初三数学总复习练习

合集下载

初三数学复习题带答案

初三数学复习题带答案

初三数学复习题带答案1. 已知一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),求该二次函数的解析式。

解析:由于二次函数图像开口向上,我们可以设二次函数的解析式为y=ax^2+bx+c。

因为图像经过点(1,0)和(-1,0),所以这两个点满足函数解析式,即:\[ a(1)^2+b(1)+c=0 \]\[ a(-1)^2+b(-1)+c=0 \]解得b=0,c=-a。

又因为图像开口向上,所以a>0。

因此,二次函数的解析式为y=ax^2-a。

答案:y=ax^2-a(a>0)2. 计算下列有理数的混合运算:\(\frac{1}{2} - \frac{1}{3} +\frac{5}{6}\)。

解析:首先找到这三个分数的最小公倍数,即6,然后将每个分数转换为相同的分母:\[ \frac{1}{2} = \frac{3}{6} \]\[ \frac{1}{3} = \frac{2}{6} \]\[ \frac{5}{6} \]接下来,将这些分数相加减:\[ \frac{3}{6} - \frac{2}{6} + \frac{5}{6} = \frac{3-2+5}{6} = \frac{6}{6} = 1 \]答案:13. 一个长方体的长、宽、高分别为3cm、4cm和5cm,求其体积。

解析:长方体的体积可以通过长、宽、高的乘积来计算,即:\[ V = 长 \times 宽 \times 高 \]将给定的尺寸代入公式中:\[ V = 3cm \times 4cm \times 5cm = 60cm^3 \]答案:60cm^34. 已知一个圆的半径为5cm,求其周长和面积。

解析:圆的周长公式为C=2πr,面积公式为A=πr^2。

将半径r=5cm 代入公式中:周长:\[ C = 2 \times \pi \times 5cm = 10\pi cm \]面积:\[ A = \pi \times (5cm)^2 = 25\pi cm^2 \]答案:周长为10π cm,面积为25π cm^25. 一个等腰三角形的底边长为6cm,两腰长为5cm,求其周长。

初三数学总复习数与式测试题的

初三数学总复习数与式测试题的

初三数学总复习数与式测试题的初三数学总复习数与式测试题的一、选择题(每小题4分,共40分)1.4的算术平方根是()A.2B.―2C.±2D.22.下列说法中正确的是()A.―9的立方根是-3B.0的平方根是0C.31是最简二次根式D.3-21)(等于813.若代数式532xx的值为7,则代数式2932xx的值是()A.0B.2C.4D.64.随着计算机技术的.迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降低20%,现售价为n元,那么该电脑的原售价为()A.元)54(mn B元)45(mn C.元)5(nm D.元)5(mn5.比较83和411的大小是()A.83>41B.83<411C.83=411D.不能确定大小6.若x2+2(m-3)x+16是一个完全平方式,则m的值是()A.-5B.7C.-1D.7或-17.把分式3xx+y中的x,y都扩大两倍,那么分式的值()A.扩大两倍B.不变C.缩小D.缩小两倍8.下列计算正确的是()A.1243aaa B.743aa C.3632baba D.043aaaa9.用激光测量两座山峰之间的距离,从一座山峰发出的激光经过秒到达另一座山峰,已知光速为米/秒,则两座山峰之间的距离用科学记数法表示为()A.米B米C米D10.估计54的大小应为:()A.在7.1~7.2之间B.在7.2~7.3之间C.在7.3~7.4之间D.在7.4~7.5之间二、填空题(每小题3分,共30分)11.3-л的绝对值是______,3-8的倒数是____________.12.一个实数的平方根为3a和32a,则这个数是13.计算:20072009-20082=__________________.14.如果332nmx和-444ynm是同类项,则这两个单项式的和是________,积是________.15.在分式4222xxx中,当x___________时有意义;当x____________时值为零.16.研究下列算式你会发现有什么规律:4×1×2+1=324×2×3+1=524×3×4+1=724×4×5+1=92……请你将找出的规律用含一个字母的等式表示出来:17.请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果18.计算:(2+1)(2-1)-(2-3)2=____________________.19.将多项式42x加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式:___________________________________.20.有50个同学,他们的头上分别戴有编号为1,2,3,……,49,50的帽子.他们按编号从小到大的顺序,顺时针方向围成一圈做游戏:从1号开始按顺时针方向“1,2,1,2……”报数,报到奇数的同学再次退出圈子,经过若干轮后,圆圈上只剩下一个人,那么,剩下的这位同学原来的编号是____________________.二、解答题(每小题10分,共80分)21.计算:2-0221)32003(|22|4)(22.计算:)543182(1834242123.先化简,再求代数式的值。

