2020中考数学冲刺模拟试题含答案

合集下载

2020年中考数学冲刺卷 【4】含答案解析

2020年中考数学冲刺卷 【4】含答案解析

2020年中考数学冲刺卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B 、CD 的四个答燕,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂1.(4分)下列各数中,是负整数的是( )A .﹣6B .3C .0D .12 2.(4分)如图是由5个大小相同的小正方体摆成的立体图形,它的俯视图是( )A .B .C .D . 3.(4分)抛物线y =x 2﹣2x +1的顶点坐标是( )A .(1,0)B .(﹣1,0)C .(﹣2,1)D .(2,﹣1)4.(4分)下列命题中,是假命题的是( )A .有3个内角是直角的四边形是矩形B .等腰三角形是轴对称图形C .平行四边形的对角线一定相互垂直D .菱形的四边相等5.(4分)中国古代数学著作《用锌算经》中记录了商高同周公的一段对话,其中就提出了勾广三,股修四,径隔五”,大意为:当直角三角形的两条直角边长分别为3和4时,斜边长为5.在与之形状相同的另一直角三角形中,斜边长为10,则它较短的一条直角边长为( )A .6B .8C .10D .12 6.(4分)估计√90×√15−√8×√12的值应在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间7.(4分)光明文具店销售某品牌钢笔,当它的售价为14元/支时,月销量为180支,若每支钢笔的售价每涨价1元,月销量就相应减少15支,设每支钢笔涨价后的售价为x 元/支,若使该种钢笔的月销量不低于105支,则x 应满足的不等式为( )A .180﹣15x ≥105B .180﹣(x ﹣14)≤105C .180+15(x +14)≥105D .180﹣15(x ﹣14)≥1058.(4分)按如图所示的运算程序,能使输出的结果为25的是( )A .x =2,y =1B .x =3,y =3C .x =1,y =3D .x =﹣6,y =19.(4分)如图所示,将形状、大小完全相同的小圆点“•”按照一定规律摆成下列图形,其中第①个图案中有4个小圆点,第②个图案中有7个小圆点,第个图案中有10个小圆点,…,按此规律排列下去则第⑥个图案中小圆点的个数为( )A .16B .19C .22D .2510.(4分)如图,点C 是⊙O 的直径BA 延长线上一点,CD 与⊙O 相切于点D .过点O 作OE ⊥AB 交⊙O 于点E ,交CD 的延长线于点F ,若⊙O 的半径为1,AC =√5−1,则EF =( )A .12B .1C .√5−12D .√5−2211.(4分)如图,一棵松树AB 挺立在斜坡CB 的顶端,斜坡CB 长为65米,坡度为t =12:5,小张从与点C 相距65米的点D 处向上爬12米到达观景台DE 的顶端点E ,在此测得松树顶端点A 的仰角为39°,则松树的高度AB 约为( )米.(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A .12.9B .22.2C .24.9D .63.112.(4分)若数m 使关于x 的一元一次不等式组{5x+32>x 3x −2m ≤−2有整数解,且整数解的个数不超过4个,同时使得关于x 的分式方程x+4m x−3+5m 3−x =3的解为整数,则满足条件的所有m 的值之和是( )A .5B .6C .9D .13二、填空题;(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4分)最近,电影市场最火爆的无疑是漫威电影《复仇者联盟4:终局之战》.该影片自上映以来不断打破全球电影影史各类记录.据报道,该影片全球首周末开画票房突破惊人的120000万美元.数字120000用科学记数法表示为 .14.(4分)如图,已知在Rt △ACB 中,∠C =90°,AC =BC =2,以斜边AB 为一边作菱形ABDE 再以B 为圆心BA 为半径作扇形ABD ,则图中的阴影部分面积为 .15.(4分)从分别写有﹣1,﹣2,1,2的四张卡片中随机抽取两张,把第一张卡片上的数字作为a ,第二张卡片上的数字作为b ,则a ,b 之和大于0的概率是 .16.(4分)如图,AC 为矩形ABCD 的对角线,且tan ∠ACB =12,将△ACB 沿AC 翻折得到△ACE ,CE 交AD 于点F ,再将△ACB 沿射线BC 方向平移至△FGH ,若CH =5,则EF = .17.(4分)上周日,小飞与小林参加了“青春劲跑”长跑比赛.点A ,点B 及终点C 顺次在一条直线上比赛时,小飞从A点起跑,同时小林则从与A点相距200米的B点起跑,小飞全程都保持匀速跑,小林按某一速度匀速跑一段时间后,感觉状态良好,于是将跑速提高了40米/分,并按新的速度匀速前进直至终点C.如图为比赛开始后,两人的跑步时间x(单位:分)与两人距离终点的距离y(单位:米)之间的函数图象.则在本次比赛中,小林从出发到完成比赛,共用时分.18.(4分)2019年4月底,37国元首携代表团在我国出席“一带一路”国际合作高峰论坛,为表友好,我国政府选择将刺绣与陶瓷两类工艺品作为国礼赠送给所有来宾.甲乙两个工厂分别承接了制作A,B两种刺绣C种陶瓷的任务.甲工厂安排100名工人制作刺绣,每人只能制作其中一种刺绣,乙工厂安排50名工人制作C种陶瓷,A的人均制作数量比B的人均制作数量少3件,C的人均制作量比A的人均制作量少20%,若本次赠送的国礼(A,B,C三样礼品)的人均制作数量比B的人均制作数量少30%,且A的人均制作数量为偶数件,则本次赠送的国礼共制作了件.三、解答题(本大题8个小题,19-25题各10分,26题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(10分)化简:(1)(5a﹣b)(a+b)+(a﹣2b)2(2)(x+3+8x−3)÷x2−2x+12x−620.(10分)如图,Rt△ACB中,∠ACB=90°,∠A=30°,∠ABC的角平分线BE交AC于点E.点D为AB上一点,且AD=AC,CD,BE交于点M.(1)求∠DMB的度数;(2)若CH⊥BE于点H,证明:AB=4MH.21.(10分)今年是五四运动100周年,也是中华人民共和国成立70周年,为缅怀五四先驱高的爱国情怀和革命精神,重庆八中开展了“青春心向党,建功新时代”为主题的系列纪念活动.历史教研组也组织了近代史知识竞赛,七、八年级各有300名学生参加竞赛.