图7示:tpt实际值拟合曲线状态分割线↑Ω1↑Ω2Ω3↓Ω4↓图7 状态分割曲线其中每个区域的上、下界见如下的状态划分标准表:状态1Ω 2Ω 3Ω 4Ω 状态下界 ˆ300t p - ˆ150t p - ˆt pˆ150t p+ 状态上界 ˆ150t p- ˆt p ˆ150t p+ ˆ300t p + 从图7中可以得到1991-2009年商品房年销售价格t p 的Markov 转移情况,得到表14:状态1Ω 状态2Ω 状态3Ω 状态4Ω 合计 状态1Ω 0 0 2 0 2 状态2Ω 1 3 2 0 6 状态3Ω 0 3 3 2 8 状态4Ω112继而得到状态转移概率矩阵010*******.03314120120V ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦由图7可知2009年商品房年销售价格19p 处于状态区间3Ω,根据状态转移矩阵知19p 转移到20p 时分别以概率3处于状态区间2Ω、38处于状态区间3Ω和14处于状态区间4Ω,故根据Markov 模型估计的2010年的商品房年销售价格()()()()2020202020202020ˆˆˆˆˆˆ15015015030033145ˆ5145.6.8282422p p p p p p p p-++++++⎛⎫⎛⎫⎛⎫=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭查《中国统计年鉴2011》[5]可知:2010年商品房年销售价格为5230元,两者的绝对误差1.61%.五、房地产发展态势与政策成效分析1. 房地产市场发展态势分析本节首先运用房地产开发综合景气指数的变化对我国近几年的房地产市场的发展态势进行分析.房地产开发景气指数,指对企业景气调查中的定性经济指标通过定量方法加工汇总,综合反映某一特定调查群体或者发展趋势的一种指标.房地产开发景气指数是反映房地产业发展景气状况的综合指数.1998年1月至2011年七月的房地产开发景气指数详见图8,其中2009-2011年1月的数据缺失,为了便于分析,文中采用相邻样本均值插补法对缺失值进行插补,插补后的数据分别为95.6、104.57和102.35.929496982000—072008—012005—072003—011998—012011—082010—07图8 房地产开发综合景气指数近年来,国务院对房地产业出台了一系列调控政策.1998年,国务院发布了《城市房地产开发经营管理条例》,我国开始进行住房制度的改革.由上图可以看出,从1998年到2001年末,房地产开发综合景气呈上升趋势.2002年,建设部等六部委发布了《关于加强房地产市场宏观调控促进房地产市场健康发展的若干意见》,国家开始遏制房价过快上涨势头,以促进房地产业和国民经济健康发展,当时的调控手段比较单一,主要通过土地和金融政策类约束开发商的投资或居民的购房需求.2006年5月29日,国务院办公厅转发建设部等九部门《关于调整住房供应结构稳定住房价格的意见》,国家开始对房地产市场的供应结构进行调整和规范.2008年受经济危机影响,我国房地产市场进入低迷时期.由于为应对经济危机超发的货币和调控政策的松动,2009年房地产市场迅速由低迷变为亢奋,房地产开发综合景气指数迅速上升.2010年4月,为了切实解决城镇居民住房问题,国务院发布了《国务院关于坚决遏制部分城市房价过快上涨的通知》(简称“新国十条”).该通知加大了调控力度,要求实行更为严格的差别化住房信贷政策,发挥税收政策对住房消费和房地产收益的调节作用.多种调控方式取得了一定效果,由图中可以看出2010年房地产开发综合景气指数大体呈下降趋势.2011年1月,国务院发布了《关于进一步做好房地产市场调控工作有关问题的通知》(简称“新国八条”),房地产开发综合景气指数在小幅上涨后又回落.房地产价格走势涉及到人民群众切身利益,关系到经济健康发展好社会和谐稳定.拥有住房是人民正常生活的重要条件,通过上面的分析可以看出,国务院对房地产市场实施调控的决心是坚定的, 并取得了一定成效,通过国家政策可以对房地产市场进行宏观调控,进而改善人民生活状况.2. 房地产政策的成效分析下面通过房屋销售价格环比指数对房地产政策的成效进行评价,并提出了房地产政策严厉度对政策的严厉性进行量化.房屋销售价格指数是反映一定时期房屋销售价格变动程度和趋势的相对数,它是通过百分数的形式来反映房价在不同时期的涨跌幅度, 直接反映了房价的变动情况.房屋销售价格环比指数是以上月价格为100的基准数得到的指数. 国务院出台政策调控房地产市场的目的是把遏制房价上涨, 房地产政策严厉度L用房地产政策发布后引起房屋销售价格环比指数的变化量来描述.严厉度越大,表明国家对房地产市场监管的越严格,政策取得的成效越大.房屋销售价格环比指数的数据取自于国家统计局官方网站[6],2010年和2011年的房屋销售价格环比指数详见图9和10:其中2011年的房屋销售价格环比指数采用的是七十个大中城市新建住宅和二手住宅销售价格环比指数的平均值.2010—12010—32010—52010—72010—92010—11图9 2010年房屋销售价格环比指数如图所示,2010年4月“新国十条”发布后,房屋销售价格环比指数明显下降.从2010年5月到2010年8月期间,房屋销售价格环比指数累计减少了1.4,达到了抑制房价快速上涨的目的,故此时严厉度1L 为1.4.99.9100100.1100.2100.3100.4100.5100.6100.72011—22011—42011—62011—8图10 2010年房屋销售价格环比指数由图10可知:2011年1月“新国八条”发布后,房屋销售价格环比指数持续下降,但下降的幅度较小.从2011年2月到2010年8月,房屋销售价格环比指数累计减少了0.7157,所以“新国八条”的严厉度20.7157L =.从政策的内容来看,“新国十条”通过提高贷款首付比例和贷款利率来限制贷款投机性购房,对定价过高、涨幅过快的房地产开发项目进行重点清算和稽查, 大幅度增加公共租赁住房、经济适用住房和限价商品住房供应.“新国八条”的目的在于进一步做好房地产市场调控工作,调整完善相关税收政策,继续有效遏制投资投机性购房[7].从前面的严厉度数据得出12L L >,所以“新国十条”也被称。