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案)

初三数学总复习:填空题精选150题(附参考答案) 一、概念理解应用类1.-8的绝对值是________.2.若∠α=35°,则∠α的补角为 度. 3.若分式53x -有意义,则实数x 的取值范围是___. 4.若分式13x x -+有意义,则x 的取值范围是 . 5.二次根式中,x 的取值范围是 .6.若在实数范围内有意义,则x 的取值范围是 .7.在函数y =中,自变量x 的取值范围是 . 8.函数y =中自变量x 的取值范围是 . 9.函数y =的自变量x 的取值范围是 .10.若二次根式在实数范围内有意义,则x 的取值范围是 .11.函数y =1-x x中,自变量x 的取值范围是 . 12.若29x y -+与3x y --互为相反数,则x +y 的值为_________.13.已知点P (﹣2,1),则点P 关于x 轴对称的点的坐标是 .14.地球与月球的平均距离大约384000km ,用科学计数法表示这个距离为 km . 15.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为6700000米,将6700000用科学记数法表示为 .16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为17. 在人体血液中,红细胞的直径约为7.7×10-4 cm ,7.7×10-4用小数表示为 18.已知圆锥的底面直径为6,母线长为4,则它的侧面积等于 . 19.一个多边形每个外角都是36︒,则这个多边形的边数是20.已知菱形的两条对角线分别为2cm ,3cm ,则它的面积是 2cm . 21.若点()P x y ,是平面直角坐标系xOy 中第四象限内的一点,且满足24x y -=,x y m +=,则m 的取值范围是 .22.下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有 (填序号).23.如果5x +3与﹣2x +9是互为相反数,则x ﹣2的值是 . 24.若a m =2,a n =3,则a m ﹣n 的值为 . 25.若a ,b 都是实数,b =+﹣2,则a b 的值为 .26.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为 .27.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 . 28.如果点(m ,﹣2m )在双曲线上,那么双曲线在 象限.29.一个多边形的每一个外角为30°,那么这个多边形的边数为 . 30.命题“同旁内角互补”是一个 命题(填“真”或“假”) 31.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 . 32.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为 . 33.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是 . 34.已知x m =6,x n =3,则x m ﹣n 的值为 . 35.9的平方根是 .36.若一个多边形的内角和是540°,则这个多边形是 边形. 37.若∠α=35°,则∠α的补角为 度.38.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积为 cm². 二、计算、化简、因式分解类、 39.计算:23()a =________. 40.计算:182⨯=________. 41.分解因式:4m 2﹣16n 2= . 42.化简﹣(﹣)的结果是 . 43.因式分解2a 3b -8ab 3= . 44.因式分解:a 3﹣ab 2= .45.在实数范围内因式分解:23x y y -=_________. 46.计算:|﹣3|﹣1= . 47.化简:= .48.分解因式:3x 2﹣6x+3= . 49.化简:22(5)x x +-= . 50.已知a <0,那么|﹣2a |可化简为 .51.分解因式:x 3y ﹣2x 2y +xy = .52.分解因式:a 3﹣4ab 2= . 53.因式分解2a 3b -8ab 3= .54.在实数范围内分解因式:2232x -= . 55.化简:239m m --= .56.当﹣1<a <0时,则= .三、方程、不等式类57.不等式组()112333x x x +≥+->⎧⎨⎩的解集是__________.58.平面直角坐标系中一点P (m ﹣3,1﹣2m )在第三象限,则m 的取值范围是 . 59.若m 、n 是一元二次方程x 2–5x –2=0的两个实数根,则m +n –mn =_________. 60.设0a <,0b >,且a b >,用“<”号把a ,a -,b ,b -连接起来为__________. 61.关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则m 的值是 . 62.已知关于x 的方程x 2+3x ﹣m =0有两个相等的实数根,则m 的值为 . 63.已知关于x 的一元二次方程x 2﹣2x +k =0有两个不相等的实数根,则k 的取值范围是 .64.关于x 的一元二次方程x 2﹣2mx +(m ﹣1)2=0有两个不相等的实数根.则m 的取值范围是 .65.已知关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则b 的值为 .66.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是 米.67.已知x =-m 和x =m -4时,多项式ax 2+bx +4a +1的值都相等,且m ≠2.若当-1<x<2时,存在x 的值,使多项式ax 2+bx +4a +1的值为3,则a 的取值范围是 .四、函数类68.反比例函数y=kx(k≠0)的图像经过点A(-2,4),则在每一个象限内,y随x的增大而________.(填“增大”或“减小”)69.已知二次函数y=24x x k-+的图像的顶点在x轴下方,则实数k的取值范围是________.70.如图,点A(1,n)和点B都在反比例函数xky=(x>0)的图像上,若∠OAB=90°,23OAAB=,则k的值是.71.下列关于变量x和y的关系式:①y=x,②2x2-y=0,③y2=x,④2x-y2=0,其中y是x的函数的是 .72.如图,抛物线1C:223y x x=+-的顶点为P,将该抛物线绕点(0)A a,(0)a>旋转180︒后得到抛物线2C,抛物线2C的顶点为Q,与x轴的交点为B,C,点B在点C的右侧.若90PQB∠=︒,则a=.73.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.74.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是.xyBOA75.如图所示,反比例函数y=(x<0)的图象经过矩形OABC的对角线AC的中点M,分别与AB,BC交于点D、E,若BD=3,OA=4,则k的值为.76.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l 上时,线段AC扫过的面积为平方单位.77.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.78.