为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,并对数据进行了整理和分析(成绩得分用x表示数据分为6组:A:70≤x<75B:75≤x<80;C:80≤x<85;D:85≤x<90;E:90≤x<95;F:95≤x≤100)绘制了如下统计图表:年级平均数中位数众数极差七年级85.8 m n26八年级86.2 86.5 87 18七年级测试成绩在C、D两组的是:81 83 83 83 83 86 87 88 88 89 根据以上信息,解答下列问题(1)上表中m=,n=.(2)记成绩90分及90分以上为优秀,则估计七年级参加此次知识竞赛成绩为优秀的学生有多少名?(3)此次竞赛中,七、八两个年级学生近代史知识掌握更好的是(填“七”或“八”)年级,至少从两个不同角度说明理由:.22.(10分)亲子装是现代家庭中的一种流行趋势,亲子装不仅能表达“我们是亲密的一家人”的浓浓亲情,同时家长可以过一把“孩意”瘾,重温那份久违的童真.某专卖店购进一批甲、乙两款亲子装,共花费了18400元,甲款比乙款多20套,其中每套甲款亲子装进价200元,每套乙款亲子装进价160元,进行试销售,供不应求,很快全部销售完毕,已知每套乙款亲子装售价为240元,(1)求购进甲、乙两款亲子装各多少套?(2)六一儿童节临近,专卖店又购入第二批甲、乙两款亲子装并进行促销活动,在促销期间,每套甲款亲子装在进价的基础上提高(a +10)%销售,每套乙款亲子装在第一批售价的基础上降低12a %销售,结果在促销活动中,甲款亲子装的销售量比第一批甲款销售量降低了a %,乙款亲子装的销售量比第一批乙款销售量上升了25%,结果本次促销活动共获利5200元,求a 的值.23.(10分)小岚根据学习函数的经验,对一个未知函数的图象与性质进行了探究. 已知:y =y 1•y 2,其中y 1=−12x ,y 2与x 成一次函数关系,当x =1时,y 2=﹣6;当x =2时,y 2=﹣4.(1)根据给定的条件,求y 与x 的函数关系式;(2)写出函数y 与x 合适的几组对应值,并根据表中数据,在如图所示的平面直角坐标系中描点并画出函数图象: x… 2 … y …… (3)结合画出的函数图象,解决问题:直接写出关于x 的方程y 1•y 2=12x −12(x >0)的实数解为 (结果保留一位小数).24.(10分)阅读材料:材料一:对实数a,b,定义T(a,b)的含义为,当a<b时T(a,b)=a+b;当a≥b 时,T(a,b)=a﹣b例如:T(1,3)=1+3=4:T(2,﹣1)=2﹣(﹣1)=3材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数还项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050也可以这样理解:令S=1+2+3+…+100,则S=100+99+…+3+2+1②①+②:2S=(1+100)+(2+99)+(3+98)+⋯+(100+1)︸100个=100×101=10100,即S=100×(1+100)2=5050.根据以上材料,回答下列问题:(1)已知x+y=10,且x>y,求T(5,x)﹣T(5,y)的值;(2)对于正数m,有T(m2+1,﹣1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.25.(10分)在平行四边形ABCD中,BC的垂直平分线交AC于F,连线AE、BF.(1)如图1,若BF⊥AC,AE=3√5,AD=6√2,求AF的长;(2)如图2,若AE,BF交于点G,且∠ACD=∠BGE,求证:AF+2FG=FC.26.(8分)如图抛物y=−√33x 2−2√33x+√3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.C,D两点关于抛物线对称轴对称,连接BD交y轴于点E,抛物线对称轴交x轴于点F.(1)点P为线段BD上方抛物线上的一点,连接PD,PE.点M是y轴上一点,过点M作MN⊥y轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+√32NF的最小值;(2)如图2,在(1)中PM+MN+√32NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PM′E′,点G是MN的中点,连接M′G交抛物线的对称轴于点H,过点H作直线l∥PM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.2020年中考数学冲刺卷参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B 、CD 的四个答燕,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂1.A ; 2.D ; 3.A ; 4.C ; 5.A ; 6.B ; 7.D ; 8.D ; 9.B ; 10.D ;11.C ; 12.B ;二、填空题;(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.1.2×105; 14.4√2−π; 15.13; 16.3; 17.2656; 18.945;三、解答题(本大题8个小题,19-25题各10分,26题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.原式=6a 2+3b 2;原式=2x+2x−120.45°; 21.86.5;75 83; 八; 从平均数、众数来看,八年级比七年级高,八年级比七年级好;从方差上看,八年级的比七年级的小,说明八年级的成绩比较稳定;22.购进甲款亲子装60套,乙款亲子装40套;a 的值为40;23.x =3.6; 24.10;19800 25.3;24.26.点S 的坐标为:S 1(−720,17√32),S 2(−2320,9√310)。

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2020年浙江省金华市中考数学冲刺模拟卷(1)(有答案)

2020年浙江省金华市中考数学冲刺模拟卷(1)(有答案)