数学建模 房地产泡沫问题建模

数学建模 房地产泡沫问题建模

房地产泡沫问题房地产泡沫是房地产资产的价格脱离了实际基础价值连续上涨的现象。

房地产泡沫的主要特征是:第一,房地产泡沫是房地产价格波动的一种形态;第二,房地产泡沫具有陡升陡降的特点,振幅较大;第三,房地产泡沫不具有连续性,没有稳定的周期和频率;第四,房地产泡沫主要是由于投机行为、货币供应量在房地产经济系统中短期内急剧增加造成的。

投机价格机制和自我膨胀的机制是房地产的主要内在运行机制。

房地产泡沫是在内在传导机制和外在冲击机制的共同作用下,开始产生、膨胀和崩溃的。

泡沫经济:虚拟资本过度增长与相关交易持续膨胀日益脱离实物资本的增长和实业部门的成长,金融证券、地产价格飞涨,投机交易极为活跃的经济现象。

泡沫经济寓于金融投机,造成社会经济的虚假繁荣,最后必定泡沫破灭,导致社会震荡,甚至经济崩溃。

泡沫经济可分为三个阶段,既泡沫的形成阶段、泡沫的膨胀阶段、泡沫的溃灭阶段。

虚拟资本(Fictitious Capital)是以有价证券(包括股票、债券、不动产抵押单)等形式存在的,能给持有者带来一定收入流量的的资本;现实资本(Actual Capital)就是以生产要素形式和商品形式存在的实物形态的资本。

在生产资本和商品资本的运动中不会出现泡沫,因为生产资本和商品资本的运动都是以实物形态流量为媒介,并进行和其相对应的流向相反、流量基本相等的货币形态流量。

因此人们认为泡沫经济产生于虚拟资本的运动,这也是泡沫经济总是起源于金融领域的根源。

此外,作为不动产的土地,其特殊的价格构成使土地资产成为了一种具有虚拟资本属性的资产,同时金融业与房地产业的相互渗透、相互融合,使得每次经济泡沫的产生都必然伴随着地产泡沫的产生。

