中考初三数学冲刺拔高专题训练(含答案)
中考初三数学冲刺拔高专题训练(含答案)(可编辑修改word版)

1中考数学冲刺拔高专题训练目录专题提升(一) 数形结合与实数的运算 (1)专题提升(二) 代数式的化简与求值 (8)专题提升(三) 数式规律型问题 (12)专题提升(四) 整式方程(组)的应用 (21)专题提升(五) 一次函数的图象与性质的应用 (28)专题提升(六) 一次函数与反比例函数的综合 (37)专题提升(七) 二次函数的图象和性质的综合运用 (47)专题提升(八) 二次函数在实际生活中的应用 (54)专题提升(九) 以全等为背景的计算与证明 (60)专题提升(十) 以等腰或直角三角形为背景的计算与证明 (66)专题提升(十一) 以平行四边形为背景的计算与证明 (75)专题提升(十二) 与圆的切线有关的计算与证明 (83)专题提升(十三) 以圆为背景的相似三角形的计算与 (89)专题提升(十四) 利用解直角三角形测量物体高度或宽度 (97)专题提升(十五) 巧用旋转进行证明与计算 (104)专题提升(十六) 统计与概率的综合运用 (111)专题提升(一)数形结合与实数的运算类型之一数轴与实数【经典母题】如图Z1-1,通过画边长为1的正方形的边长,就能准确地把2和-2表示在数轴上.图Z1-1【思想方法】(1)在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都可以表示一个实数.我们说实数和数轴上的点一一对应;(2)数形结合是重要的数学思想,利用它可以比较直观地解决问题.利用数轴进行实数的大小比较,求数轴上的点表示的实数,是中考的热点考题.【中考变形】1.[2017·北市区一模]如图Z1-2,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是(C)图Z1-2A.5+1B. 5C.5-1 D.1- 5【解析】∵AD长为2,CD长为1,∴AC=22+12=5,∵A点表示-1,∴E 点表示的数为5-1.2.[2016·娄底]已知点M,N,P,Q在数轴上的位置如图Z1-3,则其中对应的数的绝对值最大的点是(D)图Z1-3A.M B.N C.P D.Q3.[2016·天津]实数a,b在数轴上的对应点的位置如图Z1-4所示,把-a,-b,0按照从小到大的顺序排列,正确的是(C)图Z1-4A.-a<0<-b B.0<-a<-bC.-b<0<-a D.0<-b<-a【解析】∵从数轴可知a<0<b,∴-b<0,-a>0,∴-b<0<-a. 4.[2017·余姚模拟]如图Z1-5,数轴上的点A,B,C,D,E表示连续的五个整数,若点A,E表示的数分别为x,y,且x+y=2,则点C表示的数为(B)图Z1-5A.0 B.1 C.2 D.3【解析】根据题意,知y-x=4,即y=x+4,将y=x+4代入x+y=2,得x+x+4=2,解得x=-1,则点A表示的数为-1,则点C表示的数为-1+2=1. 5.如图Z1-6,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于(A)图Z1-6A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间【解析】∵点P的坐标为(-2,3),∴OP=22+32=13.∵点A,P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=13,∵9<13<16,∴3<13<4.∵点A在x轴的负半轴上,∴点A的横坐标介于-4和-3之间.故选A.6.[2017·成都改编]如图Z1-7,数轴上点A表示的实数是.图Z1-7【中考预测】如图Z1-8,数轴上的点A,B分别对应实数a,b,下列结论中正确的是(C)图Z1-8A.a>b B.|a|>|b|C.-a<b D.a+b<0【解析】由图知,a<0<b且|a|<|b|,∴a+b>0,即-a<b,故选C.类型之二实数的混合运算【经典母题】计算:2×(3+5)+4-2× 5.解:2×(3+5)+4-2×5=2×3+2×5+4-2×5=6+4+2×5-2×5=10.【中考变形】1.[2016·台州]计算: 4-⎪⎪⎪⎪⎪⎪-12+2-1. 解:原式=2-12+12=2.2.[2017·临沂]计算:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1. 解:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1=2-1+2×22-22+2=2-1+2-22+2=1.3.[2017·泸州]计算:(-3)2+2 0170-18×sin45°.解:(-3)2+2 0170-18×sin45°=9+1-32×22=10-3=7.【中考预测】 计算:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1. 解:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1=23-3×33+1-2=3-1.专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y )2呢?解:x 2+y 2=(x +y )2-2xy =32-2×1=7;(x -y )2=(x +y )2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b )2+(a -b )2=2(a 2+b 2),(a +b )2-(a -b )2=4ab ,a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m -n )2=8,(m +n )2=2,则m 2+n 2的值为( C ) A .10 B .6 C .5 D .32.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__.【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11.3.[2017·重庆B 卷]计算:(x +y )2-x (2y -x ).解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2016·漳州]先化简(a +1)(a -1)+a (1-a )-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?解:原式=a 2-1+a -a 2-a =-1.故该代数式的值与a 的取值没有关系.【中考预测】先化简,再求值:(a -b )2+a (2b -a ),其中a =-12,b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2.当a =-12,b =3时,原式=32=9.类型之二 分式的化简与求值【经典母题】计算:(1)a b -b a -a 2+b 2ab ;(2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a ;(2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x =2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】1.[2017·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2017·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x,其中x =2. 解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23.【中考预测】先化简,再求值:⎝⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x 2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝ ⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2=x -2.当x =4时,原式=x -2=2. 类型之三 二次根式的化简与求值 【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值. 解:∵a =3+2,b =3-2,∴a +b =23,ab =1, ∴a 2-ab +b 2=(a +b )2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一. 【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为 ( C )A .9B .±3C .3D .52.[2016·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1.解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-aba +b ,当a =2+1,b =2-1时,原式=-122=-24.3.[2017·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷yx -2y ,其中x =22,y = 2. 解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷yx -2y =⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y =⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷yx -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】 先化简,再求值:1a +b +1b +ba (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +bab ,∵a +b =5+12+5-12=5,ab =5-12×5+12=1,∴原式= 5.专题提升(三)数式规律型问题【经典母题】观察下列各式:52=25;152=225;252=625;352=1 225;…你能口算末位数是5的两位数的平方吗?请用完全平方公式说明理由.解:把末位数是5的自然数表示成10a+5的一般形式,其中a为自然数,则(10a+5)2=100a2+100a+25=100a(a+1)+25,因此在计算末位数是5的自然数的平方时,只要把100a与a+1相乘,并在积的后面加上25即可得到结果.【思想方法】模型化思想和归纳推理的思想在中考中应用广泛,是热点考题之一.【中考变形】1.小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16;…根据以上规律可知第10行左起第1个数是(C)A.100 B.121 C.120 D.82【解析】根据规律可知第10行等式的右边是102=100,等式左边有20个数加减.∵这20个数是120+119+118+…+111-110-109-108-…-102-101,∴左起第1个数是120.2.[2016·邵阳]如图Z3-1,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是(B)图Z3-1A.y=2n+1 B.y=2n+nC.y=2n+1+n D.y=2n+n+1【解析】∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为21,22…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴最后一个三角形中y与n之间的关系为y=2n+n.3.[2018·中考预测]根据图Z3-2中箭头的指向规律,从2 017到2 018再到2 019,箭头的方向是下列选项中的(D)图Z3-2【解析】由图可知,每4个数为一个循环组依次循环,2 017÷4=504……1,∴2 017是第505个循环组的第2个数,∴从 2 017到 2 018再到 2 019,箭头的方向是.故选D.4.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图Z3-3中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…则第6次应拿走(D)图Z3-3A .②号棒B .⑦号棒C .⑧号棒D .⑩号棒【解析】 仔细观察图形,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒. 5.[2017·烟台]用棋子摆出下列一组图形(如图Z3-4):图Z3-4按照这种规律摆下去,第n 个图形用的棋子个数为( D )A .3nB .6nC .3n +6D.3n +3【解析】 ∵第1个图需棋子3+3=6;第2个图需棋子3×2+3=9;第3个图需棋子3×3+3=12;…∴第n 个图需棋子(3n +3)个.6.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…以此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.【解析】 根据所给的数据发现:第n 个三角形数是1+2+3+…+n ,则第9个三角形数是1+2+3+4+5+6+7+8+9=45;由1+2+3+4+…+n = 2 016,得n (n +1)2=2 016,解得n =63(负数舍去). 7.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第1位同学报⎝ ⎛⎭⎪⎫11+1,第2位同学报⎝ ⎛⎭⎪⎫12+1,第3位同学报⎝ ⎛⎭⎪⎫13+1,…这样得到的100个数的积为__101__.【解析】 ∵第1位同学报的数为11+1=21,第2位同学报的数为12+1=32,第3位同学报的数为13+1=43,…∴第100位同学报的数为1100+1=101100,∴这样得到的100个数的积=21×32×43×…×101100=101.8.[2017·潍坊]如图Z3-5,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为__9n +3__.图Z3-5【解析】 ∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…∴第n 个图中正方形和等边三角形的个数之和=9n +3. 9.观察下列等式:第一个等式:a 1=11+2=2-1;第二个等式:a2=12+3=3-2;第三个等式:a3=13+2=2-3;第四个等式:a4=12+5=5-2;…按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n=1n+n+1=n+1-n ;(2)a1+a2+a3+…+a n=【解析】a1+a2+a3+…+a n=(2-1)+(3-2)+(2-3)+(5-2)+…+(n+1-n)=n+1-1.10.[2016·山西]如图Z3-6是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有__4n+1__个涂有阴影的小正方形(用含有n的代数式表示).图Z3-6【解析】由图可知,涂有阴影的小正方形有5+4(n-1)=4n+1(个).11.如图Z3-7是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…则第n 个图案中有__5n +1__根小棒.图Z3-7【解析】 ∵第1个图案中有6根小棒,第2个图案中有6+5×1=11根小棒,第3个图案中有6+5×2=16根小棒,…∴第n 个图案中有6+5(n -1)=5n +1根小棒. 12.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图Z3-8所示. 由图易得12+122+123+…+12n =__1-12n __.图Z3-813.[2016·安徽](1)观察图Z3-9中的图形与等式的关系,并填空:图Z3-9【解析】1+3+5+7=16=42,观察,发现规律:1+3=22,1+3+5=32,1+3+5+7=42,…∴1+3+5+…+(2n-1)=n2.(2)观察图Z3-10,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:图Z3-101+3+5+…+(2n-1)+__2n+1__+(2n-1)+…+5+3+1=__2n2+2n+1__.【解析】观察图形发现:图中黑球可分为三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=n2+2n+1+n2=2n2+2n +1.【中考预测】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图Z3-11方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?图Z3-11解:(1)把4张餐桌拼起来能坐4×4+2=18(人);把8张餐桌拼起来能坐4×8+2=34(人);(2)设这样的餐桌需要x张,由题意,得4x+2=90,解得x=22.答:这样的餐桌需要22张.专题提升(四) 整式方程(组)的应用类型之一 一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t ,还剩下8 t 未装;若每辆车装4.5 t ,恰好装完.这个车队有多少辆车?解:设这个车队有x 辆车,依题意,得4x +8=4.5x ,解得x =16.答:这个车队有16辆车.【思想方法】 利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( C )A .25台B .50台C .75台D .100台 【解析】 设今年购置计算机的数量是x 台,去年购置计算机的数量是(100-x )台,根据题意可得x =3(100-x ),解得x =75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本. 类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎨⎧4x +3y =2 000,x +2y =1 000,解得⎩⎨⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎨⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎨⎧2x +4y =560,4x +4y =800,解得⎩⎨⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎨⎧8p +8q =12,10p +12q =16,解得⎩⎪⎨⎪⎧p =1,q =12; (2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3.