2020 年浙江省金华市中考数学冲刺模拟卷(1)一、选择题(共10 题;共 20 分)1.已知 a,b 互为相反数,c, d 互为倒数, |e|=,则代数式5( a+b)2+cd﹣ 2e 的值为()A. ﹣B.C. 或﹣D﹣. 或【答案】 D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,代数式求值【分析】【解答】解:∵a, b 互为相反数,∴a+b=0.∵c, d 互为倒数,∴ cd=1.∵|e|=,∴ e=±.当 e=2时,原式 =5×0﹣2× =﹣;+当 e=﹣2时,原式 =5×0﹣ 2×= ;+应选: D.【剖析】依据题意可知a+b=0, cd=1, e=±,而后辈入计算即可.2.一个几何体由若干大小同样的小立方块搭成,图分别是从它的正面、上边看到的形状图,则搭成该几何体的小立方块起码需要()A.5 块B.6 块C.7 块D.8 块【答案】 C【考点】由三视图判断几何体【分析】【解答】解:从正面看起码有 2 个小立方体,从上边看起码有 5 个小立方体,故该几何体起码是用 2+5=7 个小立方块搭成的.应选 C.【剖析】依据题意能够获得该几何体从正面和上边看起码有多少个小立方体,综合考虑即可解答此题.3.以以下各组长度的线段为边,能构成三角形的是()A.3cm、 4cm、 8cmB.5cm、5cm 、11cmC.12cm、5cm 、6cmD.8cm、 6cm、 4cm【答案】 D【考点】三角形三边关系【分析】【解答】解:依据三角形的三边关系,得A、 4+3<8,不可以构成三角形;B、 5+5<11,不可以构成三角形;C、 6+5<12,不可以够构成三角形;D、 4+6>8 ,能构成三角形.故答案为: D.【剖析】依据三角形的三边关系“随意两边之和大于第三边,随意两边之差小于第三边”,进行剖析.4.如图,△ ABC的三个极点在正方形网格的格点上,则tan ∠A 的值是()A. B. C. D.【答案】 A【考点】锐角三角函数的定义【分析】【解答】利用三角函数的定义可知tan∠ A=.应选 A.【剖析】依据三角函数的定义即可求出tan ∠A 的值.此题考察锐角三角函数的观点:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.5.以下计算正确的选项是()2366322﹣ 3x 223=﹣8a6A. a ?a =aB. a ÷a=aC. 4x=1D. (﹣ 2a)【答案】 D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【分析】【解答】解:∵a2?a3=a5,应选项A 错误;∵a6 3 3,应选项 B 错误;÷a=a∵4x2﹣ 3x2=x2,应选项 C 错误;∵(﹣ 2a2)3=﹣8a6,应选项D 正确;应选 D.【剖析】先计算出各个选项中式子的正确结果,而后进行比较,即可获得哪个选项是正确的.6.由二次函数y=2( x﹣ 3)2+1,可知()A. 其图象的张口向下B. 其图象的对称轴为直线x=﹣ 3C. 其最小值为1D当. x< 3 时, y 随 x 的增大而增大【答案】C【考点】二次函数的性质【分析】【解答】解:由二次函数y=2( x﹣ 3)2+1,可知:A:∵ a>0,其图象的张口向上,故此选项错误;B.∵其图象的对称轴为直线x=3,故此选项错误;C.其最小值为1,故此选项正确;D.当 x< 3 时, y 随 x 的增大而减小,故此选项错误.故答案为: C.【剖析】此函数已经是抛物线的极点式,因此能看出张口方向,对称轴的地点,最大值以及增减性,依据抛物线的性质一一判断即可。

2020年九年级数学中考三轮冲刺复习培优同步练习:《二次函数综合》(解析版)

2020年九年级数学中考三轮冲刺复习培优同步练习:《二次函数综合》(解析版)

三轮冲刺复习培优同步练习:《二次函数综合》1.如图1,二次函数y=﹣x2+bx+c的图象过A(5,0)和B(0,)两点,射线CE绕点C(0,5)旋转,交抛物线于D,E两点,连接AC.(1)求二次函数y=﹣x2+bx+c的表达式;(2)连接OE,AE,当△CEO是以CO为底的等腰三角形时,求点E的坐标和△ACE的面积;(3)如图2,射线CE旋转时,取DE的中点F,以DF为边作正方形DFMN.当点E和点A 重合时,正方形DFMN的顶点M恰好落在x轴上.①求点M的坐标;②当点E和点A重合时,将正方形DFMN沿射线CE方向以每秒个单位长度平移.设运动时间为t秒.直接写出正方形DFMN落在x轴下方的面积S与时间t(0≤t≤4)的函数表达式.2.如图,抛物线L:y=﹣(x﹣t)2+t+2,直线l:x=2t与抛物线、x轴分别相交于Q、P.(1)t=1时,Q点的坐标为;(2)当P、Q两点重合时,求t的值;(3)当Q点达到最高时,求抛物线解析式;(4)在抛物线L与x轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出1≤t≤2时“可点”的个数为.3.定义:把函数C1:y=ax2﹣6ax+5a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴为直线x=h.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)填空:h的值为(用含m的代数式表示);(2)若a=1,m=1,当t﹣1≤x≤t时,函数C2的最大值为y1,最小值为y2,且y1﹣y2=3,求t的值;(3)当m=2时,C2的图象与x轴相交于A、B两点(点A在点B的右侧),与y轴相交于点D.把线段BD绕原点O顺时针旋转90°,得到它的对应线段B′D′.若线段B′D′与C2的图象有公共点,结合函数图象,求a的取值范围.4.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(4,0),点C坐标为(0,4),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=2∠BDE时,求点F的坐标;(3)若点P是x轴上方抛物线上的动点,以PB为边作正方形PBGH,随着点P的运动,正方形的大小、位置也随着改变,当顶点G或H恰好落在y轴上时,请直接写出点P的横坐标.6.已知点P 为抛物线y =x 2上一动点,以P 为顶点,且经过原点O 的抛物线,记作“y p ”,设其与x 轴另一交点为A ,点P 的横坐标为m .(1)①当△OPA 为直角三角形时,m = ;②当△OPA 为等边三角形时,求此时“y p ”的解析式;(2)若P 点的横坐标分别为1,2,3,…n (n 为正整数)时,抛物线“y p ”分别记作“”、“”…,“”,设其与x 轴另外一交点分别为A 1,A 2,A 3,…A n ,过P 1,P 2,P 3,…P n 作x 轴的垂线,垂足分别为H 1,H 2,H 3,…H n .1)①P n 的坐标为 ;OA n = ;(用含n 的代数式来表示)②当P n H n ﹣OA n =16时,求n 的值.2)是否存在这样的A n ,使得∠OP 4A n =90°,若存在,求n 的值;若不存在,请说明理由.7.