与其他产业经济一样,房地产业在实际经济运行中也存在着较为明显的周期波动现象。

虽然理论界对房地产经济周期的定义有各种各样不同表述,但对房地产经济周期波动的表现形式还是相同的。

认为:房地产经济周期可以分为两个过程,即扩张过程和收缩过程。

数学建模论文(房地产销售)

数学建模论文(房地产销售)

房地产销售问题摘要房地产业发展涉及到国计民生的众多行业,其受各种因素的多元化影响,对于房产业发展相关问题的有效研究可以对国民经济的健康可持续发展产生积极的影响。

本文针对房地产发展的三个重要问题,分别建立了相应的数学模型进行了分析,并得出了相应的结论。

本文通过数学建模的方式,利用非线性规划建立动态模型,主要讨论的是在允许期房,假设销售的前提下,服务方面都是令购房者满意的。

在讨论建筑过程矛盾时,只考虑两大矛盾,即建材费的上涨和折旧费的存在。

其中建筑能力分为建筑能力无限和建筑能力有限两类。

本文通过计算来平衡这两个矛盾,从而得到比较合理的月建房计划,使得月销售量和月建造量都达到最优化,最终使所获利润达到最大。

关键词:折旧费固定成本可变成本回归分析综合评价方法一、问题的提出我市某房地产公司通过对历史资料进行回归分析(即数据拟合),并结合2008年上半年可能出现的影响楼盘销售的因素,预测该公司2008年上半年的销售情况如下表所示:表1该公司的楼盘2007年12月的销售均价为4800元/平方米,平均每套120平方米,2008年上半年的售价保持不变。

2007年12月末尚有49套现房未售出。

商品房从规划到售出会发生下列费用:(1)建造成本,包括固定成本(主要是指购地、机器设备的折旧)和可变成本(钢材、水泥、装饰材料和人工成本等,其中人工成本在可变成本中占到大约40%),按照2007年12月份的建材价格计算,可变成本(万元)与商品房建造套数(以平均每套120平方米计算)的平方成正比,比例系数为0.5。

且可变成本与建材价格上涨幅度有关,例如建材价格上涨10%,则可变成本是按前面方法计算结果的1.1倍。

(2)销售费用,与当月销售金额成正比。

(3)折旧,建造好的商品房未售出的必须计提折旧,折旧分40年平均摊销,即该公司生产的商品房平均每套每月的折旧为48万元/(40*12)=0.1万元。

近年以来,国家发改委等部门出台了一系列措施平抑建材价格,但由于对建材需求结构而言,总体上求大于供的市场状况没有得到根本改善,预计今年建材的价格仍会有一定的增长。

数学建模之住房的合理定价问题

数学建模之住房的合理定价问题

住房的合理定价问题摘要房价的合理性已成为当今社会的热门话题。

本文依照题中所给出的数据,对3个问题分别建立模型并求解。

针对问题1,首先利用Excel建立图表,绘制出历年房价走势图。

然后,对原始数据进行拟合,得出指数型及多项式型拟合方程,并在原图上绘制出趋势线。

同时,求出确定性系数R2,依据R2是否接近于1判断拟合程度好坏,即检验拟合方程的有效性。

计算得出的指数型及二阶多项式型拟合方程:x,(i) =678.8le0.1281i、x2(i) =12.59i2 50.274i 716.38,由此预测出2010 年房价分别为4080元/平米、3888元/平米。

为了增加预测的可靠性,再结合二次指数平滑法对2010年房价进行预测。

通过比较实际值与预测值的平均偏差值ME的大小,选择出合适的o预测出2010年的房价为3800元/平米。

最后,建立三元线性回归模型,将上述三种方法对历年房价的预测值分别作为自变量x1、x2、X3的原始数据,以实际房价P(i)作为因变量,用Matlab软件拟合出多元线性方程:P f1(i) =—0.0202 —0.1389 刘⑴ 1.1319 X2(i) 0.0084 X3(i)。

代入相关数据,求出历年的最终房价预测值为3866元/平米。

针对问题2,通过Excel绘制出历年平均房价与人均GDP的关系走势图,且自动生成对原始数据进行拟合后的指数型和自变量为2阶、3阶、4阶的多项式型拟合方程及各自的确定性系数R2o R2的值分别为:0.8673; 0.9929 ; 0.9982; 0.9986。