如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B 点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P 点是x轴上一动点,当PA+PB最小时,P点的坐标为.79.如图,点A(1,n)和点B都在反比例函数xky=(x>0)的图像上,若∠OAB=90°,23OAAB=,则k的值是.80.如图,点A是反比例函数kyx=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C 为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是.五、几何计算、证明类81.如图,在▱ABCD中,∠A=70°,DC=DB,则∠CDB= .82.如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.83.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是.xyBOA84.如图,在Rt △ABC 中,90C ∠=︒,CD 是AB 边上的中线,且5CD =,则△ABC 的中位线EF 的长是 .85.如图,12∠=∠,添加一个条件 ,使得△ADE ∽△ACB .86.圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为______.87.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是 .88.在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,则这个三角形的外接圆的直径长为 .89.如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则在 ①3.6②4,③5.5,④7,这四个数中AP 长不可能是 (填序号)90.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为 .91.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=.92.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.93.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC =4,则AD的长为.94.在平面直角坐标系中,已知A(2,4)、P(1,0),B为y轴上的动点,以AB为边构造△ABC,使点C在x轴上,∠BAC=90°.M为BC的中点,则PM的最小值为.95.如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC =.96.如图所示,⊙O是△ABC的外接圆,AD⊥BC于D,且AB=5,AC=4,AD=4,则⊙O 的直径的长度是.597.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.98.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.99.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.100.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.101.如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=.102.把一块矩形直尺与一块直角三角板如图放置,若∠1=40°,则∠2的度数为.103.如图,在Rt△ABC中,∠C=90°,CD是AB边上的中线,且CD=5,则△ABC的中位线EF的长是.104.已知□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,若AB=3,则□ABCD 的面积为.105.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是.106.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC 于点E,则AE的长度是.ABDE107.如图,正方形ABCD中,BC=2,点M是AB边的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,若∠DFE=45°,PF=,则DP的长为;则CE=.108.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.109.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.110.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.111.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是.112.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=cm.113.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.114.四边形ABCD为⊙O的内接四边形,已知∠A:∠B=4:5,则∠A=度.115.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x 的取值范围为.116.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为.117.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,则矩形ABCD的周长为.118.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.则CG =.119.如图,AB∥EF,设∠C=90°,那么x,y,z的关系是.120.已知□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,若AB=3,则□ABCD 的面积为.121.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为.122.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF+∠D=90°;(2)∠AEF+∠ECF=90°;(3)S△BEC=2S△CEF;(4)若∠B=80°,则∠AEF=50°.其中一定成立的是(把所有正确结论的序号都填在横线上)123.T1、T2分别为⊙O的内接正六边形和外切正六边形.设T1的半径r,T1、T2的边长分别为a、b,T1、T2的面积分别为S1、S2.下列结论:①r:a=1:1;②r:b=;③a:b =1:;④S1:S2=3:4.其中正确的有.(填序号)124.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为.125.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.126.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC 的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是.127.