答:此批次蛋糕属第3档次产品.⎝ ⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x-1)][76-4(x-1)]=1 080,解得x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.专题提升(五) 一次函数的图象与性质的应用类型之一 一次函数的图象的应用【经典母题】如图Z5-1,由图象得⎩⎨⎧5x -2y +4=0,3x +2y +12=0的解是 ⎩⎨⎧x =-2,y =-3.图Z5-1【思想方法】 (1)每个二元一次方程组都对应着两个一次函数,于是也对应着两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点坐标;(2)一次函数、一元一次方程、一元一次不等式有着独立的概念,但在本质上,后者是前者的特殊情况,从而可以利用函数图象解决方程或方程组问题,体现出数形结合的思想.【中考变形】1.高铁的开通,给衢州市民出行带来了极大的方便.五一期间,乐乐和颖颖相约到杭州市某游乐园游玩,乐乐乘私家车从衢州出发1 h 后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y (km)与乘车时间t (h)的关系如图Z5-2所示.请结合图象解决下列问题:图Z5-2(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18 min到达游乐园,问私家车的速度必须达到多少?解:(1)v=2402-1=240(km/h),答:高铁的平均速度为240 km/h;(2)设乐乐离开衢州的距离y与时间t的函数关系为y=kt,则1.5k=120,k=80,∴函数表达式为y=80t,当t=2时,y=160,216-160=56(km).答:乐乐距离游乐园还有56 km;(3)把y=216代入y=80t,得t=2.7,2.7-1860=2.4(h),2162.4=90(km/h).答:乐乐要提前18 min到达游乐园,私家车的速度必须达到90 km/h. 2.[2017·宿迁]小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2 min,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1 min到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(km)与行驶时间x(min)之间的函数图象如图Z5-3所示.图Z5-3(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.解:(1)校车的速度为3÷4=0.75(km/min),点A的纵坐标m的值为3+0.75×(8-6)=4.5.答:点A的纵坐标m的值为4.5;(2)校车到达学校站点所需时间为9÷0.75+4=16(min),出租车到达学校站点所需时间为16-9-1=6(min),出租车的速度为9÷6=1.5(km/min),两车相遇时出租车出发时间为0.75×(9-4)÷(1.5-0.75)=5(min),相遇地点离学校站点的路程为9-1.5×5=1.5(km).答:小刚乘坐出租车出发后经过5 min追到小强所乘坐的校车,此时他们距学校站点的路程为1.5 km.3.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图Z5-4①所示.方成思考后发现了图①的部分信息:乙先出发1 h;甲出发0.5 h 与乙相遇…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程s甲,s乙与时间t的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过43h与乙相遇,问丙出发后多少时间与甲相遇?图Z5-4解:(1)设直线BC 的函数表达式为y =kt +b , 把⎝ ⎛⎭⎪⎫32,0,⎝ ⎛⎭⎪⎫73,1003分别代入,得⎩⎪⎨⎪⎧0=32k +b ,1003=73k +b , 解得⎩⎨⎧k =40,b =-60,∴直线BC 的表达式为y =40t -60. 设直线CD 的函数表达式为y 1=k 1t +b 1, 把⎝ ⎛⎭⎪⎫73,1003,(4,0)分别代入,得⎩⎪⎨⎪⎧1003=73k 1+b 1,0=4k 1+b 1,解得⎩⎨⎧k 1=-20,b 1=80,∴直线CD 的函数表达式为y 1=-20t +80;(2)设甲的速度为a km/h ,乙的速度为b km/h ,根据题意,得 ⎩⎪⎨⎪⎧0.5a =1.5b ,a ⎝ ⎛⎭⎪⎫73-1=73b +1003,解得⎩⎨⎧a =60,b =20,∴甲的速度为60 km/h ,乙的速度为20 km/h , ∴OA 的函数表达式为y =20t (0≤t ≤1),∴点A 的纵坐标为20,OA 段,AB 段没有符合条件的t 值;当20<y <30时,即20<40t -60<30或20<-20t +80<30,解得2<t <94或52<t <3;(3)根据题意,得s 甲=60t -60⎝ ⎛⎭⎪⎫1≤t ≤73,s 乙=20t (0≤t ≤4),所画图象如答图所示;中考变形3答图(4)当t =43时,s 乙=803,此时丙距M 地的路程s 丙与时间t 的函数表达式为s 丙=-40t +80(0≤t ≤2),当-40t +80=60t -60时,解得t =75, 答:丙出发75 h 与甲相遇. 【中考预测】[2017·义乌模拟]甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (h)的函数图象如图Z5-5所示.图Z5-5(1)直接写出甲组加工零件的数量y 与时间x 之间的函数关系式__y =60x (0<x ≤6)__;(2)求乙组加工零件总量a 的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?解:(1)∵图象经过原点及(6,360),∴设表达式为y=kx,∴6k=360,解得k=60,∴y=60x(0<x≤6);(2)乙2 h加工100件,∴乙的加工速度是每小时50件,∴更换设备后,乙组的工作速度是每小时加工100件,a=100+100×(4.8-2.8)=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-2.8)=100x-180,当0<x≤2时,60x+50x=300,解得x=3011(不合题意,舍去);当2<x≤2.8时,100+60x=300,解得x=103(不合题意,舍去);当2.8<x≤4.8时,60x+100x-180=300,解得x=3,符合题意.答:经过3 h恰好装满第1箱.类型之二一次函数的性质的应用【经典母题】某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1 500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;(2)在同一直角坐标系中画出它们的图象;(3)根据图象回答下列问题:印制800份宣传材料时,选择哪一家印刷厂比较合算?商场计划花费3 000元用于印刷上述宣传材料,找哪一家印刷厂印制宣传材料多一些?解:(1)甲厂的收费函数表达式为y甲=x+1 500,乙厂的收费函数表达式为y乙=2.5x;(2)图略;。
2022学年中考数学操作型问题冲刺专题训练【含答案】

2022学年中考数学操作型问题冲刺专题训练一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,直线m,n相交于O,所夹的锐角是53°,点P,Q分别是直线m,n上的点,将直线m,n按照下面的程序操作,能使两直线平行的是A.将直线m以点O为中心,顺时针旋转53°B.将直线n以点Q为中心,顺时针旋转53°C.将直线m以点P为中心,顺时针旋转53°D.将直线m以点P为中心,顺时针旋转127°2.在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是图①图②A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格3.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.4.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.OA OB O O C这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是( )OC CD DE ==D E 75BDE ∠=︒CDE ∠A .60°B .65°C .75°D .80°5.如图,的斜边在轴上,角的顶点与原点重合,直角顶点在第二象限,Rt OCB ∆y OC 30︒C 将绕原点顺时针旋转后得到,则点的对应点的坐标是( )Rt OCB ∆120︒'OC B ∆'B B ′A .B .C .D .1)-(1,(2,0)6.用一条直线m 将如图1的直角铁皮分成面积相等的两部分.图2、图3分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙都正确D .甲、乙都不正确7.将一条宽度为的彩带按如图所示的方法折叠,折痕为,重叠部分为(图中阴影部分),2cm AB ABC ∆若,则重叠部分的面积为( )45ACB ∠=︒A .B .C .D .2224cm 28.如图,一张三角形纸片ABC ,其中∠C =90°,AC =4,BC =3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B 处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是A.c>a>b B.b>a>c C.c>b>a D.b>c>a二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为__________.10.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是__________.11.在Rt△ABC中,∠C=90°,cos B=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B′D∶CD=__________.12.已知:Rt△ABC中,∠B=90°,AB=4,BC=3,点M、N分别在边AB、AC上,将△AMN沿直线MN折叠,点A 落在点P 处,且点P 在射线CB 上,当△PNC 为直角三角形时,PN 的长为__________.三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,是的角平分线.AD ABC △(1)作线段的垂直平分线,分别交、于点、;(用直尺和圆规作图,标明字母,AD EF AB AC E F 保留作图痕迹,不写作法.)(2)连接、,四边形是________形.(直接写出答案)DE DF AEDF 14.按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A 为圆E 上一点,请用直尺(不带刻度)和圆规作出圆内接正方形;(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图:①如图2,在□ABCD 中,E 为CD 的中点,作BC 的中点F;②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC 的高AH15.如图,点,分别在正方形的边,上,且,点在射线上(点E F ABCD CD BC DE CF =P BC 不与点重合).将线段绕点顺时针旋转得到线段,过点作的垂线,垂足为P F EP E 90︒EG E GD QH点,交射线于点.H BC Q(1)如图1,若点是的中点,点在线段上,线段,,的数量关系为 .E CD P BF BP QC EC (2)如图2,若点不是的中点,点在线段上,判断(1)中的结论是否仍然成立.若成立,E CD P BF 请写出证明过程;若不成立,请说明理由.(3)正方形的边长为6,,,请直接写出线段的长.ABCD 3AB DE =1QC =BP2022学年中考数学操作型问题冲刺专题训练一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,直线m,n相交于O,所夹的锐角是53°,点P,Q分别是直线m,n上的点,将直线m,n按照下面的程序操作,能使两直线平行的是A.将直线m以点O为中心,顺时针旋转53°B.将直线n以点Q为中心,顺时针旋转53°C.将直线m以点P为中心,顺时针旋转53°D.将直线m以点P为中心,顺时针旋转127°【答案】C【解析】将直线m以点O为中心,顺时针旋转53°,有交点不平行,故错误;将直线n以点Q为中心,顺时针旋转53°,有交点不平行,故错误;将直线m以点P为中心,顺时针旋转53°,平行,正确;将直线m以点P为中心,顺时针旋转127°,同位角不相等不平行,故错误,故选C.2.在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是图①图②A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格【答案】D【解析】由图可知,图①中的图形N 向下移动2格后得到图②。
(名师整理)最新数学中考专题冲刺《函数》压轴真题训练(含答案)

冲刺中考《函数》压轴真题训练第Ⅰ卷(选择题)一.选择题1.(2019•兴安盟)如图,反比例函数y =的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.82.(2019•恩施州)函数y =﹣中,自变量x的取值范围是()A.x ≤B.x ≥C.x <且x≠﹣1 D.x ≤且x≠﹣1 3.(2019•济南)函数y=﹣ax+a与y =(a≠0)在同一坐标系中的图象可能是()A .B .1C .D .4.(2019•阜新)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)5.(2019•铁岭)如图,在Rt△ABC中,AB=AC,BC=4,AG⊥BC于点G,点D为BC边上一动点,DE⊥BC交射线CA于点E,作△DEC关于DE的轴对称图形得到△DEF,设CD的长为x,△DEF与△ABG重合部分的面积为y.下列图象中,能反映点D从点C向点B运动过程中,y与x的函数关系的是()A .B .C .D .6.(2019•盘锦)如图,四边形ABCD是矩形,BC=4,AB=2,点N在对角线BD上(不与点B,D重合),EF,GH过点N,GH∥BC交AB于点G,交DC于点H,EF∥AB交AD于点E,交BC于点F,AH交EF于点M.设BF=x,MN=y,则y关于x的函数图象是()2A .B .C .D .7.(2019•恩施州)抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有()A.5个B.4个C.3个D.2个38.(2019•朝阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①abc>0;②9a+3b+c=0;③b2﹣4ac<8a;④5a+b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.49.(2019•营口)如图,A,B是反比例函数y =(k>0,x>0)图象上的两点,过点A,B分别作x轴的平行线交y轴于点C,D,直线AB交y轴正半轴于点E.若点B的横坐标为5,CD=3AC,cos∠BED =,则k的值为()A.5 B.4 C.3 D .10.(2019•莱芜区)如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y =(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()4A.1 B.2 C.3 D.411.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)12.(2019•丹东)如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取5值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个6第Ⅱ卷(非选择题)二.填空题13.(2019•无锡)如图,已知A(0,3)、B(4,0),一次函数y =﹣x+b的图象为直线l,点O关于直线l的对称点O′恰好落在∠ABO的平分线上,则b的值为.14.(2019•无锡)如图,A为反比例函数y=(k<0)的图象上一点,AP⊥y轴,垂足为P.点B在直线AP上,且PB=3PA,过点B作直线BC∥y轴,交反比例函数的图象于点C,若△PAC的面积为4,则k的值为.15.(2019•兴安盟)若抛物线y=﹣x2﹣6x+m与x轴没有交点,则m的取值范围是.16.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.717.(2019•朝阳)如图,直线y =x+1与x轴交于点M,与y轴交于点A,过点A作AB⊥AM,交x轴于点B,以AB为边在AB的右侧作正方形ABCA1,延长A1C交x轴于点B1,以A1B1为边在A1B1的右侧作正方形A1B1C1A2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA1,A1B1C1A2,…,A n﹣1B n﹣1C n﹣1A n中的阴影部分的面积分别为S1,S2,…,S n,则S n可表示为.18.(2019•营口)如图,在平面直角坐标系中,直线l1:y=x+与x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y=x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C2019B2019B2020的面积是.8三.解答题19.(2019•无锡)已知二次函数y=ax2﹣4ax+c(a<0)的图象与它的对称轴相交于点A,与y轴相交于点C(0,﹣2),其对称轴与x轴相交于点B(1)若直线BC与二次函数的图象的另一个交点D在第一象限内,且BD =,求这个二次函数的表达式;(2)已知P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,试直接写出a的值.20.