由此判断,因2阶多项式型拟合方程的R2不仅十分接近于1,且相对于3阶、4阶的多项式方程更为简便,故选择:A 2P(i) =(_7E _06) [G(i)] 0.3236 G(i) -177.06 为平均房价与人均GDP 的关系方程。

最后,在联系当下实际状况的基础上对建立的模型进行研究,分析出平均房价与人均GDP的关系。

房地产数学建模

房地产数学建模

房地产数学建模Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT房地产问题分析摘要房地产行业与百姓的生活息息相关。

近年来,由于房地产价格的不断攀升,房地产行业已经引起了社会的广泛关注。

本文分别就影响房地产价格的因素和未来房地产价格的趋势进行了细致的分析研究和预测,并最终提出了相应的改进措施和调控房价的建议。

对于问题一,由于影响房地产价格的因素众多,我们就选取了人均消费水平,人均GDP 占有量,人口密度,土地成本,银行贷款利率五个与房地产价格有着密切关系的指标在全国范围内进行研究分析。

我们采用一元线性回归模型利用SPSS 统计软件分别对五个指标与房地产价格进行线性回归,得到线性回归方程和相关系数。

并通过分析得出:土地成本、人均GDP占有量、人口密度(市场需求)、人均消费水平这四个因素对房地产价格的影响较大,而银行贷款利率的影响相对要小一些。

因此,最后我们使用多元线性回归模型,利用SPSS 软件对四个变量进行了多元线性回归,并得出了回归方程。

问题二,虽然线性回归对房价的形成预测比较高,但它只是根据有限的几个因素来确定的,于是我们通过分析确定了可以利用华中科技大学控制科学与工程系教授,博士生导师邓聚龙于1982年提出的灰色预测模型来进行求解。

我们建立了灰色预测模型并进行了模型的求解。

通过对模型的求解,预测得了未来几年的房价,并就调控房价提出了一些政策建议,对建议可能产生的效果进行了科学的预测和评价。

关键词:房地产 SPSS MATLAB 灰色预测模型线性回归模型一、问题重述虽然国家多次进行宏观调控,多次调整利率、存款准备金率等,试图对房地产市场进行调控,但自1998年实行房改以来,我国大部分城市的房价出现了普遍持续上涨情况。

一方面,房价的上涨使得新进入城市或需要购房者的生存成本大幅增加,导致许多中低收入人群买房难,其它消费也无法提升;另一方面,部分投资或投机者通过各种融资渠道买入房屋进行出租或空置,期望因房价上涨而获得超高回报,导致房价居高不下。

数学建模房地产问题

数学建模房地产问题

数学建模优秀论文二抑制房地产泡沫问题摘要:房价作为一种价格杠杆,在引导房地产可持续发展和抑制房地产泡沫将起到积极的作用。

科学合理地制定房价,对房地产的发展具有重要意义.本文先从产生房地产泡沫的原因谈起,找出影响房产的相关因素,然后从房地产开发商和消费者两个方面展开讨论,得出两个不同的模型。

模型一从开发商的角度建立模型,运用定性的分析方法,分析一个商场中只有一个房地产开发商,两个开个商和多个开发商的情况,运用博弈论的方法给出不同的模型,给出一个从特殊到一般的数学模型,并运用相关的经济理论进行解释;模型二从消费者的角度建立模型,运用有效需求价格,动态地确定消费者的房价的范围。

在此基础上,采用一元线性回归,通过推导出的模型和运用大量的数据对模型的进行验证和分析,得出房价与其中几个主要因素的关系:主要因素回归方程复相关系数RGDP与房价0.98135人口密度与房价0.55250人均可支配收入与房价0.93943影响当前房价的主要因素,如社会因素包括国民经济的发展水平、相关税费、居民的收入、政策导向、社区位置等,自然因素包括地价、建安成本和开发商利润等;并在分析影响房价的诸多因素之后,提出了八点政策性建议.综上所述,运用我们的模型得出相应的房价,然后利用我们相应的政策作为指导,我国的房地产不但会抑制房地产泡沫问题,而且我国的房地产市场将得到持续健康地发展。