如图,二次函数y =﹣x 2+2(m ﹣2)x +3的图象与x 、y 轴交于A 、B 、C 三点,其中A (3,0),抛物线的顶点为D .(1)求m 的值及顶点D 的坐标;(2)如图1,若动点P 在第一象限内的抛物线上,动点N 在对称轴1上,当PA ⊥NA ,且PA =NA 时,求此时点P 的坐标;(3)如图2,若点Q 是二次函数图象上对称轴右侧一点,设点Q 到直线BC 的距离为d ,到抛物线的对称轴的距离为d 1,当|d ﹣d 1|=2时,请求出点Q 的坐标.8.如图,抛物线y =x 2﹣ax +a ﹣1与x 轴交于A ,B 两点(点B 在正半轴上),与y 轴交于点C ,OA =3OB .点P 在CA 的延长线上,点Q 在第二象限抛物线上,S △PBQ =S △ABQ .(1)求抛物线的解析式.(2)求直线BQ 的解析式.(3)若∠PAQ =∠APB ,求点P 的坐标.9.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C.(1)填空:b=,c=,点C的坐标为;(2)如图1,若点P是第一象限抛物线上一动点,连接OP交直线AB于点Q,设点P的横坐标为m,设=y,求y与m的函数关系式,并求出的最大值;(3)如图2,若点P是抛物线上一动点,当∠PBA+∠CBO=45°时,求点P的坐标.10.如图①,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点D(2,4),与x 轴交于A,B两点,与y轴交于点C(0,4),连接AC,CD,BC,其且AC=5.(1)求抛物线的解析式;(2)如图②,点P是抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.当0<m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC的面积取得最大值,并求出这个最大值;(3)当﹣1<m≤2时,是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?若存在,求出相应m的值;若不存在,请说明理由.11.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B、C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4.现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与x轴的另一交点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值;(2)连接OF,求△OEF的周长;(3)现将一足够大的三角板的直角顶点Q放在射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使得以点P、Q、E为顶点的三角形与△POE 全等?若存在,请直接写出Q点坐标;若不存在,请说明理由.13.如图1,已知抛物线y=ax2+bx+c的顶点为P(1,9),与x轴的交点为A(﹣2,0),B.(1)求抛物线的解析式;(2)M为x轴上方抛物线上的一点,MB与抛物线的对称轴交于点C,若∠COB=2∠CBO,求点M的坐标;(3)如图2,将原抛物线沿对称轴平移后得到新抛物线为y=ax2+bx+h,E,F新抛物线在第一象限内互不重合的两点,EG⊥x轴,FH⊥x轴,垂足分别为G,H,若始终存在这样的点E,F,满足△GEO≌△HOF,求h的取值范围.14.如图1,抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(4,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)如图2,连接BC,作垂直于x轴的直线x=m,与抛物线交于点D,与线段BC交于点E,连接BD和CD,求当△BCD面积的最大值时,线段ED的值;(3)在(2)中△BCD面积最大的条件下,如图3,直线x=m上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,与y 轴交于点B.(1)求这条抛物线的顶点坐标;(2)已知AD=AB(点D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个点Q以某一速度从点B沿线段BC移动,经过t(s)的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由.16.如图1所示,在平面直角坐标系xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为点C.(1)求抛物线的函数表达式;(2)点M为直线AB下方抛物线上一动点.①如图2所示,直线CM交线段AB于点N,求的最小值;②如图3所示,连接BM过点M作MD⊥AB于D,是否存在点M,使得△BMD中的某个角恰好等于∠CAB的2倍?若存在,求点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,抛物线y=﹣+bx+c的对称轴是直线x=与x轴的交点为点A,且经过点B、C两点.(1)求抛物线的解析式;(2)点M为抛物线对称轴上一动点,当|BM﹣CM|的值最小时,请你求出点M的坐标;(3)抛物线上是否存在点N,过点N作NH⊥x轴于点H,使得以点B、N、H为顶点的三角形与△ABC相似?若存在,请直接写出点N的坐标;若不存在,请说明理由.18.如图,抛物线y=ax2+bx+c的图象,经过点A(1,0),B(3,0),C(0,3)三点,过点C,D(﹣3,0)的直线与抛物线的另一交点为E.(1)请你直接写出:①抛物线的解析式;②直线CD的解析式;③点E的坐标(,);(2)如图1,若点P是x轴上一动点,连接PC,PE,则当点P位于何处时,可使得∠CPE =45°,请你求出此时点P的坐标;(3)如图2,若点Q是抛物线上一动点,作QH⊥x轴于H,连接QA,QB,当QB平分∠AQH 时,请你直接写出此时点Q的坐标.19.在平面直角坐标系中,抛物线y=mx2﹣2mx﹣3m与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)点A的坐标为,点B的坐标为.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若S1=S2,求m的值.20.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),C(0,2),对称轴为直线x=.