如图,将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB :BC =4:5,则tan ∠CFD= .128.如图,在△ABC 中,CA =CB =4,∠ACB =90°,以AB 中点D 为圆心,作圆心角为90°的扇形DEF ,点C 恰好在弧EF 上,则图中阴影部分面积为 .129.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 满足的条件是130.如图,在Rt △ABC 中,∠C =90°,点D 是线段AB 的中点,点E 是线段BC 上的一个动点,若AC =6,BC =8,则DE 长度的取值范围是 .131.如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB =________°C DABOABCDE132.如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B对应点B′落在BA的延长线上,若sin∠B′AC=910,则AC=________.133.如图,点E,F,G分别在菱形ABCD的边AB,BC,AD上,AE=13AB,CF=13CB,AG=13A D.已知△EFG的面积等于6,则菱形ABCD的面积等于________.六、统计、概率类134.已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于.135.已知一组数据1,2,0,–1,x,1的平均数是1,则这组数据的中位数为__________.136.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.137.中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是.138.三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为.139.初三(1)班统一购买夏季校服,统计出各种尺码的校服的数量如下表所示:CDFGABECABB'A'校服的尺码(单位:厘米)160 165 170 175 180 185 195 数量(单位:件) 2 4 10 22 14 6 1 由表可以看出,在校服的尺码组成的一组数据中,众数是.140.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵树与成活棵树:移栽棵树100 1000 10000 20000成活棵树89 910 9008 18004 依此估计这种幼树成活的概率是.(结果用小数表示,精确到0.1)141.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.142.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.143.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.144.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是.145.如图,⊙O的半径为,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是.七、规律探究类146.下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是.147.如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为.148.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有个正方形.149.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=.150.观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;…根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1=.参考答案:1. 82.1453. x ≠34.3x ≠-5. x ≥﹣16.x ≤27. x ≥﹣1且x ≠08. x ≥9. x ≥﹣且x ≠3 10. x ≥2019 11. x ≥0且x ≠112. 27 13.(﹣2,﹣1) 14. 3.84×10515. 6.7×10616. 4×10-8 17. 0.00077 18. 12π 19. 10 20. 3 21. 42m -<< 22. ①③ 23.﹣6 24. 25. 4 26. 300π 27. 60°或120°28. 第二、四 29. 12 30. 假31. 4 32. 60°或120° 33.0<m <1 34. 2 35. ±3 36. 五 37. 145 38. 10π 39. a 640. 2 41. 4(m +2n )(m ﹣2n ) 42. 43. 2ab (a +2b ) (a -2b ) 44. a (a +b )(a ﹣b ) 45. y(x+3)(x- 3 ) 46. 2 47. 1 48. 3(x ﹣1)2 49. 1025x + 50. ﹣3a . 51. xy (x ﹣1)2 52. a (a +2b )(a ﹣2b ) 53. 2ab (a +2b ) (a -2b ) 54. 2(4)(4)x x +- 55.13m + 56. 2 57. 0 ≤ x <358. 0.5<m <3 59. 7 60. a < - b < b < - a 61. 1 62.- 63. k <3. 64. m >. 65. ±2. 66. 175 67.81<a <2 68. 增大 69. k < 4 70. 2 71. ①② 72.7 73.- 74. x <﹣2. 75. ﹣4. 76. 40 77. (,), 78. (,0) 79. 2 80. ﹣881. 40° 82. 2 83. 3≤AP <4. 84. 5 85. C D ∠=∠(答案不唯一) 86. 3 87. 10 88. 10. 89. ④ 90. 2﹣2.91. 40° 92. 30° 93. 94.95. 70°96. 5 97. 6 98. 68 99. 20 100. 22° 101.102. 130° 103. 5 104. 93 105. 3≤DE ≤5106. 3 107.108. 57° 109. 12 110. 144°.111. 47° 112.3 113. 2 114. 80 115. x =4或x ≥8.116. 12 117.12 118.12.5. 119. x +y ﹣z =90°. 120. 93 121. 122. (1)(2)(4). 123. ①②④ 124.2 125. 22° 126. 3 127. 43128. 2π﹣4129. 0x =,424x =-或442x << 130. 3≤DE ≤5131.40 132. 25 2 /9 133. 27 134. 5.2 135.1 136. 45 137.138 . 1/3 139. 175 140. 0.9141. 142. 1.3 143. 2 144. 85 145. 28146.15a 16 147. 4a +2×a , 2n ﹣1•4a +2×()n a .148. 55 149.150. (n 2+5n +5)2。