一问题重述近几年来,我国各大城市的房价出现了普遍持续上涨、高居不下的情况。

房价的上涨使生活成本大幅增加,导致许多中低收入人群买房难。

因此如何有效地抑制房地产价格上扬,是一个备受关注的社会问题.现在请你就以下几个方面的问题进行讨论:1.建立一个城市房价的数学模型,通过这个模型对房价的形成、演化机理进行深入细致的分析;2.通过分析找出影响房价的主要因素;3.给出抑制房地产价格的政策建议;4.对你的建议可能产生的效果进行科学预测和评价.二合理假设1、在某个城市中有多个房地产开发商,不存在完全垄断的现象2、某一城市的商品房的定价是经过综合分析之后的出来的3、我们在求房价的过程中不考虑套利的情况4、所在的城市物价和其他情况相对比较稳定,全局内没有大起大落的现象三符号说明--———---——————-———-—-——其它消费品——-——-————--—---—-—————房地产——----—----—-—-———-————其它消费品的价格————-———--——-—-----—--—房地产的价格—--—-—---———-—-————消费函数——--—-—--—----—--———--——居民支配消费总额四问题分析所谓房地产泡沫就是指房地产商品的预期价格被大大的高估,从而导致各类投机资本的纷纷进入,通过恶性炒作将现期房地产价格大大抬高。

房地产定价数学建模

房地产定价数学建模
模型应用
利用该模型可以快速准确地预测房 地产价格,为开发商和投资者提供 决策依据。
应用案例二
01
时间序列模型
时间序列模型是一种基于时间序列数据的数学建模方法,通过分析历史
数据来预测未来房地产价格走势。
02
模型建立
将房地产价格数据按照时间序列进行排列,并选择适当的时间序列模型
(如ARIMA模型、指数平滑模型等)进行拟合。
使用测试数据对训练好的模型进行评 估,计算模型的准确率、召回率、F1 值等指标,以衡量模型的性能。
模型优化
通过调整模型参数、增加或减少特征 等方式优化模型,提高预测精度。可 以采用交叉验证、网格搜索等技术进 行参数调优。
04
房地产定价的时间序列模型
时间序列模型的建立
1 2
确定模型类型
根据房地产市场的历史数据和变化趋势,选择适 合的时间序列模型,如ARIMA、指数平滑等。
02
房地产定价数学模型的基本 原理
线性回归模型
总结词
线性回归模型是一种预测模型,通过找出影响房地产价格的 主要因素,并建立它们之间的线性关系来预测房地产价格。
详细描述
线性回归模型假设房地产价格与诸如建筑成本、地价、利率 等变量之间存在线性关系。通过最小二乘法等统计技术,可 以估计出这些变量的系数,从而预测房地产价格。
数学建模在房地产定价中的作用
提高定价的准确性和科学性
数学建模能够综合考虑各种因素,建立合理的定价模型,提高定 价的准确性和科学性。
优化资源配置
通过数学建模,可以对不同地区、不同类型、不同时间段的房地产 进行合理定价,优化资源配置,促进市场健康发展。
促进市场公平竞争
数学建模能够减少信息不对称和市场垄断等问题,促进市场公平竞 争,保护消费者利益。

大学生数学建模_房价预测

大学生数学建模_房价预测

大学生数学建模_房价预测
一、问题的提出房地产问题一直是人们的热议话题,尤其是近几年更是成为人们关注的问题。

不错,房地产作为一个行业,不仅关系国家经济命脉,它还是影响民生问题的主要因素,所以搞好房产建设不仅是国家与房产商的任务,我们也应了解其中的一些运作原理来帮助我们更好的适应社会环境。

为此,对房产业的了解就显得颇为紧急,而房价问题一直是人们关注的首要问题,下面我们将用数学模型来解决房产中的以下实际问题,仔细分析影响房价的因素以及它们之间的关系。