(2019•恩施州)如图,已知∠AOB=90°,∠OAB=30°,反比例函数y =﹣(x<0)的图象过点B(﹣3,a),反比例函数y =(x>0)的图象过点A.(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y =交于点C.求△OAC的面积.21.(2019•济南)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y =(x>0)9的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E ,求的值;②在线段AB运动过程中,连接BC,若△BCD是以BC为腰的等腰三角形,求所有满足条件的m的值.22.(2019•济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx ﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m(m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP =∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.1023.(2019•恩施州)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E 的坐标和的值.(3)点F(0,y)是y轴上一动点,当y 为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H ,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.24.(2019•兴安盟)如图,在▱OABC中,A、C两点的坐标分别为(4,0)、(﹣2,3),抛物线W经过O、A、C三点,点D是抛物线W的顶点.11(1)求抛物线W的函数解析式及顶点D的坐标;(2)将抛物线W和▱OABC同时先向右平移4个单位长度,再向下平移m(0<m<3)个单位长度,得到抛物线W1和□O1A1B1C1,在向下平移过程中,O1C1与x轴交于点H,▱O1A1B1C1与▱OABC重叠部分的面积记为S,试探究:当m为何值时,S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W1的顶点为F,若点M是x轴上的动点,点N是抛物线W1上的动点,是否存在这样的点M、N,使以D、F、M、N为顶点的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.25.(2019•抚顺)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.(1)求抛物线的解析式.(2)点N是y轴负半轴上的一点,且ON =,点Q在对称轴右侧的抛物线上运动,连接QO,QO与抛物线的对称轴交于点M,连接MN,当MN平分∠OMD时,求点Q的坐标.(3)直线BC交对称轴于点E,P是坐标平面内一点,请直接写出△PCE与△ACD全等时点P的坐标.1226.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y =(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.27.(2019•丹东)如图,在平面直角坐标系中,抛物线y =﹣x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y =﹣x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC =时,求点F的坐标.13(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t ≤),请直接写出S与t的函数关系式.14参考答案一.选择1.解:∵反比例函数y =,∴OA•AD=2.∵D是AB的中点,∴AB=2AD.∴矩形的面积=OA•AB=2AD•OA=2×2=4.故选:C.2.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x ≤且x≠﹣1.故选:D.3.解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y =在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y =(a≠0)在二、四象限,只有D符合;故选:D.4.解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB ==5,15∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.5.解:∵AB=AC,AG⊥BC,∴BG=GC =,∵△DEC与△DEF关于DE对称,∴FD=CD=x.当点F与G重合时,FD=CD,即2x=2,∴x=1,当点F与点B重合时,FC=BC,即2x =4,∴x=2,如图1,当0≤x≤1时,y=0,∴B选项错误;如图2,当1<x≤2时,,∴选项D错误;如图3,当2<x≤4时,,∴选项C错误.16故选:A.6.解:tan∠DBC ===,tan∠DAH ====﹣x,y=EF﹣EM﹣NF=2﹣BF tan∠DBC﹣AE tan∠DAH=2﹣x ×﹣x ()=x2﹣x+2,故选:B.7.解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a<0,∴b<0,c>0,∴ab>0且c>0,故①错误,∵抛物线对称轴x=﹣1,经过(1,0),∴(﹣2,0)和(0,0)关于对称轴对称,∴x=﹣2时,y>0,∴4a﹣2b+c>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴x=﹣4时,y<0,17∵b=2a,∴16a﹣8a+c<0,即8a+c<0,故③错误,∵c=﹣3a=3a﹣6a,b=2a,∴c=3a﹣3b,故④正确,∵直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,∴方程ax2+(b﹣2)x+c﹣2=0的两个根分别为x1,x2,∴x1+x2=﹣,x1•x2=,∴x1+x2+x1x2=﹣+=﹣+=﹣5,故⑤错误,故选:D.8.解:①由图象可知:a>0,c<0,∴由于对称轴>0,∴b<0,∴abc>0,故①正确;②抛物线过(3,0),∴x=3,y=9a+3b+c=0,故②正确;③顶点坐标为:(,)由图象可知:<﹣2,∵a>0,18即b2﹣4ac>8a,故③错误;④由图象可知:>1,a>0,∴2a+b<0,∵9a+3b+c=0,∴c=﹣9a﹣3b,∴5a+b+c=5a+b﹣9a﹣3b=﹣4a﹣2b=﹣2(2a+b)>0,故④正确;故选:C.9.解:∵BD∥x轴,∴∠EDB=90°,∵cos∠BED ==,∴设DE=3a,BE=5a,∴BD ===4a,∵点B的横坐标为5,∴4a=5,则a =,∴DE =,设AC=b,则CD=3b,∵AC∥BD,∴===,19∴EC =b,∴ED=3b +b =,∴=,则b=1,∴AC=1,CD=3,设B点的纵坐标为n,∴OD=n,则OC=3+n,∵A(1,3+n),B(5,n),∴A,B是反比例函数y =(k>0,x>0)图象上的两点,∴k=1×(3+n)=5n,解得k =,故选:D.10.解:如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴OA•OB=1,∴OA =,∵CD∥OB,AB=BC,∴OD=OA =,CD=2OB=2a,20∴C (,2a),∵反比例函数y =(x>0)的图象经过点C,∴k =×2a=4.故选:D.11.解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.12.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,21∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即≤﹣3,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:a,故④错误;⑤易知抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,22即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:A.二.填空题(共6小题)13.解:延长OO'交AB于点C,交l于点E,过点O'作DG⊥x轴交于G,过点E作EF⊥x轴于点F;∵A(0,3)、B(4,0),∴直线AB的解析式为y =﹣x+3,∵直线l的解析式为y =﹣x+b,∴AB∥l,∵OO'⊥l,∴OC⊥AB,∵OA=3,OB=4,由等积法可求,OC =,∵∠COB+∠AOC=∠BAO+∠AOC=90°,∴∠BOC=∠BAO,∵BO'是∠ABO的角平分线,∴CO'=GO',23∴sin∠BAO ====,∴OO'=,∴O'G =﹣=,在Rt△OO'G中,GO =,∵E、F是△OO'G的中位线,∴E (,),∵E点在直线l上,∴=﹣×+b,∴b =,故答案为.14.解:当B点在P点右侧,如图,设A(t ,),∵PB=3PA,24∴B(﹣3t ,),∵BC∥y轴,∴C(﹣3t ,﹣),∵△PAC的面积为4,∴×(﹣t )×(+)=4,解得k=﹣6;当B点在P点左侧,设A(t ,),∵PB=3PA,∴B(3t ,),∵BC∥y轴,∴C(3t ,),∵△PAC的面积为4,∴×(﹣t )×(﹣)=4,解得k=﹣12;综上所述,k的值为﹣6或﹣12.故答案为﹣6或﹣12.2515.解:∵抛物线y=﹣x2﹣6x+m与x轴没有交点,∴当y=0时,0=﹣x2﹣6x+m,∴△=(﹣6)2﹣4×(﹣1)×m<0,解得,m<﹣9故答案为:m<﹣9.16.解:设当x>120时,l2对应的函数解析式为y=kx+b,,得,即当x>120时,l2对应的函数解析式为y=6x﹣240,当x=150时,y=6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m3),故小雨家去年用水量为150m3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多210元,故答案为:210.17.解:在直线y =x+1中,当x=0时,y=1;当y=0时,x=﹣3;26∴OA=1,OM=3,∴tan∠AMO =,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB =,∴OB =.∵,∴,易得tan,∴,∴,∴,同理可得,,…,=.故答案为:.18.解:∵y =x +与x轴交于点A1,与y轴交于点A2,∴,27在y =中,当x=﹣1时,y =﹣,∴,设直线A2B1的解析式为:y=kx+b,可得:,解得:,∴直线A2B1的解析式为:,令y=0,可得:x =﹣,∴C1(﹣,0),∴=,∵△A1B1B2∽△A2B2B3,∴△C1B1B2∽△C2B2B3,∴,∴,同理可得:…,∴△C2019B2019B2020的面积=,28故答案为:.三.解答题(共9小题)19.解:(1)过点D作DH⊥x轴于点H,如图1,∵二次函数y=ax2﹣4ax+c,∴对称轴为x =,∴B(2,0),∵C(0,﹣2),∴OB=OC=2,∴∠OBC=∠DBH=45°,∵BH =,∴BH=DH=1,∴OH=OB+BH=2+1=3,∴D(3,1),把C(0,﹣2),D(3,1)代入y=ax2﹣4ax+c中得,,29∴,∴二次函数的解析式为y=﹣x2+4x﹣2;(2)∵y=ax2﹣4ax+c过C(0,﹣2),∴c=﹣2,∴y=ax2﹣4ax+c=a(x﹣2)2﹣4a﹣2,∴A(2,﹣4a﹣2),∵P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,∴①当抛物线的顶点A在x轴上时,∠POA=90°,则OP=OA,这样的P点只有2个,正、负半轴各一个,如图2,此时A(﹣2,0),∴﹣4a﹣2=0,解得a =;②当抛物线的顶点A不在x轴上时,∠AOB=30°时,则△OPA为等边三角形或∠AOP=120°的等腰三角形,这样的P点也只有两个,如图3,30∴AB=OB•tan30°=2×=,∴|﹣4a﹣2|=,∴或.综上,a =﹣或或.20.解:(1)∵比例函数y =﹣(x<0)的图象过点B(﹣3,a),∴a =﹣=1,∴OE=3,BE=1,分别过点A、B作AD⊥x轴于D,BE⊥x轴于E,∴∠BOE+∠OBE=90°,∵∠AOB=90°,∠OAB=30°,∴∠BOE+∠AOD=90°,tan30°==,∴∠OBE=∠AOD,∵∠OEB=∠ADO=90°,∴△BOE∽△OAD31∴===,∴AD =•OE ==3,OD =•BE ==∴A (,3),∵反比例函数y =(x>0)的图象过点A,∴k =×=9;(2)由(1)可知AD=3,OD =,∵BC∥x轴,B(﹣3,1),∴C点的纵坐标为1,过点C作CF⊥x轴于F,∵点C在双曲线y =上,∴1=,解得x=9,∴C(9,1),∴CF=1,∴S△AOC=S△AOD+S梯形ADFC﹣S△COF=S梯形ADCF=(AD+CF)(OF﹣OD)=(3+1)(9﹣)=13.3221.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)在反比例函数解析式y =(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y =,当m=3时,∴将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即:D(5,4),33∵DF⊥x轴于点F,交反比例函数y =的图象于点E,∴E(5,),∴DE=4﹣=,EF =,∴==;②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D(m+2,4),∵△BCD是以BC为腰的等腰三形,∴Ⅰ、当BC=CD时,∴BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,Ⅱ、当BC=BD时,∵B(2,4),C(m,8),∴BC =,∴=m,34∴m=5,即:△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5.22.解:(1)将A(﹣4,0)、B(﹣1,3)代入y=ax2+bx 中,得解得∴抛物线C解析式为:y=﹣x2﹣4x,配方,得:y=﹣x2﹣4x=﹣(x+2)2+4,∴顶点为:G(﹣2,4);(2)∵抛物线C绕点O旋转180°,得到新的抛物线C′.∴新抛物线C′的顶点为:G′(2,﹣4),二次项系数为:a′=1∴新抛物线C′的解析式为:y=(x﹣2)2﹣4=x2﹣4x将A(﹣4,0)代入y=kx ﹣中,得0=﹣4k ﹣,解得k =,∴直线l解析式为y =x ﹣,设D(m,﹣m2﹣4m),∵D、E关于原点O对称,∴OD=OE∵DE=2EM∴OM=2OD,过点D作DF⊥x轴于F,过M作MR⊥x轴于R,35∴∠OFD=∠ORM,∵∠DOF=∠MOR∴△ODF∽△OMR∴===2∴OR=2OF,RM=2DF∴M(﹣2m,2m2+8m)∴2m2+8m =•(﹣2m )﹣,解得:m1=﹣3,m2=,∵m<﹣2∴m的值为:﹣3;(3)由(2)知:m=﹣3,∴D(﹣3,3),E(3,﹣3),OE=3,如图3,连接BG,在△ABG中,∵AB2=(﹣1+4)2+(3﹣0)2=18,BG2=2,AG2=20∴AB2+BG2=AG2∴△ABG是直角三角形,∠ABG=90°,∴tan∠GAB ===,∵∠DEP=∠GAB∴tan∠DEP=tan∠GAB =,在x轴下方过点O作OH⊥OE,在OH上截取OH =OE =,36过点E作ET⊥y轴于T,连接EH交抛物线C于点P,点P即为所求的点;∵E(3,﹣3),∴∠EOT=45°∵∠EOH=90°∴∠HOT=45°∴H(﹣1,﹣1),设直线EH解析式为y=px+q,则,解得∴直线EH解析式为y =﹣x,解方程组,得,,∴点P 的横坐标为:或.3723.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y =x2﹣x﹣2;(2)如图1,∠AOC=90°,AC =,AB=4,设直线AC的解析式为:y=kx+b ,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时38=()2=()2=,∵S△AOC=1,∴S△AEB =,∴AB×|y E|=,AB=4,则y E =﹣,则点E (﹣,﹣);由△AOC∽△AEB 得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,39则FG=CF sin∠FCG =CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y =﹣时,即点F(0,﹣),CF+BF 有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),40∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m +),解得:m =,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).24.解:(1)设抛物线W的函数解析式为y=ax2+bx,图象经过A(4,0),C(﹣2,3)41∴抛物线W 的函数解析式为,顶点D的坐标为(2,﹣1);(2)根据题意,由O(0,0),C(﹣2,3),得O1(4,﹣m),C1(2,3﹣m)设直线O1C1的函数解析式为y=kx+b把O1(4,﹣m),C1(2,3﹣m)代入y=kx+b 得:,直线O1C1与x轴交于点H∴过C1作C1E⊥HA于点E,∵0<m<3∴,∴,∵,抛物线开口向下,S 有最大值,最大值为∴当时,;42(3)当时,由D(2,﹣1)得F(6,)∴抛物线W1的函数解析式为,依题意设M(t,0),以D,F,M,N为顶点的四边形是平行四边形,分情况讨论:①以DF为边时∵D(2,﹣1),F点D,F横坐标之差是4,纵坐标之差是,若点M、N的横纵坐标与之有相同规律,则以D,F,M,N为顶点的四边形是平行四边形,∵M(t,0),∴把分别代入得t1=0,t2=4,t3=6,t4=14∴M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0)②以DF为对角线时,以点D,F,M,N为顶点不能构成平行四边形.综上所述:M1 (0,0),M2(4,0),M3 (6,0),M4 (14,0).25.