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

1.32的倒数是( ). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为( ).A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为 ( ). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。

公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。

在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。

那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为 ( ).A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( )A )1- B )0 C )1 D )26. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104.7.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。

初三数学复习题及答案

初三数学复习题及答案

初三数学复习题及答案初三数学复习题及答案数学作为一门基础学科,对于学生来说是必不可少的一门课程。

而对于初三学生来说,数学的学习更是至关重要,因为它不仅是高中数学的基础,还是高考中的一门必考科目。

为了帮助初三学生复习数学知识,下面将给出一些常见的数学复习题及其答案。

一、整式的加减法题目:计算下列整式的和或差,并化简结果。

1. 3x + 4y - 2x + 5y2. 7a^2 - 3b^2 + 2a^2 + 4b^23. 5x^3 + 2x^2 - 3x^3 + 4x^2答案:1. 3x + 4y - 2x + 5y = x + 9y2. 7a^2 - 3b^2 + 2a^2 + 4b^2 = 9a^2 + b^23. 5x^3 + 2x^2 - 3x^3 + 4x^2 = 2x^3 + 6x^2二、方程与不等式题目:解下列方程或不等式。

1. 2x + 5 = 152. 3(x + 4) = 213. 2x - 3 < 7答案:1. 2x + 5 = 152x = 10x = 52. 3(x + 4) = 213x + 12 = 213x = 9x = 33. 2x - 3 < 72x < 10x < 5三、平面图形的性质题目:判断下列命题的真假,并给出理由。

1. 一个凸四边形的内角和是360度。

2. 一个等腰三角形的底角是锐角。

3. 一个直角三角形的斜边是最长的边。

答案:1. 正确。

凸四边形的内角和是360度,这是由欧拉公式得出的。

2. 错误。

一个等腰三角形的底角可以是锐角、直角或钝角,取决于等腰三角形的顶角大小。

3. 正确。

在直角三角形中,斜边是最长的边,根据勾股定理可知。

四、函数与图像题目:给出下列函数的定义域、值域以及图像。

1. f(x) = 2x + 32. g(x) = x^2 - 43. h(x) = √(x + 2)答案:1. 函数f(x)的定义域是所有实数,值域也是所有实数。

初三数学总复习资料_分专题试题及答案(90页)

初三数学总复习资料_分专题试题及答案(90页)
绝对值符号去掉。
(2) 已知| x | a(a 0) ,求 x 时,要注意 x a
考点 3 平方根与算术平方根
1、 若 x 2 a(a 0) ,则 x 叫 a 做的_________,记作______;正数 a 的__________叫做算术平 方根,0 的算术平方根是____。当 a 0 时, a 的算术平方根记作__________。
2
y
5、 实数 a, b, c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有( )
c
ba
-2 -1 0 1 2 3
图2
① b c 0 ② a b a c ③ bc ac ④ ab ac
A.1 个
B.2 个 C.3 个 D.4 个
6、 ①数轴上表示-2 和-5 的两点之间的距离是______数轴上表示 1 和-3 的两点之间的距离是
用根号形式表示的数并不都是无理数(如 4 ),也不是所有的无理数都可以写成根号的形
式(如 )。
练习: 1、 把下列各数填入相应的集合内:
7.5,
15, 4,
8 ,
2 ,
3 8,
,
0.25,
0.1 5
13 3
有理数集{ 正实数集{
},无理数集{
}
}
2、 在实数 4, 3 , 0, 2
2 1,
64, 3 27 , 1 中,共有___ 27
2、 幂的运算法则:(以下的 m, n 是正整数)
(1)a m a n _____ ; (2)(a m )n ____ ; (3)(ab)n _____ ; (4)a m a n ______(a 0) ;
(5)(b )n ______ a
3、 乘法公式:

历年初三数学中考总复习专题训练19-配方法填空通关50题(含答案)

历年初三数学中考总复习专题训练19-配方法填空通关50题(含答案)