问题一:通过分析找出影响房价的主要原因并且通过建立一个城市房价的数学模型对其进行细致的分析。

问题二:分析影响房价主要因素随时间的变化关系,并且预测其下一阶段的变化和走势。

问题三:选择某一地区(以西安为例),通过分析____年至____年房价变化与影响因素之间的关系,预测下一阶段该地区房价的走势。

问题四:通过分析结果,给出房产商和购房者的一些合理建议。

二、模型假设和符号说明假设假设
一、房地产产品具有一定的生产周期假设
二、房价的计算只考虑人均可支配收入和生产成本假设
三、理想房价是仅基于成本得到的房价,不考虑供求假设
四、成本的花费包括地价(地面地价)、建筑费用和各种税收假设
五、不考虑其他影响如(地理位置,环境等)符号说明:_1代表人均可支配收入,_2代表建造成本,y为房产均价,其中a和
三、模型建立与求解我们主要用到的是数学模型是用最小二乘法对影响房价的各个因素进行拟合,从而解除出性方程组,其中用到的主要数学软件是matla。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把 A 的各列向量分别记成 1 , 2 , L( 1 , 2 ,
, s 。由它们生成的子空间为 , s
, s ) ,Y 就是 L( 1 , 2 ,
)中的向量。于是最
小二乘法的问题可叙述为: 找 X 使得(1)最小,就是在 L(1 , 2 ,
, s )中找一向量 Y,使得 B
一、 问题重述 在缺乏可靠投资渠道的情况下,有的家庭选择利用余钱
-1-
或贷款购置房屋进行投资。请根据市场房屋价格的变化情 况,综合考虑家庭收入、租金收入、储蓄及贷款利率、房屋 折旧率、房屋空置率等因素,建立数学模型,为家庭进行住 房投资做出决策。
1.1 问题背景与分析 近年来,随着中国经济日益发展,人们生活水平不断提高,越来 越多的人在能满足自己生活花费之外有余钱进行投资。在缺乏可靠投 资渠道的情况下,有的家庭选择利用余钱或贷款购置房屋进行投资。 买房既然是一项很重要的决策,就需要有一个投资策略,诸如房地产 投资理财的好处和缺点、决定房产价格的因素、怎样买房卖房、怎样 利用房地产周期、怎样做房东、怎样对房产的成本和风险评估等等。 如果我们能在房产理财中考虑和应用这些知识,从而使我们将来的投 资决策和理财更成功,进而避免出现“负资产”和在次贷危机中被迫 放弃房产。 从投资人的角度来讲,一方面,各人的收入差距决定了不同的资 本投资方式,有的人资金较为充足,选择了现金购房的方式,有的人 不能负担起高额的房价带来的投资压力,因而选择以贷款的形式进行 投资。另一方面,在错综复杂的投资背景下,有的人为了规避短期内 房产价格波动所带来的风险,选择了相对长期的投资,还有的人,对 于房地产市场价格波动的周期比较自信, 选择了风险较大的短期投资, 以追求在短时间的利益最大化。从房产的角度来讲,一方面,政策对 房产的价值及升值空间起到了至关重要的作用。首先,政策的出台会 在短期和长期影响房产的升值空间。其次,投资人的投资心理和投资 决策会随政策的出台而改变,例如限购令的颁布会使人们买房欲望降 低而更倾向于持观望态度。最后,政策会对房产市场造成冲击,例如 国家建设保障性住房来缓解低收入人群的购房压力,进而降低房产价 格。另一方面,环境因素也是买房者除房屋质量外最关心的。便利的 交通条件可以为买房者节省时间提高效率;优质的教育资源有更好的 机会给投资人培养下一代,房屋出租会受到高等院校学生的欢迎;良 好的医疗条件可以给投资人的健康提供保障。从投资人利润的角度来 讲,如果选择房地产投资获取利润可以通过租房或者卖房。卖房对房
xs0 使得 (ai1 x1 ai 2 x2
i 1
(1)
0 0 的值最小此时称 x1 x2
xs0 为方程组的最小二乘解, 过程中所用方法即
为最小二乘法。
现令
-5-
a11 a A 21 an1
a四、题目的求解
4.1 问题一 问题一的目的是找到房屋投资者购房时的最优价格
4.1.1 模型1: (1)首先构依赖于价格建价格需求函数反映市场需求对价格的 敏感程度,并且找出房屋投资者购房时的最优价格 (2)在市场竞争的情况下销售面积 x 依赖于价格 p,记作 x=f(p) 利润 U(p)可以表示为 U(p)=I(p)-C(p) 若要使利润 U(p)达到最大,最优价格 p*可以由 到,即有
(C, 1 ) (C, 2 )
回忆矩阵乘法规则,上述一串等式可以写成矩阵相乘的式子,即
1C 0, 2C 0, , sC 0
而 1 , 2 ,
, s按行正好排成矩阵 A ,上述一串等式合起来就是
A( B AX ) 0