解:(1)∵抛物线y=ax2+bx﹣3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=x2﹣2x﹣3.43(2)如图1,设对称轴与x轴交于点H,∵MN平分∠OMD,∴∠OMN=∠DMN,又∵DM∥ON,∴∠DMN=∠MNO,∴∠MNO=∠OMN,∴OM=ON =.在Rt△OHM中,∠OHM=90°,OH=1.∴,∴M1(1,1);M2(1,﹣1).①当M1(1,1)时,直线OM解析式为:y=x,依题意得:x=x2﹣2x﹣3.解得:,,∵点Q在对称轴右侧的抛物线上运动,∴Q点纵坐标y =.∴,②当M2(1,﹣1)时,直线OM解析式为:y=﹣x,同理可求:,综上所述:点Q 的坐标为:,,44(3)由题意可知:A(﹣1,0),C(0,﹣3),D(1,﹣4),∴AC =,AD =,CD =,∵直线BC经过B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,∵抛物线对称轴为x=1,而直线BC交对称轴于点E,∴E坐标为(1,﹣2);∴CE =,设P点坐标为(x,y),则CP2=(x﹣0)2+(y+3)2,则EP2=(x﹣1)2+(y+2)2,∵CE=CD,若△PCE与△ACD全等,有两种情况,Ⅰ.PC=AC,PE=AD,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P1(﹣3,﹣4),P2(﹣1,﹣6).45Ⅱ.PC=AD,PE=AC,即△PCE≌△ACD(SSS).∴,解得:,,即P点坐标为P3(2,1),P4(4,﹣1).故若△PCE与△ACD全等,P点有四个,坐标为P1(﹣3,﹣4),P2(﹣1,﹣6),P3(2,1),P4(4,﹣1).26.解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y =(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y =,∵点A的纵坐标是4,∴4=,得x=1,46∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.27.解:(1)直线y =﹣x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y =﹣x2+bx+2,将点C坐标代入上式并解得:b =,故抛物线的表达式为:y =﹣x2+x+2…①;(2)抛物线的对称轴为:x =,47点N 的横坐标为:+=5,故点N的坐标为(5,﹣3);(3)∵tan∠ACO ==tan∠FAC =,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r =,即点R 的坐标为:(,0),将点R、A的坐标代入一次函数表达式:y=mx+n 得:,解得:,故直线AR的表达式为:y =﹣x+2…②,48联立①②并解得:x =,故点F (,﹣);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(,﹣);(4)如图2,设∠ACO=α,则tan α==,则sin α=,cos α=;①当0≤t ≤时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST=∠ACO=α,过点T作TL⊥KH,则LT=HH′=t,∠LTD=∠ACO=α,则DT ====t,DS =,S=S△DST =DT×DS =t2;②当<t ≤时(右侧图),49同理可得:S=S梯形DGS′T′=×DG×(GS′+DT ′)=3+(+﹣)=t ﹣;③当<t ≤时,同理可得:S =t +;综上,S =.50。
备战中考数学(人教版)综合能力冲刺练习(含解析)

2021备战中考数学〔人教版〕-综合才能冲刺练习〔含解析〕一、单项选择题1.y关于t的函数y=--,那么以下有关此函数图像的描绘正确的选项是〔〕A.该函数图像与坐标轴有两个交点B.该函数图象经过第一象限C.该函数图像关于原点中心对称D.该函数图像在第四象限2.a、b均为正整数,且a>,b<,那么a+b的最小值是〔〕A.3B.4C.5D.63.以下语句不是命题的是〔〕A.两点之间线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.相等的角是对顶角4.假如零上6℃记作+6℃,那么零下4℃记作〔〕A.-4B.4C.-4℃D.4℃5.以下关系式中,y是x反比例函数的是〔〕A.y=B.y=-1C.y=-D.y=6.如下图,四边形ABCD的四个顶点都在℃O上,称这样的四边形为圆的内接四边形,那么图中℃A+℃C=〔〕度.A.90°B.180°C.270°D.360°7.下面哪个点不在函数y = -2x+3的图象上〔〕A.〔-5,13〕B.〔0.5,2〕C.〔3,0〕D.〔1,1〕8.如图,在平面直角坐标系xOy中,℃A′B′C′由℃ABC绕点P旋转得到,那么点P的坐标为〔〕A.〔0,1〕B.〔0,﹣1〕C.C〔1,﹣1〕D.〔1,0〕9.如图,下午2点30分时,时钟的分针与时针所成角的度数为〔〕A.90°B.120°C.105°D.135°10.假如将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,那么这一方向应为〔〕A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°11.把一副三角板如图甲放置,其中℃ACB=℃DEC=90,℃A=45,℃D=30,斜边AB=6,DC=7,,把三角板DCE绕着点C顺时针旋转15得到℃D1CE1〔如图乙〕,此时AB与CD1交于点O,那么线段AD1的长度为〔〕A. B.5 C.4 D.二、填空题12.假设最简二次根式与是同类根式,那么b的值是________.13.我区有15所中学,其中九年级学生共有3000名.为了理解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进展排序.①搜集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.那么正确的排序为________.〔填序号〕14.假设分式有意义,那么实数x的取值范围是________15.估计与的大小关系是:________ 〔填“>〞“=〞或“<〞〕16.假如3y9﹣2m+2=0是关于y的一元一次方程,那么m=________.17.如图, 量具ABC是用来测量试管口直径的,AB的长为10cm,AC被分为60等份.假如试管口DE正好对着量具上20等份处(DE℃AB),那么试管口直径DE是________cm.三、计算题18.解方程:.19.计算:〔﹣﹣+ 〕÷〔﹣〕20.计算以下各题〔1〕计算:〔﹣〕﹣2﹣|2﹣|﹣3tan30°;〔2〕解不等式组:.21.解方程组:.四、解答题22.小明为班级联欢会设计了一个摸球游戏.游戏规那么如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全一样,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,假设两次摸到的球颜色一样,那么游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.23.阅读以下材料:“为什么不是有理数〞.假是有理数,那么存在两个互质的正整数m,n,使得=,于是有2m2=n2.℃2m2是偶数,℃n2也是偶数,℃n是偶数.设n=2t〔t是正整数〕,那么n2=2m,℃m也是偶数℃m,n都是偶数,不互质,与假设矛盾.℃假设错误℃不是有理数有类似的方法,请证明不是有理数.五、综合题24.如图,AB为℃O直径,C是℃O上一点,CO℃AB于点O,弦CD与AB交于点F.过点D作℃O 的切线交AB的延长线于点E,过点A作℃O的切线交ED的延长线于点G.〔1〕求证:℃EFD为等腰三角形;〔2〕假设OF:OB=1:3,℃O的半径为3,求AG的长.25.一工地方案租用甲、乙两辆车清理淤泥,从运输量来估算,假设租两车合运,10天可以完成任务,假设甲车的效率是乙车效率的2倍.〔1〕甲、乙两车单独完成任务分别需要多少天?〔2〕两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.答案解析局部一、单项选择题1.【答案】D【考点】函数关系式,函数自变量的取值范围【解析】【分析】在w关于t的函数式y=--中,根据二次根式有意义的条件解答此题.【解答】函数式中含二次根式,分母中含t,故当t>0时,函数式有意义,此时y<0,函数图象在第四象限.应选D.【点评】此题考察了函数式的意义,自变量与函数值对应点的坐标的位置关系.2.【答案】B【考点】估算无理数的大小【解析】【分析】此题需先根据条件分别求出a、b的最小值,即可求出a+b的最小值.【解答】a、b均为正整数,且a>,b<℃a的最小值是3,b的最小值是:1,那么a+b的最小值4.应选B.【点评】此题主要考察了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是此题的关键.3.【答案】C【考点】命题与定理【解析】【分析】判断一件事情的语句叫做命题.x与y的和等于0吗是询问的语句,故不是命题.【解答】A、正确,符合命题的定义;B、正确,符合命题的定义;C、错误;D、正确,符合命题的定义.应选C.【点评】主要考察了命题的概念.判断一件事情的语句叫做命题.4.【答案】C【考点】正数和负数【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.【解答】“正〞和“负〞相对,℃假如零上6℃记作+6℃,那么零下4℃记作-4℃,应选C.【点评】解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.5.【答案】A【考点】根据实际问题列反比例函数关系式【解析】【解答】解:A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.应选A.【分析】此题应根据反比例函数的定义,解析式符合y=〔k≠0〕的形式为反比例函数6.【答案】B【考点】圆内接四边形的性质【解析】【解答】解:℃四边形ABCD为圆的内接四边形,℃℃A+℃C=180°.应选B.【分析】根据圆内接四边形的对角互补即可作答.7.【答案】C【考点】一次函数的性质【解析】【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】A、当x=-5时,y=-2x+3=13,点在函数图象上;B、当x=0.5时,y=-2x+3=2,点在函数图象上;C、当x=3时,y=-2x+3=-3,点不在函数图象上;D、当x=1时,y=-2x+3=1,点在函数图象上;应选C.【点评】此题考察了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上8.【答案】C【考点】坐标与图形变化-旋转【解析】【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.℃直线MN为:x=1,设直线CC′为y=kx+b,由题意:,℃ ,℃直线CC′为y= x+ ,℃直线EF℃CC′,经过CC′中点〔,〕,℃直线EF为y=﹣3x+2,由得,℃P〔1,﹣1〕.应选:C.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.9.【答案】C【考点】钟面角、方位角【解析】【解答】解:下午2点30分时,时针与分针相距3.5份,下午2点30分时下午2点30分时3.5×30°=105°,应选:C.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.10.【答案】D【考点】平移的性质【解析】【解答】解:从图中可发现挪动形成的三角形ABC中,AB=AC=3,℃BAC=90°﹣30°=60°,故℃ABC是等边三角形.℃℃ACB=60°,℃℃2=90°﹣60°=30°.所以此题的答案为南偏东30°.应选D.【分析】根据方位角的概念,画图正确表示出方位角,利用等边三角形的断定与性质即可求解.11.【答案】B【考点】勾股定理,旋转的性质【解析】【分析】℃把三角板DCE绕着点C顺时针旋转15得到℃D1CE1,℃℃BCE1=15°,℃D1CE1=℃DCE=60°℃℃BCO=45°又℃℃B=45°℃OC=OB℃BOC=90°℃℃D1OA=90°℃℃ABC是等腰直角三角形℃AO=BO=AB=3℃CO=3又℃CD=7℃OD1=CD1-CO=CD-OC=4在Rt℃D1OA中,AD1=。
山东省济宁院附中2023年中考数学最后冲刺模拟试卷含解析

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()A.4 B.8 C . 2 D.-22.如图所示的几何体的俯视图是()A .B .C .D .3.如图,△ABC中,∠C=90°,D、E是AB、BC上两点,将△ABC沿DE折叠,使点B落在AC边上点F处,并且DF∥BC,若CF=3,BC=9,则AB的长是( )A.254B.15 C.454D.94.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=14S△ABC D.DE∥AB5.对于命题“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题的是()A.∠1=50°,∠1=40°B.∠1=40°,∠1=50°C.∠1=30°,∠1=60°D.∠1=∠1=45°6.满足不等式组21010xx-≤⎧⎨+>⎩的整数解是()A.﹣2 B.﹣1 C.0 D.17.不等式4-2x>0的解集在数轴上表示为()A .B .C .D .8.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°9.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°10.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.5二、填空题(共7小题,每小题3分,满分21分)11.如图,正比例函数y=kx(k>0)与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则△ABC的面积等于_____.12.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是()A .B .C .D .13.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______.14.计算:63﹣27=_____15.对于任意不相等的两个实数,a b,定义运算※如下:a※b=a ba b+-,如3※2=3232+-=5.那么8※4=.16.不等式组372291xx+≥⎧⎨-<⎩的非负整数解的个数是_____.17.计算2(252)-的结果等于__________.三、解答题(共7小题,满分69分)18.(10分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).画出△ABC 关于x轴对称的△A1B1C1;以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.19.(5分)在平面直角坐标系xOy中,一次函数y kx b=+的图象与y轴交于点()B0,1,与反比例函数myx=的图象交于点() A3,2-.()1求反比例函数的表达式和一次函数表达式;()2若点C是y轴上一点,且BC BA=,直接写出点C的坐标.20.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数22( 0 )ky kx=≠的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.21.(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:根据统计图所提供的倍息,解答下列问题:(1)本次抽样调查中的学生人数是多少人;(2 )补全条形统计图;(3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;(4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.22.(10分)如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 边于点D ,连接AD ,过D 作AC 的垂线,交AC 边于点E ,交AB 边的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若∠F=30°,BF=3,求弧AD 的长.23.(12分)如图,在平面直角坐标系中,直线y1=2x ﹣2与双曲线y2=kx 交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且OA=AB .求双曲线的解析式;求点C 的坐标,并直接写出y1<y2时x 的取值范围.24.(14分)如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:由题意得:226x +=,∴24x =,∴x=±1.故选C .2、B【解析】根据俯视图是从上往下看得到的图形解答即可.【详解】从上往下看得到的图形是:故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线3、C【解析】由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.【详解】由折叠得到EB=EF,∠B=∠DFE,在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴EF CE AB BC=,则AB=•EF BCCE=549⨯=454,故选C.【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.4、A【解析】根据三角形中位线定理判断即可.【详解】∵AD为△ABC的中线,点E为AC边的中点,∴DC=12BC,DE=12AB,∵BC不一定等于AB,∴DC 不一定等于DE ,A 不一定成立;∴AB=2DE ,B 一定成立;S △CDE=14S △ABC ,C 一定成立;DE ∥AB ,D 一定成立;故选A .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5、D【解析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】“如果∠1+∠1=90°,那么∠1≠∠1.”能说明它是假命题为∠1=∠1=45°.故选:D .