配方法填空通关50题(含答案)1. 抛物线y=x2−2x+1的顶点坐标是.2. x2−6x+( )=(x− )2.3. 若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2−b2+5的最小值为.4. 若把代数式x2−2x−3化为(x−m)2+k的形式,其中m,k为常数,则m+k=.5. 无论x取何实数,代数式√x2−6x+m都有意义,则m的取值范围为.x+ =(x− )2;6. 填空:(1)x2−13(2)x2−3x+ =(x− )2;(3)x2−2√2x+ =(x− )2.7. 已知a2+2a+b2−4b+5=0,则a+b=.8. 已知a=2015.2016,b=2016.2016,c=2017.2016,则代数式a2+ b2+c2−ab−bc−ca=.9. 若a2−4a+b2−10b+29=0,则a=,b=.10. 将二次函数y=x2−2x−5化为y=a(x−ℎ)2+k的形式为y=.11. 若把代数式x2−4x−5化成(x−m)2+k的形式,其中m,k为常数,则m+k=.12. 将抛物线y=x2−2x+1向上平移2个单位后,所得抛物线的顶点坐标是.13. 已知∣x−2y−1∣+x2+4xy+4y2=0,则x+y=.14. 若二次函数y=x2+bx+5配方后为y=(x−2)2+k,则b+k=.15. 已知抛物线y=ax2−4ax与x轴交于点A,B,顶点C的纵坐标是−2,那么a=.16. 二次函数y=x2−8x+10的图象的顶点坐标是.17. 如果二次函数y=x2+bx+c配方后为y=(x−2)2+1,那么c的值为.18. 若a2+b2−2a+4b+5=0,则2a+b=.19. 若关于 x 的方程 x 2+2mx +m 2+3m −2=0 有两个实数根 x 1,x 2,则 x 1(x 2+x 1)+x 22的最小值为 .20. 已知实数 a ,b ,c 满足:a 2+b 2+c 2=ab +bc +ca ,且 2a +3b −4c =2,则 a +b +c = .21. 已知 x =m 时,多项式 x 2+2x +n 2 的值为 −1,则 x =−m 时,该多项式的值为 .22. 下面三个命题:①若 {x =a,y =b 是方程组 {∣x ∣=2,2x −y =3 的解,则 a +b =1 或 a +b =0;②函数 y =−2x 2+4x +1 通过配方可化为 y =−2(x −1)2+3; ③最小角等于 50∘ 的三角形是锐角三角形.其中正确命题的序号为 .23. 当 x = 时,二次函数 y =x 2−2x +6 有最小值 .24. 二次函数y=x2−4x−2的最小值为.25. 代数式2x2+8x−7配方后,得.26. 已知x1,x2是关于x的方程(x−2)(x−3)=(n−2)(n−3)的两个实数根.则:(1)两实数根x1,x2的和是;(2)若x1,x2恰是一个直角三角形的两直角边的边长,那么这个直角三角形面积的最大值是.27. 已知a、b是有理数,有以下三个不等式:①∣a+b∣<∣a−b∣;②a2+b2+∣a∣+∣b∣+1<0;③a2+b2−2∣a∣−2∣b∣+1<0.其中一定不成立的是(填写序号).28. 已知实数a,b满足2a+b=2,则在平面直角坐标系中,动点P(a,b)到坐标系原点O(0,0)距离的最小值等于.29. 若代数式2x2−(4m−1)x+2m2+1是一个完全平方式,则m=.30. 如图,二次函数y=−12x2−32x+2的图象与x轴交于A,B两点,与y轴交于C点,点D(m,n)是抛物线在第二象限的部分上的一动点,则四边形OCDA的面积的最大值是.31. 已知y=−14x2−3x+4(−10≤x≤0)的图象上有一动点P,点P的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为.32. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元)的关系满足:y=−2x+400;(2)工商部门限制销售价x满足:70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是(把所有正确结论的序号都选上).33. 如图,在平面直角坐标系中,点A,B的坐标分别为(−5,0),(−2,0).点P在抛物线y=−2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是.34. 无论x取任何实数,代数式√x2−6x+m都有意义,则m的取值范围为.35. 如图,在平面直角坐标系中,点A(1,√3),点B(2,0),P为边OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP.则△APQ面积的最大值是.36. 对于二次函数y=x2−2mx+3(m>0),有下列说法:①如果m=2,则y有最小值−1;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后的函数的最小值是−9,则m=2√3;④如果当x=1时的函数值与x=2015时的函数值相等,则当x=2016时的函数值为3.其中正确的说法是.(把你认为正确的结论的序号都填上)37. 如图,已知Rt△AOB中,∠AOB=90∘,AO=6,BO=4,点E,M是线段AB上的两个不同的动点(不与端点重合),分别过E,M作AO的垂线,垂足分别为点K,L.(1)△OEK面积S的最大值为.(2)若以OE,OM为边构造平行四边形EOMF,若EM⊥OF,则OK+OL=.38. 一块边缘呈抛物线形的铁片如图放置,测得AB=20cm,抛物线的顶点到AB边的距离为25cm.现要沿AB边向上依次截取宽度均为4cm 的矩形铁皮,如图所示.已知截得的铁皮中有一块是正方形,则这块正方形铁皮是第块.39. 