AAX AB
这就是最小二乘解所满足的代数方程,它是一个线性方程组,系数矩
阵是 AA ,常数项是 AB 。
利用已知数据(数据见附录 1) 。结合价格需求函数以及最小二乘
法计算得到最优价格为 5591.2 元/㎡, 而其中的社会住房绝对需求量为
a=751770 , 市 场 需 求 对 价 格 的 敏 感 系 数 b=112.5 , 即 最 优 价 格 为
问题一:利用搜索到的数据,通过最小二乘法,求出近期房地产市场 供应下的 最优购入价格问题; 问题二:通过对城东、城西、城南、城北和城内各个地方房屋买入与 售出之间的利润收入以及通过租赁获取利润两种方式进行计算和比较, 进 而得出在房地产业获取最大化利润的投资方式。 问题三: 由于近期股票市场前景不好, 故建议部分投资者选择基金进 行投资活动。通过查阅相关资料,求出近几年基金的平均收益率
2
(2)
现采用距离的概念,则式(1)即为 Y B
0 最小二乘法就是找 x10 x2 Y 就是
xs0 使 Y 与 B 的距离最短。从(2)知,向量
a1s a xs 2 s ans
a11 a12 a21 a Y x1 x2 22 an1 an 2
最小二乘法:线性方程组
a11 x1 a12 x2 a x a x 21 1 22 2 an1 x1 an 2 x2
n
a1s xs b1 a2 s xs b2 ans xs bn
ais xs bi )2
0 0 可能无解,但总是可找到 x1 x2
二、模型的假设
假定: 1)家庭余钱为 100 万,购房 100 ㎡(三室一厅) ,并且在购房之 后把余款存入银行; 2)西安市近期没有房产税以及西安市限购令规定每个家庭在原有 住房的基础上只能再多购买一套住房,且由于限购令出台时期 较晚,造成近期房价数据的缺失,因此在做题时根据西安市房 地产实际情况,假设限购令对西安市影响不明显; 3)房屋以 4500 元/㎡为成本; 4)房屋成本与销售量无关; 5 )房屋折旧率与使用年限的关系为:年折旧率 =(1- 预计净残 值)/20*100%,房租租赁后每年折旧 5%,但如果不使用该房屋 则不计算折损;
到它的距离比到子空间 L( 1 , 2 ,
, s )中其他向量的距离都短。
应用前面所讲的结论,设
-6-
Y AX x11 x2 2
xs s
是所要求的向量,则
C B Y B AX
必须垂直于子空间 L( 1 , 2 ,
, s )。为此只需而且必须 (C, s ) 0
-2-
屋的折旧率小,是一种可以一次性获得较多的收益的投资;找中介和 自己联系客源是租房的两种基本方式,选择中介可以规避因季度或租 房者不足带来的风险,但其利润相对较低,自己选择客源可以获得高 利润但也要面临高风险,政策的出台也会对房租的价格产生影响;先 租后买也是许多人的选择,这种方式房屋折旧率大,但其优势在于可 以在房屋尚未卖出时获取房屋的最大价值。另一种方式是选择非房地 产投资,分为以下几类:股票基金类投资、商业银行存款国家债券类投 资、期货投资、其他类型投资。股票基金类投资风险最大利润最高, 商业银行存款债券类无风险但利润也最低,期货投资和其他类投资居 中。 为此,我们通过建模计算,比较投资房产收益与股票、债券等投 资方式收益的大小问题。 1.2 目标任务 (小四、宋体)
x1 x X 2 xs