(1)求该抛物线和直线BC的解析式;(2)点G是直线BC上方抛物线上的动点,设G点的横坐标为m,试用含m的代数式表示△GBC的面积,并求出△GBC面积的最大值;(3)设R点是直线x=1上一动点,M为抛物线上的点,是否存在点M,使以点B、C、R、M为顶点的四边形为平行四边形,若存在,请直接写出符合条件的所有点M坐标,不存在说明理由.参考答案1.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=﹣x2+2x+①;(2)当△CEO是以CO为底的等腰三角形时,则OC的中点(0,)的纵坐标和点E的纵坐标相同,而点B(0,),即点E、B关于抛物线对称轴对称,∵抛物线的对称轴为直线x=2,故点E的坐标为(4,);△ACE的面积S=S△COE +S△OAE﹣S△AOC=OC•|x E|+OA•|y E|﹣×AO×CO=5×4+×5×﹣×5×5=;(3)①∵OA=OC=5,∴∠CAO=45°,∵对角线DM与AC的夹角为45°,∴∠DMA=90°,即DM⊥x轴,即点D、M的横坐标相同,由A、C的坐标得:直线AC的表达式为:y=﹣x+5②,联立①②并解得:x=1或5(舍去5),故x=1,故点D(1,4),∴点M的坐标为(1,0);②设正方形MFDN平移后为M′F′D′N′,如图1,2所示;由A 、D 的坐标得,DA ==4,∵点F 是AD 的中点,故DF =2,即正方形MFDN 的边长为2,∴正方形MFDN 的面积为S 1=(2)2=8;(Ⅰ)当0≤t ≤2时,如图1所示,设M ′F ′交x 轴于点H , ∵t 秒时,正方形平移的距离为t ,∴MM ′=t =M ′H ,∴S =S △M ′MH =MM ′•M ′H =(t )2=t 2;(Ⅱ)当2<t ≤4时,如图2所示,设N ′D ′交x 轴于点H , ∵t 秒时,正方形平移的距离为t ,则DD ′=t ,∴AD ′=AD ﹣DD ′=4﹣t =HD ′,∴S =S 1﹣S △AD ′H =8﹣×AD ′×HD ′=8﹣×(4﹣t )=﹣t 2+8t ﹣8,综上,S =.2.解:(1)当t =1时,x =2t =2, 当x =2时,y =﹣(2﹣1)2+1+2=2, 故点Q 的坐标为(2,2), 故答案为(2,2);(2)点P 、Q 的坐标分别为:(2t ,0)、(2t ,﹣t 2+t +2), 当P 、Q 两点重合时,﹣t 2+t +2=0,解得:t =﹣1或2;(3)当Q 点达到最高时,点Q (t ,t +2),由(2)知函数的对称轴为x=(2﹣1)=,故点Q(,),故抛物线的表达式为:y=﹣(x﹣)2+;(4)①当t=1时,如图1,抛物线表达式为:y=﹣(x﹣1)2+3,令y=0,则x=1,“可点”的个数如图黑点所示,有6个;②当t=2时,抛物线的表达式为:y=﹣(x﹣2)2+4,令y=0,则x=0或4,“可点”的个数如图黑点所示,有8个;②当1<t<2时,点Q的坐标为(t,2+t),即抛物线在y=x+2上运动,2AB<4,当L过点(3,0)时,“可点”的个数如图黑点所示,有7个.故“可点”的个数为6或7或8个,故答案为:6或7或8.3.解:(1)y=ax2﹣6ax+5a,令y=0,则x=5或1,函数对称轴为直线x=3,由中点公式得:h+3=2m,故h=2m﹣3,故答案为:2m﹣3;(2)a=1,C1:y=x2﹣6x+5=(x﹣3)2﹣4,顶点为(3,﹣4),m=1时,C2的顶点为(﹣1,4),C2:y=﹣(x+1)2+4=﹣x2﹣2x+3,①当t≤﹣1时,y随x的增大而增大,y 1﹣y2=﹣t2﹣2t+3﹣[﹣(t﹣1)2﹣2(t﹣1)+3]=3,解得:t=﹣2;②当t﹣1<﹣1<t时,即﹣1<t<0时,分两种情况:(Ⅰ)当﹣1﹣(t﹣1)≥t﹣(﹣1)时,即﹣1<t≤﹣时,y 1﹣y2=[﹣(t﹣1)2﹣2(t﹣1)+3]﹣t2=3,解得:t=(舍去)(Ⅱ)当﹣1﹣(t﹣1)<t﹣(﹣1)时,即﹣<t<0时,y 1﹣y2=3=4﹣(t2﹣2t+3)=t2+2t+1,解得:t=﹣1(舍去);③当t﹣1≥﹣1时,即t≥0时,y随x的增大而减小,y 1﹣y2=[﹣(t﹣1)2﹣2(t﹣1)+3]﹣[﹣t2﹣2t+3]=3,解得:t=1;综上,t=﹣2或t=1;(3)当m=2时,C:y=ax2﹣6ax+5a=a(x﹣3)2﹣4a,1的表达式为:y=﹣a(x﹣1)2+4a,∴C2当y=0时,x=﹣1或3,当x=0时,y=3a,∴点A、B、D的坐标分别为:(3,0)、(﹣1,0)、(0,3a);∵线段BD绕原点O顺时针旋转90°,∴点B′的坐标为(3,0),点D′的坐标为(3a,0).①当a>0时,分两种情况:(Ⅰ)当点D′在点A的右侧(含点A)时,线段B′D′与C的图象有公共点,如图1,2∴3a≥3,解得a≥1;(Ⅱ)当点D′在点A的左侧,且点D在点B′的下方(含点B′)时,线段B′D′与C2的图象有公共点,如图2,∴3a≤1,∴0<a≤;的图象有公共点,如②当a<0时,点D′在点B的左侧(含点B)时,线段B′D′与C2图3,∴3a≤﹣1,解得:a≤;综上,a≤﹣或0<a≤或a≥1;4.解:(1)y=mx2﹣8mx﹣9m,令y=0,解得:x=﹣1或9,故点A、B的坐标分别为:(﹣1,0)、(9,0),∵过A,B,C三点作⊙O′,故O′为AB的中点,∴点O′的坐标为(4,0);(2)∵AB是圆的直径,∴∠ACB=90°,∴∠BCE=90°,∵∠BCE的平分线为CD,∴∠BCD=45°,∴∠O′DB=90°,即O′D⊥AB,圆的半径为AB=5,故点D的坐标为(4,﹣5),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=x﹣3,同理可得直线BD的表达式为:y=x﹣9;(3)由点A、B、C的坐标得,抛物线的表达式为:y=x2﹣x﹣3①,①当点P(P′)在直线BD下方时,∵∠PDB=∠CBD,∴DP′∥BC,则设直线DP′的表达式为:y=x+t,将点D的坐标代入上式并解得:t=﹣,故直线DP′的表达式为:y=x﹣②,联立①②并解得:x=(舍去负值),故点P的坐标为(,);②当点P在BD的上方时,由BD的表达式知,直线BD的倾斜角为45°,以BD为对角线作正方形DMBN,边MB交直线DP′于点H′,直线DP交NB边于点H,对于直线DP′:y=x﹣,当x=9时,y=﹣,即BH′=,根据点的对称性知:BH=BH′=,故点H(,0),由点D、H的坐标得,直线DH的表达式为:y=3x﹣17③,联立①③并解得:x=3或14(舍去3),故点P的坐标为(14,25);故点P的坐标为:(,)或(14,25).5.