如图,在平面直角坐标系中,抛物线y=−x2+4x与x轴交于点O,A,点P在抛物线上,连接OP,AP,设点P的横坐标为m,△AOP 的面积为S,若0<m<3,则S的取值范围是.40. 已知实数a,b,c满足a2+5b2+c2+4(ab−b+c)−2c+5=0,则2a−b+c的值为.41. 已知x、y都是正实数,且满足x2+2xy+y2+x+y−12=0,则x(1−y)的最小值为.42. 如图,正方形ABCD的边长为8cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH,则四边形EFGH面积的最小值是cm2.43. 如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE.当点D在边BC上运动时,OE的长度的最小值是.44. 如图,正方形ABCD的边长为4,E,F分别是BC,CD上的两个动点,且AE⊥EF.则AF的最小值是.45. 已知t是实数,若a,b是关于x的一元二次方程x2−2x+t−1=0的两个非负实根,则(a2−1)(b2−1)的最小值是.46. 如图,一抛物线经过点A(−2,0),B(6,0),C(0,−3),D为抛物线的顶点,过OD的中点E,作EF⊥x轴于点F,G为x轴上一动点,M为抛物线上一动点,N为直线EF上一动点,当以F,G,M,N为顶点的四边形是正方形时,点G的坐标为.47. 如图,直角坐标系xOy中,正方形OABC的边AB与反比例函数y=1(x>0)的图象交于点D,且AD:DB=1:8,则:x(1)点D的坐标为;(2)设P是反比例函数图象上的动点,则线段PB长度的最小值是.48. 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).①如图1,若BC=4m.则S=.②如图2,现考虑在图1中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.49. 如图,一次函数与反比例函数的图象交于A(1,12)和B(6,2)两点.点P是线段AB上一动点(不与点A和B重合),过P点分别作x,y轴的垂线PC,PD交反比例函数图象于点M,N,则四边形PMON面积的最大值是.50. 如图,边长为4的正方形ABCD中,P是BC边上一动点(不含B,C点).将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号).①∠NAP=45∘;②当P为BC中点时,AE为线段NP的中垂线;③四边形AMCB的面积最大值为10;④线段AM的最小值为2√5;⑤当△ABP≌△ADN时,BP=4√2−4.答案1. (1,0)2. 9,33. 14. −35. m ≥9【解析】由题意得 x 2−6x +m ≥0,即 (x −3)2−9+m ≥0,移项得 (x −3)2≥9−m . ∵ (x −3)2≥0, ∴ 9−m ≤0, ∴ m ≥9.6. 136,16,94,32,2,√2,7. 1 8. 3 9. 2,5 10. (x −1)2−6 11. −7 12. (1,2) 13. 1414. −3 15. 12 16. (4,−6) 17. 5 18. 0 19. 5420. 6 21. 3【解析】∵ 多项式 x 2+2x +n 2=(x +1)2+n 2−1,∵(x +1)2≥0,n 2≥0,∴(x +1)2+n 2−1 的最小值为 −1,此时 m =−1,n =0, ∴ 当 x =−m 时,多项式 x 2+2x +n 2 的值为 m 2−2m +n 2=3. 22. ②③ 23. 1,5 24. −625. 2(x +2)2−15 26. 5,25827. ②【解析】当 a =1, b =−1 时,①③成立;a 2+b 2+∣a∣+∣b∣+1=(∣a∣+12)2+(∣b∣+12)2+12≥12>0 ,故②不成立.28.2√55 29. −78【解析】2x 2−(4m −1)x +2m 2+1=2(x 2−4m−12x)+2m 2+1=2[x 2−4m−12x +(4m−14)2]−2×(4m−14)2+2m 2+1=2(x −4m−14)2+8m+78.∵ 代数式 2x 2−(4m −1)x +2m 2+1 是一个完全平方式, ∴8m+78=0,∴m =−78. 30. 8 31. 14 32. ①②③ 33. 3≤S ≤15 34. m ≥9【解析】提示:x 2−6x +m =(x −3)2−9+m ≥0 .35. √3436. ①③④37. 3,481338. 六【解析】如图,建立平面直角坐标系.∵AB=20cm,抛物线的顶点到AB边的距离为25cm,∴此抛物线的顶点C的坐标为(10,25),抛物线图象与x轴的交点坐标为(0,0),(20,0),∴设抛物线的表达式为y=a(x−10)2+25,将点(0,0)代入,解得a=−1,4(x−10)2+25.∴抛物线的表达式为y=−14现要沿AB边向上依次截取宽度均为4cm的矩形铁皮,∴截得的铁皮中有一块是正方形时,正方形边长一定是4cm.∴当四边形DEFM是正方形时,DE=EF=MF=DM=4cm,∴M点的横坐标为AN−MK=10−2=8,即x=8,(x−10)2+25,解得y=24,代入y=−14∴KN=24,24÷4=6,∴这块正方形铁皮是第六块.39. 0<S≤8【解析】由题意,P点坐标为:(m,−m2+4m),∵抛物线y=−x2+4x与x轴交于点O,A,∴当y=0时,−x2+4x=0,解得:x=0,或x=4,∴A(4,0),∴OA=4,由题意可得:P到AO的距离为−m2+4m,∴S=12×4×(−m2+4m) =−2m2+8m=−2(m−2)2+8;∵0<m<3,∴0<S≤8.40. −1141. −142. 3243. 5√244. 545. −346. (−4−2√6,0)或(−4,0)或(−4+2√6,0)或(4,0)47. (13,3),√748. 88π,5249. 25250. ①③⑤。