s a1 j x j j 1 s a2 j x j Y j 1 AX s anj x j j 1 b1 b B 2 bn
-3-
6)根据现有政策,房屋租赁年限为 20 年; 7)暂定投资时间为 1 年,待售期间不移入新房居住,且对于新房 不再追加任何投资。
三、符号说明
U(p):收益总额 C(p):购房价格 I(p):售房价格 f(p):需求函数,在此表示房产销售面积 a:社会住房绝对需求量 b:敏感系数,即市场需求对价格的敏感程度 q:房产商建房成本 p*:市场最优价格(房价在市场所能达到的最低价位) P:投资者购房时房屋的价格
4.1.3 问题一的综合分析与进一步研究 在计算过程中我们发现,该价格需求函数的使用非常方便,在已 知 a,b 值的情况下,仅需获取当时市场的销售量便可得到当时房产的 最优价格,投资者可参考该价格绝对是否抛出自己手中的房产,具有 一定的指导意义。 4.2 问题二 解决在购入房产之后,为获得最大利润,投资者在卖房与租房之 间的选择问题 4.2.1 模型1: 具体内容可分为多个小问题,根据具体问题情况取舍,如: (1)设租房的年限为 m,则 m 年后房屋价值为 P×(1-4.75%)m m 年后总收益为 P×(1-4.75%)m+房租收入-P (2)由于西安市各区房价不同,现分为城东、城西、城南、城北、 城内进行讨论。 城东:购 100 ㎡房屋一次性花费 55 万,一年后卖出价格为 72.9 万,中间差价为 17.9 万,余钱存入银行所得利润:13500 元,总利润 为:18.35 万 而进行租赁所得为:
p*
q 3341.2 2

-7-
(3)结果分析 计算中引入了价格需求函数, 并且通过最小二乘法用 matlab 辅助 求解得出房屋购入时的最优价格应该为 5591.2 元/㎡,此最优价格也 即为对应于现有市场需求的最低房产价格,即房价在降至此数左右时 由于市场需求增加的推动而造成价格的回升,因此这个价格应该为投 资者出售的最佳时刻。但此数是根据西安市平均水平计算得出,因此 在各个地区使用时会产生一定的误差
题目:住房投资分析
摘要
随着房地产业的不断升温,越来越多的家庭开始将余钱投资在房 地产业。但在进行房产投资时,由于房产评估、国家政策以及价格走 势的不确定性,需要运用各种数学手段对其进行分析,以达到让投资 人获取最大利益的目的。在本文中,我们研究了近期的房产数据,提 出了住房投资方面较好的解决方案,对西安市下一阶段房地产投资进 行了分析并提出了最优的投资方案。 在投资住房初期,通过构建价格需求函数并且利用最小二乘法和 matlab 工具来确定购房时的房产最优价格。通过查阅近期数据利用上 述方式求得最小二乘解为 5591.2 元/㎡,该解符合实际生活,具有相 当的可信度。 本问题中考虑到由于西安市各地区的地域不同,造成在投资初期 买入房价的不同,因而分为城东、城西、城南、城北和城内进行分析 计算。 在购入房产之后, 通过分析先前政府公布的数据并且利用 matlab 中的数据拟合方法来预测一年之后的房产价格,进而确定出售房的利 润收入,然后通过假定房间租赁价格恒定来确定选择租房方式时的利 润,根据投资者的不同需求提出投资建议。计算租赁利润时我们引入 了房屋折旧率,并且考虑了房屋装修费用,采用 java 语言进行了编程 计算,求得租赁 20 年之间的总收入与利润收入(由于之后若干年政府 政策的不确定性与金融市场的周期波动性,我们暂不考虑国家的通货 膨胀对房产收益造成的影响) , 发现在租赁若干年后利润才会超过售房 利润收入。因此,在实际投资中,需要根据实际年限进行分析,以确 定最优化的解决方案。 另外,经过查阅近年来金融市场状况,认定现阶段股票投资风险 性过大,极容易出现资金亏损,因此不建议投资者在近期进行股票方 面的投资;自 05 年以来基金平均收益率高达 52.24%,但是伴随着极 大地风险性,故建议对市场变化敏感、经验丰富的投资者选择基金投 资渠道。
相关文档
最新文档