解:(1)将点B、C的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+4=﹣(x﹣1)2+;(2)如图1,在线段DE上取点M,使MD=MB,此时∠EMB=2∠BDE,设ME=a,在Rt△BME中,ME2+BE2=BM2,即a2+32=(﹣a)2,解得:a=,∴tan∠EMB==,过点F作FN⊥x轴于点N,设点F(m,﹣m2+m+4),则FN=|﹣m2+m+4|,∵∠FBA=2∠BDE,∴∠FBA=∠EMB,∴tan∠FBA=tan∠EMB=,∵点B(4,0)、点E(1,0),∴BE=3,BN=4﹣m,∴tan∠FBA=,解得:m=4(舍去)或﹣或,故点F(﹣,﹣)或(,);(3)①当点P在对称轴右侧时,(Ⅰ)当点H在y轴上时,如图2,∵∠MPB+∠CPH=90°,∠CPH+∠CHP=90°,∴∠CHP=∠MPB,∵∠BMP=∠PNH=90°,PH=BP,∴△BMP≌△PNH(AAS),∴MB=PC,设点P(x,y),则x=y=﹣x2+x+4,解得:x=(舍去负值),故点P的横坐标为;(Ⅱ)当点G在y轴上时,如图3,过点P作PR⊥x轴于点R,同理可得:△PRB≌△BOG(AAS),∴PR=OB=4,即y P=4=﹣x2+x+4,解得:x=2;②当点P在对称轴左侧时,同理可得:点P的横坐标为0或2﹣;综上,点P的横坐标为或2或0或2﹣.6.解:(1)①当△OPA为直角三角形时,∵PO=PA,故△OPA为以点P为顶点的等腰直角三角形,∴点P的横坐标和纵坐标相同,故点P(m,m),将点P的坐标代入y=x2得:m=m2,解得:m=0或2(舍去0),故答案为2;②当△OPA为等边三角形时,同理可得点P(m,m),将点P的坐标代入抛物线表达式并解得:m=2,故点P的坐标为(2,6),故“y p”的解析式为:y=a(x﹣2)2+6,点A的坐标为(2m,0),即(4,0),将点A的坐标代入y=a(x﹣2)2+6并解得:a=﹣,故“y p”的解析式为:y=﹣(x﹣2)2+6=﹣x2+2x;(2)1)①由题意得:P n 的横坐标为n ,则其坐标为(n ,n 2),则A n =2n , 故答案为:(n ,n 2);2n ;②由题意得:P n H n ﹣OA n =n 2﹣2n =16,解得:n =8或﹣4(舍去﹣4),∴n =8;2)存在,理由:如下图所示,由1)知,点P 4的坐标为(4,8),A n =2n ,即OH 4=4,P 4H 4=8,H 4A n =2n ﹣4,∵∠OP 4A n =90°,∴∠OP 4H 4+∠H 4P 4A n =90°,∵∠H 4P 4A n +∠P 4A n H 4=90°,∴∠OP 4H 4=∠P 4A n H 4,∴Rt △OP 4H 4∽Rt △P 4A n H 4,∴P 4H 42=OH 4•H 4A n ,即82=4×(2n ﹣4),解得:n =10.7.解:(1)将点A 的坐标代入函数表达式得:0=﹣32+2(m ﹣2)×3+3, 解得:m =3,故抛物线的表达式为:y =﹣x 2+2x +3,故点D 的坐标为:(1,4);(2)过点A 作y 轴的平行线交过点N 与x 轴的平行线于点M ,交过点P 与x 轴的平行线于点H ,∵∠NAM+∠PAH=90°,∠NAM+∠ANM=90°,∴∠PAH=∠ANM,∵∠NMA=∠AHP=90°,AP=NA,∴△NMA≌△AHP(AAS),∴AN=MN=3﹣1=2,即y P=2=﹣x2+2x+3,解得:x=1(舍去负值),故点P(1,2);(3)设直线BC的表达式为:y=kx+b,则,解得:,由点B、C的表达式为:y=3x+3,如图2,过点Q作y轴的平行线交BC于点M,交x轴于点N,则MN∥y轴,∴∠BCO=∠M,而tan∠BCO==,则sin∠BCO==sin M,过点Q作QH⊥BM,设点Q(t,﹣t2+2t+3),则点M(t,3t+3),则d=DH=MQ sin M=[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,∵|d﹣d1|=2,即[(3t+3)﹣(﹣t2+2t+3)]﹣(t﹣1)=±2,解得:t=或﹣1(舍去﹣1),故点Q的坐标为:(,2﹣7).8.解:(1)令y=x2﹣ax+a﹣1=0,解得:x=a﹣1或1,故点A、B的坐标分别为:(a﹣1,0)、(1,0),∵OA=3OB,故1﹣a=3,解得:a=﹣2,故抛物线的表达式为:y=x2+2x﹣3;(2)对于y=x2+2x﹣3,令x=0,则y=﹣3,故点C(0,﹣3),∵S△PBQ =S△ABQ,∴△PBQ和△ABQ底边BQ边上的高相等,故直线PC∥BQ,设直线AC的表达式为:y=kx+b,则,解得:,故直线AC的表达式为:y=﹣x﹣3,则设直线BQ的表达式为:y=﹣x+b,将点B的坐标代入上式并解得:b=1,故直线BQ的表达式为:y=﹣x+1;(3)设直线PB交AQ于点D,由直线BQ的表达式知∠ABQ=45°,由(2)知PC∥BQ,∴∠QAP=∠AQB,∠BPA=∠QBP,而∠PAQ=∠APB,∴∠AQB=∠PBQ,∴DB=DQ,∵∠PAQ=∠APB,∴DP=DA,∴PA=AQ,而BQ=BQ,∴△PBQ≌△AQB(SAS),∴∠PQB=∠ABQ=45°,∴PQ∥y轴,联立直线PQ和抛物线的表达式,得,解得或,即x=1或﹣4(舍去1),故点Q的横坐标为﹣4,即为点P的横坐标,而点P在直线AC:y=﹣x﹣3,故点P(﹣4,1).9.解:(1)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B.∴A(4,0),B(0,4).又∵抛物线过B(0,4),∴c=4.把A(4,0)代入y=﹣x2+bx+4得,0=﹣×42+4b+4,解得,b=1.∴抛物线解析式为,y=﹣x2+x+4①.令﹣x2+x+4=0,解得,x=﹣2或x=4.∴C(﹣2,0);故答案为:1;4;(﹣2,0);(2)如图1,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.设P(m,﹣m2+m+4),Q(n,﹣n+4),则PE=﹣m2+m+4,QD=﹣n+4.又∵==y.∴n=.又∵,即,把n═代入上式并整理得:4y=﹣m2+2m.∴y=﹣m2+m.∵﹣<0,故y有最大值,当m=2时,y max=.即PQ与OQ的比值的最大值为;(3)①当点P在BA下方时,如图2,∵∠OBA=∠OBP+∠PBA=45°,∠PBA+∠CBO=45°,∴∠OBP=∠CBO,此时PB过点(2,0).设直线PB解析式为,y=kx+4.把点(2,0)代入上式得,0=2k+4.解得,k=﹣2,∴直线PB解析式为:y=﹣2x+4.令﹣2x+4=﹣x2+x+4,整理得,x2﹣3x=0.解得,x=0(舍去)或x=6.