初三数学复习题及答案

初三数学复习题及答案

初三数学复习题及答案
一、选择题
1. 下列哪个选项是二次函数的图像?
A. 一条直线
B. 一个圆
C. 一个抛物线
D. 一个立方体
答案:C
2. 一个数的平方根是它本身的数有多少个?
A. 0个
B. 1个
C. 2个
D. 3个
答案:C
3. 以下哪个方程不是一元一次方程?
A. 2x + 3 = 7
B. 3y - 5 = 0
C. x^2 - 4x + 4 = 0
D. 5z = 15
答案:C
二、填空题
4. 一个等腰三角形的底边长为6cm,高为4cm,其周长为_______cm。

答案:16
5. 如果一个数的立方等于8,那么这个数是______。

答案:2
三、解答题
6. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。

答案:斜边的长度为5cm。

7. 某商店购进一批商品,进价为每件100元,售价为每件150元。

若该商店希望获得的利润率不低于20%,则至少需要卖出多少件商品?
答案:至少需要卖出100件商品。

8. 某工厂生产一种零件,每件零件的成本为50元,售价为80元。

若该工厂希望在一个月内获得至少10000元的利润,则至少需要生产并销售多少件零件?
答案:至少需要生产并销售250件零件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业1: 1.解方程组:.⎩⎨⎧=-=-1838
y x y x
2.先化简16)441(22--
÷+-x x
x x ,再任选一个x 值代入求值.
3.如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为600m ,
求点M 到直线AB 的距离.(精确到整数)(参考数据:≈1.7,≈1.4)
60O 45O
4.(1)如图,△ABC,以A为一个顶点作⊙A,使得⊙A与BC边相切于点D.用尺规作图,(保留作图痕迹,不写作法和证明.);
(2)若AB=6,AC=2,∠B=30O, ∠c=45O,求BC边的长.
A
B
5.中国为利比亚灾区进行救援,粮食100吨,副食品54吨.现计划租用甲、乙两种飞机共8架将这批货物全部运往利比亚,已知一架甲种飞机同时可装粮食20吨、副食品6吨,一架乙种飞机同时可装粮食8吨、副食品8吨.(1)将这些货物一次性运到目的地,有几种运输方案?
(2)若甲种飞机每架付运输费1300元,乙种飞机每架付运输费1000元,要使运输总费用最少,应选择哪种方案? .。

相关文档
最新文档