【点睛】考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.6、C【解析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.【详解】210 10x x -≤⎧⎨+⎩①>②∵解不等式①得:x≤0.5,解不等式②得:x >-1,∴不等式组的解集为-1<x≤0.5,∴不等式组的整数解为0,故选C .【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键.7、D【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x >-4,系数化为1,得:x <2,故选D .【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8、C【解析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.9、A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°-∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°-∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.10、C【解析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△AOC=3,则易得S△ABC=1.【详解】∵双曲线y=与正比例函数y=kx的图象交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,∵S△AOC=×1=3,∴S△ABC=2S△AOC=1.故答案为1.12、C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO上运动时,∠APB 逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.13、1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14、33【解析】按照二次根式的运算法则进行运算即可.【详解】6327633333-=-=【点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.15、【解析】根据新定义的运算法则进行计算即可得.【详解】∵a※b a ba b+ -,∴8※84233 84+==-,316、1【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:372 291xx+≥⎧⎨-<⎩①②解①得:x≥﹣5 3,解②得:x<1,∴不等式组的解集为﹣53≤x<1,∴其非负整数解为0、1、2、3、4共1个,故答案为1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.17、2210-【解析】根据完全平方公式进行展开,然后再进行同类项合并即可.【详解】 解:2(252)-=20-410+2=22-410 .故填22410-.【点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式.三、解答题(共7小题,满分69分)18、(1)详见解析;(2)详见解析.【解析】试题分析:(1)直接利用关于x 轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;考点:作图-位似变换;作图-轴对称变换 19、(1)y=6x -,y=-x+1;(2)C(0,2+1 )或C(0,2 【解析】(1)依据一次函数y kx b =+的图象与y 轴交于点(0,1)B ,与反比例函数m y x =的图象交于点(3,2)A -,即可得到反比例函数的表达式和一次函数表达式;(2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=,即可得到32BC =,再根据1BO =,可得321CO =或321,即可得出点C 的坐标.【详解】(1)∵双曲线m y x =过(3,2)A -,将(3,2)A -代入m y x =,解得:6m =-.∴所求反比例函数表达式为:6y x =-. ∵点(3,2)A -,点(0,1)B 在直线y kx b =+上,∴23k b -=+,1b =,∴1k =-,∴所求一次函数表达式为1y x =-+.(2)由(3,2)A -,(0,1)B 可得:223(12)32AB =++=,∴32BC =. 又∵1BO =,∴321CO =+或321-,∴(0C ,321+)或(0C ,132).【点睛】本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.20、(1)反比例函数的解析式为2y x =-;一次函数的解析式为y=-x+1;(2)满足条件的P 点的坐标为(-1+14,0)或(-1-14,0)或(2+17,0)或(2-17,0)或(0,0).【解析】(1)将A 点代入求出k2,从而求出反比例函数方程,再联立将B 点代入即可求出一次函数方程.(2)令PA=PB ,求出P.令AP=AB,求P.令BP=BA ,求P.根据坐标距离公式计算即可.【详解】(1)把A (-1,2)代入,得到k2=-2, ∴反比例函数的解析式为. ∵B (m ,-1)在上,∴m=2,由题意,解得:,∴一次函数的解析式为y=-x+1.(2)满足条件的P 点的坐标为(14,0)或(14,0)或(170)或(170)或(0,0).【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.21、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)23.【解析】(1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;(2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;(3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;(4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.【详解】(1)30÷30%=100,所以本次抽样调查中的学生人数为100人;(2)选”舞蹈”的人数为100×10%=10(人),选“打球”的人数为100﹣30﹣10﹣20=40(人),补全条形统计图为:(3)2000×40100=800,所以估计该校课余兴趣爱好为“打球”的学生人数为800人;(4)画树状图为:共有12种等可能的结果数,其中选到一男一女的结果数为8,所以选到一男一女的概率=82 123.【点睛】本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.22、(1)见解析;(2)2π.【解析】证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD 平分∠BAC ,∴∠OAD=∠CAD ,∵OA=OD ,∴∠OAD=∠ODA ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵DE ⊥AC ,∴OD ⊥EF ,∵OD 过O ,∴EF 是⊙O 的切线.(2)∵OD ⊥DF ,∴∠ODF=90°,∵∠F=30°,∴OF=2OD ,即OB+3=2OD ,而OB=OD ,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴AD 的长度=12032180ππ⨯⨯=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.23、(1)24y x =;(1)C (﹣1,﹣4),x 的取值范围是x <﹣1或0<x <1.【解析】【分析】(1)作高线AC ,根据等腰直角三角形的性质和点A 的坐标的特点得:x=1x ﹣1,可得A 的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C 的坐标,根据图象可得结论.【详解】(1)∵点A 在直线y1=1x ﹣1上,∴设A (x ,1x ﹣1),过A 作AC ⊥OB 于C ,∵AB ⊥OA ,且OA=AB ,∴OC=BC ,∴AC=12OB=OC ,∴x=1x ﹣1,x=1,∴A (1,1),∴k=1×1=4, ∴24y x =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.24、(1)见解析(2)相切【解析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【详解】(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键.。
2020-2021学年人教版九年级中考数学冲刺试卷(含答案)

2020-2021学年人教新版中考数学冲刺试卷一.选择题(共9小题,满分27分,每小题3分)1.比赛用的乒乓球的质量有严格的规定,但实际生产的乒乓球的质量可能会有一些偏差.以下检验记录(“+”表示超出标准质量,“﹣”表示不足标准质量)中,质量最接近标准质量乒乓球是()编号1234偏差/g+0.01﹣0.02﹣0.03+0.04 A.1号B.2号C.3号D.4号2.如图的三视图对应的物体是()A.B.C.D.3.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.5m,当它的一端B着地时,另一端A离地面的高度AC为()A.1.25m B.1 m C.0.75 m D.0.50 m5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是()A.∠BDO=60°B.∠BOC=25°C.OC=4D.BD=46.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,87.一辆客车从酒泉出发开往兰州,设客车出发t小时后与兰州的距离为s千米,下列图象能大致反映s与t之间的函数关系的是()A.B.C.D.8.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y 9.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA =.若反比例函数y=(k>0,x>0)经过点C,则k的值等于()A.10B.24C.48D.50二.填空题(共8小题,满分24分,每小题3分)10.函数y=的自变量x的取值范围是.11.若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.12.从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为.13.已知a,b,c是△ABC的三条边的长度,且满足a2﹣b2=c(a﹣b),则△ABC一定是三角形.14.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.15.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).16.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.17.已知函数y=kx2+2kx+1,当﹣3≤x≤2时,函数有最大值为4,则k =.三.解答题(共10小题,满分96分)18.(1)计算﹣(﹣1)0+12×3﹣1﹣|﹣5|(2)化简1﹣.19.解下列关于x的不等式组,并把解集表示在数轴上,写出其正整数解.20.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)21.某校组织全校1400名学生进行了“八礼四仪”掌握情况问卷测试.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数.满分为100分),并绘制了频数分布表和频数分布直方图(不完整).分组50.5≤x<60.560.5≤x<70.570.5≤x<80.580.5≤x<90.590.5≤x<100.5合计频数2048a104148400根据所给信息,回答下列问题:(1)频数分布表中,a=.(2)补全频数分布直方图;(3)学校将对分数x在90.5≤x<100.5范围内的学生进行奖励,请你估算出全校获奖学生的人数.22.为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.23.如图,等腰△ABC内接于半径为5的⊙O,AB=AC,tan∠ABC=.求BC的长.24.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A 旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.(1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.26.建立模型:(1)如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.操作:过点A 作AD⊥l于点D,过点B作BE⊥l于点E,求证△CAD≌△BCE.模型应用:(2)如图2,在直角坐标系中,直线l1:y=x+8与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.(3)如图3,在直角坐标系中,点B(10,8),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.27.如图1,在平面直角坐标系中,抛物线y=﹣x2+2x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+MN+NO 的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK为底角的等腰三角形?若存在,求此时GL的长.参考答案与试题解析一.选择题(共9小题,满分27分,每小题3分)1.解:|+0.01|=0.01,|﹣0.02|=0.02,|﹣0.03|=0.03,|+0.04|=0.04,0.04>0.03>0.02>0.01,绝对值越小越接近标准.所以最接近标准质量是1号乒乓球.故选:A.2.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点,故选:D.3.解:3100000=3.1×106,故选:D.4.解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×0.5=1(m).故选:B.5.解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣35°=25°,故B选项正确;故选:D.6.解:将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;众数是一组数据中出现次数最多的数,即8;故选:D.7.解:根据出发时与终点这两个特殊点的意义,图象能大致反映s与t之间的函数关系的是应选A.故选:A.8.解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.9.解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)∵若反比例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.二.填空题(共8小题,满分24分,每小题3分)10.解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.11.解:∵x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,∴x1x2=﹣3.故答案为﹣3.12.解:从长度分别为3,4,6,9的四条线段中任取三条的所有可能性是:(3,4,6)、(3,4,9)、(3,6,9)、(4,6,9),能组成三角形的可能性是:(3,4,6)、(4,6,9),∴能组成三角形的概率为:=,故答案为.13.解:由a2﹣b2=c(a﹣b),(a+b)(a﹣b)=c(a﹣b),(a+b)(a﹣b)﹣c(a﹣b)=0,(a﹣b)(a+b﹣c)=0,∵三角形两边之和大于第三边,即a+b>c,∴a+b﹣c≠0,∴a﹣b=0,即a=b,即△ABC一定是等腰三角形.故答案为:等腰.14.解:如图,连接AC交BD于点O∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形∴∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4∵CE∥AB∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°∴∠DAO=∠ACE=30°∴AE=CE=6∴DE=AD﹣AE=2∵∠CED=∠ADB=60°∴△EDF是等边三角形∴DE=EF=DF=2∴CF=CE﹣EF=4,OF=OD﹣DF=2∴OC==2∴BC==215.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.16.解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.17.解:∵函数y=kx2+2kx+1=k(x+1)2﹣k+1,当﹣3≤x≤2时,函数有最大值为4,∴该函数的对称轴是直线x=﹣1,当k<0时,x=﹣1时,函数取得最大值,即﹣k+1=4,得k=﹣3;当k>0时,x=2时,函数取得最大值,即9k﹣k+1=4,解得,k=,故答案为:﹣3或.三.解答题(共10小题,满分96分)18.解:(1)原式=8﹣1+12×﹣5=8﹣1+4﹣5=6;(2)原式=1﹣•=1﹣==﹣.19.解:解不等式①得:x<3,解不等式②得:x≥﹣,故不等式组的解集为﹣≤<3,将不等式解集表示在数轴上如下图所示:故正整数解为1,2.20.解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sin B=,∴AD=AB•sin B=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.21.解:(1)a=400﹣(20+48+104+148)=80,故答案为:80;(2)补全频数分布直方图如下:(3)1400×=518(人),答:估计全校获奖学生的人数为518人.22.