当x=6时,﹣2x+4=﹣2×6+4=﹣8∴P(6,﹣8);②当点P(P′)在BA上方时,此时∠P′BA+∠CBO=45°,而∠PBA+∠CBO=45°,故∠P′BA=∠PBA,即BA是∠PBP′的角平分线,∵OA=OB=4,故△ABO为等腰三角形,以BA为对角线作正方形BOAM,设直线BP交边(x轴)OA于点H,直线BP′交AM于点H′,在点H、H′关于AB对称,∴AH=AH′,由①知:直线PB解析式为:y=﹣2x+4,令y=0,则x=3,故点H(2,0),即AH=4﹣2=2=AH′,∴点H′(4,2),由点H′、点B的坐标可得,直线BH′的表达式为:y=﹣x+4②,联立①②并解得:x=3,故点P′(3,);综上,点P的坐标为:(3,)或(6,﹣8).10.解(1)∵在Rt△AOC中,∠AOC=90°,∴OA==3,∴A(3,0),将A(3,0)、C(0,4)D(2,4)代入抛物线y=ax2+bx+c(a≠0)中得,解得,,∴抛物线解析式为y=﹣x2+x+4;(2)由A(3,0),C(0,4)可得直线AC解析式为y=﹣x+4,∴M坐标为(m,﹣m+4),∵MG∥BC,∴∠CBO=∠MGE,且∠COB=∠MEG=90°,∴△BCO∽△GME,∴=,即=,∴GE=﹣m+1,∴OG=OE﹣GE=m﹣1,∴S△COM =S梯形COGM﹣S△COG﹣S△GEM=m(﹣m+4+4)﹣4×(m﹣1)×﹣(﹣m+1)(﹣m+4),=﹣m2+m=﹣(m﹣)2+2,∴当m=时,S最大,即S最大=2;(3)根据题意可知△AEM是直角三角形,而△MPC中,∠PMC=∠AME为锐角,∴△PCM的直角顶点可能是P或C,第一种情况:当∠CMP=90°时,如图③,则CP∥x轴,此时点P与点D重合,∴点P(2,4),此时m=2;第二种情况:当∠PCM=90°时,如图④,延长PC 交x 轴于点F ,由△FCA ∽△COA ,得 =, ∴AF =, ∴OF =﹣3=, ∴F (﹣,0),∴直线CF 的解析式为y =x +4,联立直线CF 和抛物线解析式可得,解得,,∴P 坐标为(,),此时m =;综上可知存在满足条件的实数m ,其值为2或. 11.解:(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a .∵点A 位于点B 的左侧,与y 轴的负半轴交于点C ,∴a <0,∴点B 坐标为(1,0).(2)①由(1)可得,点A 的坐标为(a ,0),点C 的坐标为(0,a ),a <0, ∴AB =1﹣a ,OC =﹣a ,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.12.解:(1)∵△ABC为等腰直角三角形,∴AO=BC,∵△ABC面积为4,∴BC•OA=4,∴OA=2,BO=4,∴B(﹣2,0),A(0,2),C(2,0),∵点A,B在抛物线y=ax2+c上,∴,∴,即a、c的值分别为﹣和2;(2)如图1,连接OF,由(1)可知:y=﹣x2+2,∵B(﹣2,0),A(0,2),∴AB的直线解析为y=x+2,∵平移后抛物线定点F在射线BA上,设F(m,m+2),∴平移后抛物线解析式y=﹣(x﹣m)2+m+2,将点C(2,0)代入y=﹣(x﹣m)2+m+2,得﹣(2﹣m)2+m+2=0,∴m=6或m=0(舍),∴F(6,8),∴平移后抛物线解析式为y=﹣x2+6x﹣10,当y=0时,﹣x2+6x﹣10=0,∴x=2或x=10,∴E(10,0),∴OE=10,∵F(6,8),∴OF==10,EF==4,∴△OEF的周长为OE+OF+EF=10+10+4=20+4;(3)当P在x轴上方时,如图2,∵△PQE≌△POE,∴QE=OE=10,在Rt△QHE中,HQ==2,∴Q(6,2),当P在x轴下方时,如图3,∵△PQE≌△POE,∴PQ=OE=10,过点P作PK⊥HF与点K,∴PK=6,在Rt△PQK中,QK==8,∵∠PQE=90°,∴∠PQK+∠HQE=90°,∵∠HQE+∠HEQ=90°,∴∠PQK=∠HEQ,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴,∴,∴QH=3,∴Q(6,3),综上所述:满足条件的点Q(6,2)或Q(6,3).13.解:(1)∵抛物线y=ax2+bx+c的顶点为P(1,9),∴设该抛物线解析式为y=a(x﹣1)2+9(a≠0),把(﹣2,0)代入抛物线解析式得9a+9=0,a=﹣1,∴y=﹣(x﹣1)2+9=﹣x2+2x+8;(2)令y=0得﹣(x﹣1)2+9=0,x=﹣2,或x=4,∴B(4,0),∴OB=4抛物线对称轴直线x=1与x轴交点为T,如图1,作原点O关于直线x=1的对称点D(2,0),连接CD,则∠CDO=∠COD=2∠CBO,∵∠CDO=∠BCD+∠CBO,∴∠BCD=∠CBO,∴CD=DB=2.∴.∴.∴设直线BM的解析式为y=kx+t,则,解得,.∴直线BM解析式为,与抛物线y=﹣x2+2x+8联立得.∴,.∴,故点M坐标为;(3)如图2,设E(m,n)(m>0,n>0,m≠n),∵△GEO≌△HOF,∴OH=EG=n,FH=OG=m,∴F(n,m),设新抛物线解析式为y=﹣x2+2x+h,把点E,F的坐标代入抛物线的解析式得:m=﹣n2+2n+h,n=﹣m2+2m+h,即h=n2﹣2n+m,h=m2﹣2m+n,∴m2﹣2m+n=n2﹣2n+m,m2﹣n2+3(n﹣m)=0,(m﹣n)(m+n﹣3)=0,∵m≠n,∴m+n=3,m=3﹣n,∵m>0,n>0,m≠n,∴0<n<3且把m=3﹣n代入h=n2﹣2n+m,得.∵0<n<3且.∴.故h的取值范围.14.解:(1)把A(﹣1,0)、B(4,0)代入y=ax2+bx﹣2得到,解得,∴抛物线的解析式为y=x2﹣x﹣2.(2)设D(m,m2﹣m﹣2),∵C(0,﹣2),B(4,0),∴直线BC的解析式为y=x﹣2,∴E(m,m﹣2),∴DE=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m,=•DE•OB=﹣m2+4m=﹣(m﹣2)2+4,∴S△BCD∵﹣1<0,∴m=2时,△BDC的面积最大,此时DE=﹣×22+2×2=2.(3)如图3中,连接BC.∵==2,∠BCO=∠COA=90°,∴△BOC∽△COA,∴∠OBC=∠OCA.∵∠OBC+∠OCB=90°,∴∠OCA+∠OCB=90°=∠ACB,∴BC⊥AC.∵点B的坐标为(4,0),点C的坐标为(0,﹣2),点A的坐标为(﹣1,0),∴直线BC的解析式为y=x﹣2,直线AC的解析式为y=﹣2x﹣2,设点Q的坐标为(2,n),则过点Q且垂直AC的直线的解析式为y=x+n﹣1.