解:(1)用列表法表示所有可能结果如下:(2)共有6种等可能情形,恰好选中医生甲和护士A只有一种情形,P(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.23.解:连接AO,交BC于点E,连接BO,∵AB=AC,∴=,又∵OA是半径,∴OA⊥BC,BC=2BE,在Rt△ABE中,∵tan∠ABC=,∴=,设AE=x,则BE=3x,OE=5﹣x,在Rt△EO中,BE2+OE2=OB2,∴(3x)2+(5﹣x)2=52,解得:x1=0(舍去),x2=1,∴BE=3x=3,∴BC=2BE=6.24.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,∵BM、DN分别是正方形的两个外角平分线,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM=∠AND=45°﹣∠DAN,∴△ABM∽△NDA;(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:∵∠BAM=22.5°,∠EBM=45°,∴∠AMB=22.5°,∴∠BAM=∠AMB,∴AB=BM,同理AD=DN,∵AB=AD,∴BM=DN,∵四边形ABCD是正方形∴∠ABD=∠ADB=45°,∴∠BDN=∠DBM=90°∴∠BDN+∠DBM=180°,∴BM∥DN∴四边形BMND为平行四边形,∵∠BDN=90°,∴四边形BMND为矩形.25.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.26.解:(1)如图1,∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ACD和△CBE中,∴△CAD≌△BCE(AAS);(2)∵直线y=x+8与y轴交于点A,与x轴交于点B,∴A(0,8)、B(﹣6,0),如图2,过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴,在△BDC和△AOB中,∴△BDC≌△AOB(AAS),∴CD=BO=6,BD=AO=8,∴OD=OB+BD=6+8=14,∴C点坐标为(﹣14,6),设l2的解析式为y=kx+b,将A,C点坐标代入,得,解得,∴l2的函数表达式为y=x+8;(3)∵点Q(a,2a﹣6),∴点Q是直线y=2x﹣6上一点,当点Q在AB下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),∴AE=QF,即8﹣(2a﹣6)=10﹣a,解得a=4;当点Q在线段AB上方时,如图4,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,则AE=2a﹣14,FQ=10﹣a.在△AQE和△QPF中,∴△AQE≌△QPF(AAS),AE=QF,即2a﹣14=10﹣a,解得a=8;综上可知,A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为4或8.27.解:(1)∵抛物线y=﹣x2+2x﹣与y轴交于点C,∴C(0,﹣),∵y=﹣x2+2x﹣=﹣(x﹣2)2+,∴顶点D(2,),对称轴x=2,∴E(2,0),设CE解析式y=kx+b,∴,解得:,∴直线CE的解析式:y=x﹣;(2)∵直线CE交抛物线于点F(异于点C),∴x﹣=﹣(x﹣2)2+,∴x1=0,x2=3,∴F(3,),过P作PH⊥x轴,交CE于H,如图1,设P(a,﹣a2+2a﹣)则H(a,a﹣),∴PH=﹣a2+2a﹣﹣(a﹣),=﹣a2+,=PH×3=﹣a2+,∵S△CFP∴当a=时,S面积最大,△CFP如图2,作点M关于对称轴的对称点M',过F点作FG∥MM',FG=1,即G(4,),∵M的横坐标为,且M与M'关于对称轴x=2对称,∴M'的横坐标为,∴MM'=1,∴MM'=FG,且FG∥MM',∴FGM'M是平行四边形,∴FM=GM',∴FM+MN+ON=GM'+NM'+ON,根据两点之间线段最短可知:当O,N,M',G四点共线时,GM'+NM'+ON的值最短,即FM+MN+ON的值最小,∴FM+MN+ON=OG==;(3)如图3,设CD解析式y=mx+n,则,解得:,∴CD解析式y=x﹣,∴当y=0时,x=1.即G(1,0),∴DG==2,∵tan∠DGI==,∴∠DGI=60°,∵DI⊥DG,∴∠GDI=90°,∠GID=30°,∴GI=2DG=4∴I(5,0),∵将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,连接D'I,∴G'D'=D'I=DG=2,∠D'G'I=∠DGI=60°,∴△G'D'I是等边三角形,∴G'I=2,G'K=2D'G'=4,∴G'(3,0),如图4,当G''与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK =30°,∴GL=D'G+D'L=4;如图5,L与G''重合,△GKL为以∠LGK为底角的等腰三角形,∴GL=GD'+D'L=2+2综上,GL的长为4或2+2.。
初三数学升中考最后冲刺应用题训练(含答案)

初三数学升中考最后冲刺应用题训练(含答案)应用题训练1.(2022山西省太原市)某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案.产品名称每件产品的产值(万元)甲45乙752.(2022新疆乌鲁木齐)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?3.(2022福建省福州市)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)郑老师计划用1000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?4.(2022云南省楚雄州市)今年四月份,李大叔收获洋葱30吨,黄瓜13吨,现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨;一辆乙种货车可装洋葱和黄瓜各2吨.(1)李大叔安排甲、乙两种货车时有几种方案?请你帮助设计出来;(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,请帮李大叔算一算应选择哪种方案,才能使运费最少?最少运费是多少元?5.(2022广东省茂名市)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.(1)试求出纸箱中蓝色球的个数;(3分)(2)假设向纸箱中再放进红色球某个,这时从纸箱中任意取出一个球是红色球的概率为0.5,试求某的值.(4分)6.(2022山东省济南市)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.16米AD草坪BC7.(2022河南省)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和∶2,单价和为80元.排球的单价比为3(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?8.(2022山东省莱芜市)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?9.(2022江苏省南京市)某批发商以每件50元的价格购进800件T 恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元.设第二个月单价降低某元.(1)填表(不需化简):(2)如果批发商希望通过销售这批T恤获利9000元,那时间第一个月第二个月清仓时么第二个月的单价应是多少元?单价(元)8040销售量(件)20010.(2022山东省临沂市)为落实素质教育要求,促进学生全面发展,我市某中学2022年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2022年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2022年到2022年,该中学三年为新增电脑共投资多少万元?11.(2022山东省青岛市)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.12.(2022山东省泰安市)某商店经销一种泰山旅游纪念品,4月份的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?13.(2022山东省威海市)某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去年12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m3,5月份的燃气费是90元.求该市今年居民用气的价格.14.(2022广西贺州市)“玉树”地震后,某工厂一号车间接到紧急任务,急需为地震灾区生产15000顶帐篷,如果按照一号车间现有的人数和每个工人的生产速度(每个工人的生产速度一样),15天才能完成任务.生产两天后,由于情况紧急,厂领导决定从二号车间调来60名工人一起加入生产,调整后每个工人的生产工作效率都提高了40%.结果提前8天完成任务.求原来一号车间有多少名工人?15.(2022江苏省宿迁市)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两和种花木每株成本分别为多少元;(2)据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?16.(2022广西梧州市)2022年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些选购方案?17.(2022广西桂林市)某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案....18.(2022浙江省绍兴市)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?19.(2022湖北省咸宁市)随着人们节能意识的增强,节能产品的销售量逐年增加.某商场高效节能灯的年销售量2022年为5万只,预计2022年将达到7.2万只.求该商场2022年到2022年高效节能灯年销售量的平均增长率.20.(2022湖北省襄樊市)如图,是上海世博园内一个矩形花园,花园的长为100米,宽为50米,在它的四角各建有一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600米2,那么矩形花园各角处的正方形观光休息亭的边长为多少米?第1题答案.解:设计划生产甲产品某件,则生产乙产品20某件,根据题意,得解得10某45某7520某1150,45某7520某1200.35.3此时,20某9(件).某为整数,∴某11.答:公司应安排生产甲产品11件,乙产品9件.第2题答案.解:(1)在甲公司购买6台图形计算器需要用6(800206)4080(元);在乙公司购买需要用.应去乙公司购买;75%80063600(元)4080(元)(2)设该单位买某台,若在甲公司购买则需要花费某(80020某)元;若在乙公司购买则需要花费75%800某600某元;①若该单位是在甲公司花费7500元购买的图形计算器,则有某(80020某)7500,解之得某15,某25.当某15时,每台单价为8002015500440,符合题意,当某25时,每台单价为8002025300440,不符合题意,舍去.②若该单位是在乙公司花费7500元购买的图形计算器,则有600某7500,解之得某12.5,不符合题意,舍去.故该单位是在甲公司购买的图形计算器,买了15台.第3题答案.(1)解:设每个书包的价格为某元,则每本词典的价格为(某8)元.根据题意得:3某2(某8)124解得:某280∴某82.答:每个书包的价格为28元,每本词典的价格为20元.(2)解:设购买书包y个,则购买词典(40y)本.根据题意得:100028y20(40y)≥100,100028y20(40y)≤120.解得10≤y≤12.5.因为y取整数,所以y的值为10或11或12.所以有三种购买方案分别是:①书包10个,词典30本;②书包11个,词典29本;③书包12个,词典28本.第4题答案.解:(1)设李大叔安排某辆甲种货车,乙种货车有(10-某)辆,则有4某2(10某)30某2(10某)13解之得:5≤某≤7因为某应取正整数.所以某取5,6,7方案如下:①安排5辆甲种货车,5辆乙种货车;②安排6辆甲种货车,4辆乙种货车;③安排7辆甲种货车,3辆乙种货车.(2)方案①:5某2000+5某1300=16500(元)方案②:6某2000+4某1300=17200(元)方案③:7某2000+3某1300=17900(元)所以,李大叔应选择方案①才能使运费最少,最少运费是16500元.第5题答案.解:(1)由已知得纸箱中蓝色球的个数为:100(10.20.3)50(个)(2)方法一:根据题意得:20某0.5,100某解得:某60.检验某60,100某0,∴某60为原方程的解.答略.方法二:由已知得红色球20个、黄色球30个,蓝色球50个,为使任意取出一个球是红色球的概率为0.5,所以纸箱中红色球的个数等于黄色球与蓝色球个数之和,得:某+20=30+50,解得:某60.答略.第6题答案.解:设BC边的长为某米,根据题意得某32某120,2解得:某112,某220,∵20>16,∴某220不合题意,舍去,答:该矩形草坪BC边的长为12米.第7题答案.(1)设篮球的单价为某元,则排球的单价为8分2某元.依题意得3某2某80.32某32.3解得某48.即篮球和排球的单价分别是48元、32元.(2)设购买的篮球数量为n个,则购买的排球数量为(36n)个.n25,(36n)≤1600.48n32解得25n≤28.9,8.所以共有三种购买方案.而n为整数,所以其取值为26,27,28,对应的36n的值为10,方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.第8题答案.解:(1)设组建中型图书角某个,则组建小型图书角为(30-某)个.由题意得(30某)190080某30(30某)162050某60解这个不等式组得18≤某≤20.由于某只能取整数,∴某的取值是18,19,20.当某=18时,30-某=12;当某=19时,30-某=11;当某=20时,30-某=10.故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个.(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用就越低,故方案一费用最低,最低费用是860某18+570某12=22320(元).方法二:①方案一的费用是:860某18+570某12=22320(元);②方案二的费用是:860某19+570某11=22610(元);③方案三的费用是:860某20+570某10=22900(元).故方案一费用最低,最低费用是22320元.第9题答案.解:(1)80-某200+10某800-200-(200+10某)(2)根据题意,得80某200+(80-某)(200+10某)+40[800-200-(200+10某)]-50某800=9000.整理,得某2-20某+100=0.解这个方程,得某1=某2=10.当某=10时,80-某=70>50.答:第二个月的单价应是70元.第10题答案.解:(1)设该校为新增电脑投资的年平均增长率为某根据题意,得一元二次方程111某18.59.解这个方程,得某10.3,某22.3(不合题意,舍去).答:该学校为新增电脑投资的年平均增长率为30%.(2)111110.318.5943.89(万元).答:从2022年到2022年,该中学三年为新增电脑共投资43.89万元.第11题答案.解:(1)设单独租用35座客车需某辆,由题意得:35某55(某1)45,解得:某5.∴35某355175(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y辆,则租55座客车(4y)辆,由题意得:35y55(4y)≥175,320y400(4y)≤1500211解这个不等式组,得1≤y≤2.44∵y取正整数,∴y=2.∴4-y=4-2=2.∴320某2+400某2=1440(元).所以本次社会实践活动所需车辆的租金为1440元.第12题答案.解:(1)设该种纪念品4月份的销售价格为某元,根据题意得2000200070020某0.9某解之得某50.经检验某50是所得方程的解.∴该种纪念品4月份的销售价格是50元.(2)由(1)知4月份销售件数为∴4月份每件盈利200040件,5080020元.405月份销售件数为402060件,且每件售价为500.945,每件比4月份少盈利5元,为15元,所以5月份销售这种纪念品获利6015900元.第13题答案.解:设该市去年居民用气的价格为某元/m3,则今年的价格为(1+25%)某元/m3.969010.根据题意,得某(125%)某解这个方程,得某=2.4.经检验,某=2.4是所列方程的根.2.4某(1+25%)=3(元).所以,该市今年居民用气的价格为3元/m3.第14题答案.解:设原来一号车间有某名工人,依题意得:1500021500015(140%)15某(1528)(某60)15000化简得150001.41300015某5(某60)解之得:某=70经检验:某=70是原方程的根.答:原来一号车间有70名工人.(注:用其它方法解答正确的均给予相应的分值.)第15题答案.(1)解:(1)设甲、乙两种花木的成本价分别为某元和y元.由题意得:2某3y17003某y1500某400解得:y300(2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株.则有:解得:400a300(3a10)30000(760400)a(540300)(3a10)21600160270a913由于a为整数,∴a可取18或19或20,所以有三种具体方案:①种植甲种花木18株,种植乙种花木3a+10=64株;②种植甲种花木19株,种植乙种花木3a+10=67株;③种植甲种花木20株,种植乙种花木3a+10=70株.第16题答案.解:设选购B种服装某件,则选购A种服装为(2某+4)件,由题意得25(2某4)32某17402某448某22某20解之得∴20≤某≤22∵某为正整数∴某1=20,某2=21,某3=22.∴当某1=20时,2某4=2某20+4=44,当某2=21时,2某4=2某21+4=46,当某3=22时,2某4=2某22+4=48.∴老板有三种选购方案:购进B种品牌服装20件,购进A种品牌服装44件;购进B种品牌服装21件,购进A种品牌服装46件;购进B种品牌服装22件,购进A种品牌服装48件…10分第17题答案.解:(1)设租36座的车某辆.据题意得:36某42(某1)36某42(某2)30解得:某7某9由题意某应取8则春游人数为:368=288(人).(2)方案①:租36座车8辆的费用:8400=3200元,方案②:租42座车7辆的费用:74403080元方案③:因为426361288,租42座车6辆和36座车1辆的总费用:644014003040元所以方案③:租42座车6辆和36座车1辆最省钱.(说明:只要给出方案③就可得满分2分)第18题答案.解:(1)∵30000÷5000=6,∴能租出24间.(2)设每间商铺的年租金增加某万元,则(30-某某某)某(10+某)-(30-)某1-某0.5=275,0.50.50.52某2-11某+5=0,∴某=5或0.5,∴每间商铺的年租金定为10.5万元或15万元.第19题答案.解:设年销售量的平均增长率为某,依题意得:5(1某)27.2.解这个方程,得某10.2,某22.2.因为某为正数,所以某0.220%.答:该商场2022年到2022年高效节能灯年销售量的平均增长率为20%.第20题答案.解:设正方形观光休息亭的边长为某米.依题意,有(1002某)(502某)3600.整理,得某75某3500.解得某15,某270.2某7050,不合题意,舍去,某5.答:矩形花园各角处的正方形观点休息亭的边长为5米.7分∴老板有三种选购方案:购进B种品牌服装20件,购进A种品牌服装44件;购进B种品牌服装21件,购进A种品牌服装46件;购进B种品牌服装22件,购进A种品牌服装48件…10分第17题答案.解:(1)设租36座的车某辆.据题意得:36某42(某1)36某42(某2)30解得:某7某9由题意某应取8则春游人数为:368=288(人).(2)方案①:租36座车8辆的费用:8400=3200元,方案②:租42座车7辆的费用:74403080元方案③:因为426361288,租42座车6辆和36座车1辆的总费用:644014003040元所以方案③:租42座车6辆和36座车1辆最省钱.(说明:只要给出方案③就可得满分2分)第18题答案.解:(1)∵30000÷5000=6,∴能租出24间.(2)设每间商铺的年租金增加某万元,则(30-某某某)某(10+某)-(30-)某1-某0.5=275,0.50.50.52某2-11某+5=0,∴某=5或0.5,∴每间商铺的年租金定为10.5万元或15万元.第19题答案.解:设年销售量的平均增长率为某,依题意得:5(1某)27.2.解这个方程,得某10.2,某22.2.因为某为正数,所以某0.220%.答:该商场2022年到2022年高效节能灯年销售量的平均增长率为20%.第20题答案.解:设正方形观光休息亭的边长为某米.依题意,有(1002某)(502某)3600.整理,得某75某3500.解得某15,某270.2某7050,不合题意,舍去,某5.答:矩形花园各角处的正方形观点休息亭的边长为5米.7分。
2023学年河北省唐山市路北区中考数学最后冲刺浓缩精华卷(含答案解析)

2023年河北省唐山市路北区中考数学最后冲刺浓缩精华卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.已知⊙O 的半径为5,弦AB=6,P 是AB 上任意一点,点C 是劣弧AB 的中点,若△POC 为直角三角形,则PB 的长度( ) A .1B .5C .1或5D .2或42.下列各数中是无理数的是( ) A .cos60°B .·1.3C .半径为1cm 的圆周长D .383.若正比例函数y =kx 的图象上一点(除原点外)到x 轴的距离与到y 轴的距离之比为3,且y 值随着x 值的增大而减小,则k 的值为( ) A .﹣13B .﹣3C .13 D .34.下列各数中,为无理数的是( ) A .38B .4C .13D .25.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km /h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km /h ;②m =160;③点H 的坐标是(7,80);④n =7.1.其中说法正确的有( )A .4个B .3个C .2个D .1个6.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C 相似的是( )A .B .C.D.7.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.138.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是()A.b2>4ac B.ax2+bx+c≤6C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=09.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.5B.C.D.710.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)7 8 9 10次数 1 4 3 2A.8、8 B.8、8.5 C.8、9 D.8、10二、填空题(本大题共6个小题,每小题3分,共18分)11.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.12.如图,等腰△ABC 中,AB =AC =5,BC =8,点F 是边BC 上不与点B ,C 重合的一个动点,直线DE 垂直平分BF ,垂足为D .当△ACF 是直角三角形时,BD 的长为_____.13.点A (x 1,y 1)、B (x 1,y 1)在二次函数y=x 1﹣4x ﹣1的图象上,若当1<x 1<1,3<x 1<4时,则y 1与y 1的大小关系是y 1_____y 1.(用“>”、“<”、“=”填空) 14.一元二次方程x (x ﹣2)=x ﹣2的根是_____. 15.计算(5+3)(5-3)的结果等于________.16.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是 _______.三、解答题(共8题,共72分)17.(8分)已知关于x 的一元二次方程x 2+(2m +3)x +m 2=1有两根α,β求m 的取值范围;若α+β+αβ=1.求m 的值. 18.(8分)如图,已知A (3,0),B (0,﹣1),连接AB ,过B 点作AB 的垂线段BC ,使BA =BC ,连接AC .如图1,求C 点坐标;如图2,若P 点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角△BPQ ,连接CQ ,当点P 在线段OA 上,求证:PA =CQ ;在(2)的条件下若C 、P ,Q 三点共线,求此时∠APB 的度数及P 点坐标.19.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答: (1)收回问卷最多的一天共收到问卷_________份; (2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少? (4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?20.(8分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学冲刺拔高专题训练目录专题提升(一) 数形结合与实数的运算 (1)专题提升(二) 代数式的化简与求值 (5)专题提升(三) 数式规律型问题 (9)专题提升(四) 整式方程(组)的应用 (15)专题提升(五) 一次函数的图象与性质的应用 (22)专题提升(六) 一次函数与反比例函数的综合 (31)专题提升(七) 二次函数的图象和性质的综合运用 (41)专题提升(八) 二次函数在实际生活中的应用 (48)专题提升(九) 以全等为背景的计算与证明 (54)专题提升(十) 以等腰或直角三角形为背景的计算与证明 (60)专题提升(十一) 以平行四边形为背景的计算与证明 (69)专题提升(十二) 与圆的切线有关的计算与证明 (77)专题提升(十三) 以圆为背景的相似三角形的计算与 (83)专题提升(十四) 利用解直角三角形测量物体高度或宽度 (92)专题提升(十五) 巧用旋转进行证明与计算 (99)专题提升(十六) 统计与概率的综合运用 (106)专题提升(一) 数形结合与实数的运算类型之一数轴与实数【经典母题】如图Z1-1,通过画边长为1的正方形的边长,就能准确地把2和-2表示在数轴上.图Z1-1【思想方法】(1)在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都可以表示一个实数.我们说实数和数轴上的点一一对应;(2)数形结合是重要的数学思想,利用它可以比较直观地解决问题.利用数轴进行实数的大小比较,求数轴上的点表示的实数,是中考的热点考题.【中考变形】1.[2017·北市区一模]如图Z1-2,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是 ( C )图Z1-2+1-1 D.1-5【解析】∵AD长为2,CD长为1,∴AC=22+12=5,∵A点表示-1,∴E点表示的数为5-1.2.[2016·娄底]已知点M,N,P,Q在数轴上的位置如图Z1-3,则其中对应的数的绝对值最大的点是 ( D )图Z1-3A.M B.N C.P D.Q3.[2016·天津]实数a,b在数轴上的对应点的位置如图Z1-4所示,把-a,-b,0按照从小到大的顺序排列,正确的是 ( C )图Z1-4A.-a<0<-b B.0<-a<-bC.-b<0<-a D.0<-b<-a【解析】∵从数轴可知a<0<b,∴-b<0,-a>0,∴-b<0<-a. 4.[2017·余姚模拟]如图Z1-5,数轴上的点A,B,C,D,E表示连续的五个整数,若点A,E表示的数分别为x,y,且x+y=2,则点C表示的数为( B )图Z1-5A.0 B.1 C.2 D.3【解析】根据题意,知y-x=4,即y=x+4,将y=x+4代入x+y=2,得x+x +4=2,解得x=-1,则点A表示的数为-1,则点C表示的数为-1+2=1. 5.如图Z1-6,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP 为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于 ( A )图Z1-6A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间【解析】∵点P的坐标为(-2,3),∴OP=22+32=13.∵点A,P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=13,∵9<13<16,∴3<13<4.∵点A在x轴的负半轴上,∴点A的横坐标介于-4和-3之间.故选A.6.[2017·成都改编]如图Z1-7,数轴上点A表示的实数是__-2__.图Z1-7【中考预测】如图Z1-8,数轴上的点A,B分别对应实数a,b,下列结论中正确的是( C )图Z1-8A.a>b B.|a|>|b|C.-a<b D.a+b<0【解析】由图知,a<0<b且|a|<|b|,∴a+b>0,即-a<b,故选C.类型之二实数的混合运算【经典母题】计算:2×(3+5)+4-2× 5.解:2×(3+5)+4-2×5=2×3+2×5+4-2×5=6+4+2×5-2×5=10.【中考变形】1.[2016·台州]计算: 4-⎪⎪⎪⎪⎪⎪-12+2-1.解:原式=2-12+12=2.2.[2017·临沂]计算:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1.解:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1=2-1+2×22-22+2=2-1+2-22+2=1.3.[2017·泸州]计算:(-3)2+2 0170-18×sin45°. 解:(-3)2+2 0170-18×sin45°=9+1-32×22=10-3=7. 【中考预测】计算:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1.解:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1=23-3×33+1-2=3-1.专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值 【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗(x -y )2呢 解:x 2+y 2=(x +y )2-2xy =32-2×1=7; (x -y )2=(x +y )2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b )2+(a -b )2=2(a 2+b 2),(a +b )2-(a -b )2=4ab ,a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量. 【中考变形】1.已知(m -n )2=8,(m +n )2=2,则m 2+n 2的值为( C )A .10B .6C .5D .32.已知实数a 满足a -1a =3,则a 2+1a2的值为__11__.【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a2=11.3.[2017·重庆B 卷]计算:(x +y )2-x (2y -x ). 解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2016·漳州]先化简(a +1)(a -1)+a (1-a )-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由) 解:原式=a 2-1+a -a 2-a =-1. 故该代数式的值与a 的取值没有关系. 【中考预测】先化简,再求值:(a -b )2+a (2b -a ),其中a =-12,b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2. 当a =-12,b =3时,原式=32=9.类型之二 分式的化简与求值 【经典母题】计算:(1)a b -b a -a 2+b 2ab ;(2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x .解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2ba;(2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x=2x +8.【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别. 【中考变形】1.[2017·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2=(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2017·攀枝花]先化简,再求值:⎝⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x ,其中x =2.解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=xx +1. 当x =2时,原式=22+1=23. 【中考预测】先化简,再求值:⎝⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x 2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝ ⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2. 类型之三 二次根式的化简与求值 【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值. 解:∵a =3+2,b =3-2,∴a +b =23,ab =1, ∴a 2-ab +b 2=(a +b )2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一. 【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为 ( C )A .9B .±3C .3D .52.[2016·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1.解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-aba +b ,当a =2+1,b =2-1时,原式=-122=-24. 3.[2017·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷y x -2y ,其中x =22,y = 2.解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y =⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】先化简,再求值:1a +b +1b +b a (a +b ),其中a =5+12,b =5-12.解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +bab ,∵a +b =5+12+5-12=5,ab =5-12×5+12=1,∴原式= 5.专题提升(三) 数式规律型问题【经典母题】观察下列各式:52=25;152=225;252=625;352=1 225;…你能口算末位数是5的两位数的平方吗请用完全平方公式说明理由.解:把末位数是5的自然数表示成10a+5的一般形式,其中a为自然数,则(10a+5)2=100a2+100a+25=100a(a+1)+25,因此在计算末位数是5的自然数的平方时,只要把100a与a+1相乘,并在积的后面加上25即可得到结果.【思想方法】模型化思想和归纳推理的思想在中考中应用广泛,是热点考题之一.【中考变形】1.小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16;…根据以上规律可知第10行左起第1个数是 ( C )A.100 B.121 C.120 D.82【解析】根据规律可知第10行等式的右边是102=100,等式左边有20个数加减.∵这20个数是120+119+118+…+111-110-109-108-…-102-101,∴左起第1个数是120.2.[2016·邵阳]如图Z3-1,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是 ( B )图Z3-1A.y=2n+1 B.y=2n+nC.y=2n+1+n D.y=2n+n+1【解析】∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为21,22…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴最后一个三角形中y与n之间的关系为y=2n+n.3.[2018·中考预测]根据图Z3-2中箭头的指向规律,从2 017到2 018再到2 019,箭头的方向是下列选项中的 ( D )图Z3-2【解析】由图可知,每4个数为一个循环组依次循环,2 017÷4=504……1,∴2 017是第505个循环组的第2个数,∴从2 017到2 018再到2 019,箭头的方向是.故选D.4.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图Z3-3中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…则第6次应拿走( D )A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒图Z3-3【解析】 仔细观察图形,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒. 5.[2017·烟台]用棋子摆出下列一组图形(如图Z3-4):图Z3-4按照这种规律摆下去,第n 个图形用的棋子个数为( D )A .3nB .6nC .3n +6+3【解析】 ∵第1个图需棋子3+3=6;第2个图需棋子3×2+3=9;第3个图需棋子3×3+3=12;…∴第n 个图需棋子(3n +3)个.6.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…以此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.【解析】 根据所给的数据发现:第n 个三角形数是1+2+3+…+n ,则第9个三角形数是1+2+3+4+5+6+7+8+9=45;由1+2+3+4+…+n = 2 016,得n (n +1)2=2 016,解得n =63(负数舍去).7.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第1位同学报⎝ ⎛⎭⎪⎫11+1,第2位同学报⎝ ⎛⎭⎪⎫12+1,第3位同学报⎝ ⎛⎭⎪⎫13+1,…这样得到的100个数的积为__101__. 【解析】 ∵第1位同学报的数为11+1=21,第2位同学报的数为12+1=32,第3位同学报的数为13+1=43,…∴第100位同学报的数为1100+1=101100,∴这样得到的100个数的积=21×32×43×…×101100=101.8.[2017·潍坊]如图Z3-5,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为__9n+3__.图Z3-5【解析】∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…∴第n个图中正方形和等边三角形的个数之和=9n+3.9.观察下列等式:第一个等式:a1=11+2=2-1;第二个等式:a2=12+3=3-2;第三个等式:a3=13+2=2-3;第四个等式:a4=12+5=5-2;…按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n=1n+n+1=n+1-n ;(2)a1+a2+a3+…+a n=__n+1-1__【解析】a1+a2+a3+…+a n=(2-1)+(3-2)+(2-3)+(5-2)+…+(n +1-n )=n +1-1.10.[2016·山西]如图Z3-6是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有__4n +1__个涂有阴影的小正方形(用含有n 的代数式表示).图Z3-6【解析】 由图可知,涂有阴影的小正方形有5+4(n -1)=4n +1(个).11.如图Z3-7是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…则第n 个图案中有__5n +1__根小棒.图Z3-7【解析】 ∵第1个图案中有6根小棒,第2个图案中有6+5×1=11根小棒,第3个图案中有6+5×2=16根小棒,…∴第n 个图案中有6+5(n -1)=5n +1根小棒. 12.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图Z3-8所示. 由图易得12+122+123+…+12n =__1-12n __.图Z3-813.[2016·安徽](1)观察图Z3-9中的图形与等式的关系,并填空:图Z3-9【解析】 1+3+5+7=16=42,观察,发现规律:1+3=22,1+3+5=32,1+3+5+7=42,…∴1+3+5+…+(2n-1)=n2.(2)观察图Z3-10,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:图Z3-101+3+5+…+(2n-1)+__2n+1__+(2n-1)+…+5+3+1=__2n2+2n+1__.【解析】观察图形发现:图中黑球可分为三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=n2+2n+1+n2=2n2+2n+1.【中考预测】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图Z3-11方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人(2)若用餐的人数有90人,则这样的餐桌需要多少张图Z3-11解:(1)把4张餐桌拼起来能坐4×4+2=18(人);把8张餐桌拼起来能坐4×8+2=34(人);(2)设这样的餐桌需要x张,由题意,得4x+2=90,解得x=22.答:这样的餐桌需要22张.专题提升(四) 整式方程(组)的应用类型之一 一元一次方程的应用 【经典母题】汽车队运送一批货物.若每辆车装4 t ,还剩下8 t 未装;若每辆车装 t ,恰好装完.这个车队有多少辆车解:设这个车队有x 辆车,依题意,得 4x +8=,解得x =16. 答:这个车队有16辆车.【思想方法】 利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点. 【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( C )A .25台B .50台C .75台D .100台【解析】 设今年购置计算机的数量是x 台,去年购置计算机的数量是(100-x )台,根据题意可得x =3(100-x ),解得x =75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少 请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤). 解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤. 【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本, 由题意,得10x +5×3x =30, 解得x =,∴3x =.答:笔的价格为元/支,笔记本的价格为元/本. 类型之二 二元一次方程组的应用 【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完. 根据题意,得⎩⎨⎧4x +3y =2 000,x +2y =1 000,解得⎩⎨⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想. 【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰 cm.试求出信纸的纸长与信封的口宽.①② 图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x4+,y =x 3+,解得⎩⎨⎧x =,y =11.答:信纸的纸长为 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生. (1)求平均每分钟一个正门和一个侧门各可以通过多少名学生(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎨⎧2x +4y =560,4x +4y =800,解得⎩⎨⎧x =120,y =80. 答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生; (2)由题意得共有学生45×10×4=1 800(人), 学生通过的时间为1 800÷[(120+80)××2]=458(min). ∵5<458,∴该教学楼建造的这4个门不符合安全规定. 【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎨⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min. 则总费用是11p +12q =17(元).类型之三 一元二次方程的应用 【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元. (1)当每辆车的月租金定为3 600元时,能租出多少辆(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元 解:(1)100-3 600-3 00050=88(辆).答:当每辆车的月租金定为3 600元时,能租出88辆. (2)设每辆车的月租金定为(3 000+x )元,则⎝⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600,解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元. 【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费. 【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品; (2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品 解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3. 答:此批次蛋糕属第3档次产品.⎝ ⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品.(2)设该烘焙店生产的是第x档次的产品,根据题意,得[10+2(x-1)][76-4(x-1)]=1 080,解得x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】 (1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=.答:m的值为.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多最多是多少(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.专题提升(五) 一次函数的图象与性质的应用类型之一 一次函数的图象的应用 【经典母题】如图Z5-1,由图象得⎩⎨⎧5x -2y +4=0,3x +2y +12=0的解是 ⎩⎨⎧x =-2,y =-3.图Z5-1【思想方法】 (1)每个二元一次方程组都对应着两个一次函数,于是也对应着两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点坐标;(2)一次函数、一元一次方程、一元一次不等式有着独立的概念,但在本质上,后者是前者的特殊情况,从而可以利用函数图象解决方程或方程组问题,体现出数形结合的思想. 【中考变形】1.高铁的开通,给衢州市民出行带来了极大的方便.五一期间,乐乐和颖颖相约到杭州市某游乐园游玩,乐乐乘私家车从衢州出发1 h 后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y (km)与乘车时间t (h)的关系如图Z5-2所示.请结合图象解决下列问题:图Z5-2(1)高铁的平均速度是每小时多少千米(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米(3)若乐乐要提前18 min到达游乐园,问私家车的速度必须达到多少解:(1)v=2402-1=240(km/h),答:高铁的平均速度为240 km/h;(2)设乐乐离开衢州的距离y与时间t的函数关系为y=kt,则=120,k=80,∴函数表达式为y=80t,当t=2时,y=160,216-160=56(km).答:乐乐距离游乐园还有56 km;(3)把y=216代入y=80t,得t=,2.7-1860=(h),错误!=90(km/h).答:乐乐要提前18 min到达游乐园,私家车的速度必须达到90 km/h. 2.[2017·宿迁]小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2 min,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早 1 min 到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(km)与行驶时间x(min)之间的函数图象如图Z5-3所示.图Z5-3(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车并求此时他们距学校站点的路程.解:(1)校车的速度为3÷4=(km/min),点A的纵坐标m的值为3+×(8-6)=.答:点A的纵坐标m的值为;(2)校车到达学校站点所需时间为9÷+4=16(min),出租车到达学校站点所需时间为16-9-1=6(min),出租车的速度为9÷6=(km/min),两车相遇时出租车出发时间为×(9-4)÷-=5(min),相遇地点离学校站点的路程为9-×5=(km).答:小刚乘坐出租车出发后经过5 min追到小强所乘坐的校车,此时他们距学校站点的路程为 km.3.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N 地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图Z5-4①所示.方成思考后发现了图①的部分信息:乙先出发1 h;甲出发 h与乙相遇…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程s甲,s乙与时间t的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过43 h 与乙相遇,问丙出发后多少时间与甲相遇图Z5-4解:(1)设直线BC 的函数表达式为y =kt +b , 把⎝ ⎛⎭⎪⎫32,0,⎝ ⎛⎭⎪⎫73,1003分别代入,得⎩⎪⎨⎪⎧0=32k +b ,1003=73k +b ,解得⎩⎨⎧k =40,b =-60,∴直线BC 的表达式为y =40t -60. 设直线CD 的函数表达式为y 1=k 1t +b 1,把⎝ ⎛⎭⎪⎫73,1003,(4,0)分别代入,得⎩⎨⎧1003=73k 1+b 1,0=4k 1+b 1,解得⎩⎨⎧k 1=-20,b 1=80,∴直线CD 的函数表达式为y 1=-20t +80;(2)设甲的速度为a km/h ,乙的速度为b km/h ,根据题意,得错误!解得错误!∴甲的速度为60 km/h ,乙的速度为20 km/h , ∴OA 的函数表达式为y =20t (0≤t ≤1),∴点A 的纵坐标为20,OA 段,AB 段没有符合条件的t 值;当20<y <30时,即20<40t -60<30或20<-20t +80<30,解得2<t <94或52<t <3;(3)根据题意,得s 甲=60t -60⎝⎛⎭⎪⎫1≤t ≤73,s 乙=20t (0≤t ≤4),所画图象如答图所示;中考变形3答图(4)当t =43时,s 乙=803,此时丙距M 地的路程s 丙与时间t 的函数表达式为s 丙=-40t +80(0≤t ≤2),当-40t +80=60t -60时,解得t =75,答:丙出发75 h 与甲相遇.【中考预测】[2017·义乌模拟]甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (h)的函数图象如图Z5-5所示.图Z5-5(1)直接写出甲组加工零件的数量y 与时间x 之间的函数关系式__y =60x (0<x ≤6)__;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱解:(1)∵图象经过原点及(6,360),∴设表达式为y=kx,∴6k=360,解得k=60,∴y=60x(0<x≤6);(2)乙2 h加工100件,∴乙的加工速度是每小时50件,∴更换设备后,乙组的工作速度是每小时加工100件,a=100+100×-=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-=100x-180,当0<x≤2时,60x+50x=300,解得x=3011(不合题意,舍去);当2<x≤时,100+60x=300,解得x=103(不合题意,舍去);当<x≤时,60x+100x-180=300,解得x=3,符合题意.答:经过3 h恰好装满第1箱.类型之二一次函数的性质的应用【经典母题】某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1 500元制版费;乙印刷厂的收费标准是:每份材料收元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;(2)在同一直角坐标系中画出它们的图象;(3)根据图象回答下列问题:印制800份宣传材料时,选择哪一家印刷厂比较合算商场计划花费3 000元用于印刷上述宣传材料,找哪一家印刷厂印制宣传材料多一。