联立两直线解析式成方程组,得:,解得:,∴两直线的交点坐标为(,).依题意,得:(2﹣0)2+(n﹣0)2=(﹣2)2+(﹣n)2,整理,得:n2﹣3n﹣4=0,解得:n1=﹣1,n2=4,∴点Q的坐标为(2,﹣1)或(2,4).综上所述:在这条直线上存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q 的坐标为(2,﹣1)或(2,4).15.解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于A(﹣3,0),C(4,0)两点,∴.解这个方程,得.∴该抛物线解析式是y=﹣x2+x+4.∵y=﹣x2+x+4=y=﹣(x﹣)2+.∴这条抛物线的顶点坐标是(,);(2)∵A(﹣3,0),C(4,0),∴OA=3,OB=OC=4,则AB=5,AC=7,CD=2;如图1,连接DQ,由于BD垂直平分PQ,则DP=DQ,得:∠PDB=∠QDB,而AD=AB,得:∠ABD=∠ADB,故∠QDB=∠ABD,得QD∥AB;∴△CDQ∽△CAB,则有:==,∴=.∴PD=DQ=,AP=AD﹣PD=5﹣=,故t=;(3)存在,如图2,连接AQ交对称轴于M,此时MQ+MC为最小,过Q作QN⊥x轴于N,∵DQ∥AB,∴∠QDN=∠BAC,sin∠QDN=sin∠BAC==,∴=,∴QN=,设直线BC的解析式为:y=kx+b,把B(0,4)和C(4,0)代入得:,解得,∴直线BC的解析式为:y=﹣x+4,当y=时,=﹣x+4,x=,∴Q(,),同理可得:AQ的解析式为:y=x+,当x=时,y=×+=,∴M(,).16.解:(1)在直线y=x﹣4,令x=0,则y=﹣4,令y=0,则x=8,∴A(8,0)、B(0,﹣4),将A(8,0)、B(0,﹣4)代入y=x2+bx+c有,解得:;故抛物线的表达式为:y=x2﹣x﹣4;(2)①如图1,过C作CE∥y轴交直线AB于点E,过M作MF∥y轴交直线AB于点F.则CE∥MF,∴,设点M(x,x2﹣x﹣4),∵MF∥y轴交直线AB于点F,直线AB:y=x﹣4,故点F(x,x﹣4),则MF=x﹣4﹣(x2﹣x﹣4)=﹣x2+2x,可求得C(﹣2,0),C作CE∥y轴交直线AB于点E,∴E(﹣2,﹣5),CE=5,∴,∴当x=4时,的最小值为;②存在.理由如下:∵C(﹣2,0);B(0,﹣4);A(8,0).∴OC=2,OB=4,OA=8,∵∠CBO+∠ABO=90°,∠CAB+∠ABO=90°,∴∠CBO=∠CAB,又∠ABC=∠BCO=90°,∴△BOC∽△ABC.有∠ABC=∠AOB=90°,又MD⊥AB于D,∴∠BDM=∠ABC=90°,∠BAC<45°.因此在△BMD只能是∠BMD=2∠BAC或∠MBD=2∠BAC.在图2中,取AC中点H,连接BH,可得∠BHO=2∠BAC,OH=OA﹣AH=3,tan∠BHO=,过D作DT⊥y轴于T,过M作MG⊥TD交其延长线于G.∵∠GDM+∠TDB=90°,∠TDB+∠TBD=90°,∴∠GDM=∠TBD,又∵∠DTB=∠MGD=90°,∴△TBD∽△GDM,,又DM⊥AB,tan∠DMB=,tan∠DBM=.当∠BMD=2∠BAC时,则=,当∠MBD=2∠BAC时,则,设点D(a,a﹣4),点M(m2﹣m﹣4)(8>a>0,8>m>0),则点T(0,a﹣4),点G(m,a﹣4),∴DT=a,DG=m﹣a,∴BT=a﹣4﹣(﹣4)=a,当∠BMD=2∠BAC时,,又,∴,解得:m=0或(舍去0),故点M的坐标为(,﹣),如图2,当∠MBD=2∠BAC时,,又,∴,解得:m=0或4(舍去0),故点M(4,﹣6);综合得存在满足条件的点M的坐标为(,﹣)或(4,﹣6).17.解:(1)针对于y=﹣x+2,令x=0,则y=2,∴C(0,2),令y=0,则0=﹣x+2,∴x=4,∴B(4,0),∵点C在抛物线y=﹣+bx+c上,∴c=2,∴抛物线的解析式为y=﹣+bx+2,∵点B(4,0)在抛物线上,∴﹣8+4b+2=0,∴b=,∴抛物线的解析式为y=﹣+x+2;(2)∵|BM﹣CM|最小,∴|BM﹣CM|=0,∴BM=CM,∴BM2=CM2,设M(,m),∵B(4,0),C(0,2),∴BM2=(4﹣)2+m2,CM2=()2+(m﹣2)2,∴(4﹣)2+m2=()2+(m﹣2)2,∴m=0,∴M(,0);(3)由(1)知,抛物线的解析式为y=﹣+x+2,令y=0,则0=﹣+x+2,∴x=4或x=﹣1,∴A(﹣1,0),∵B(4,0),C(0,2),∴BC2=20,AC2=5,AB2=25,∴CB2+AC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵NH⊥x,∴∠BHN=90°=∠ACB,设N(n,﹣n2+n+2),∴HN=|﹣n2+n+2|,BH=|n﹣4|,∵以点B、N、H为顶点的三角形与△ABC相似,∴①△BHN∽△ACB,∴,∴,∴n=﹣5或n=3或n=4(舍),∴N(﹣5,﹣18)或(3,2),②△BHN∽△BCA,∴,∴,∴n=0或n=4(舍)或n=﹣2,∴N(0,2)或(﹣2,﹣3),即满足条件的点N的坐标为(﹣5,﹣18)或(﹣2,﹣3)或(0,2)或(3,2).18.解:(1)∵抛物线经过A(1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x﹣1)(x﹣3),把C(0,3)代入得到a=1,∴抛物线的解析式为y=x2﹣4x+3,设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x+3,由,解得或,∴E(5,8).故答案为:y=x2﹣4x+3,y=x+3,5,8.(2)如图1中,过点E作EH⊥x轴于H.∵C(0,3),D(﹣3,0),E(5,8),∴OC=OD=3,EH=8,∴∠PDE=45°,CD=3,DE=8,EC=5,当∠CPE=45°时,∵∠PDE=∠EPC,∠CEP=∠PED,∴△ECP∽△EPD,∴=,∴PE2=EC•ED=80,在Rt△EHP中,PH===4,∴把点H向左或向右平移4个单位得到点P,∴P1(1,0),P2(9,0).(3)延长QH到M,使得HM=1,连接AM,BM,延长QB交AM于N.设Q(t,t2﹣4t+3),由题意点Q只能在点B的右侧的抛物线上,则QH=t2﹣4t+3,BH =t﹣3,AH=t﹣1,∴==t﹣3=,∵∠QHB=∠AHM=90°,∴△QHB∽△AHM,∴∠BQH=∠HAM,∵∠BQH+∠QBH=90°,∠QBH=∠ABN,∴∠HAM+∠ABN=90°,∴∠ANB=90°,∴QN⊥AM,∴当BM=AB=2时,QN垂直平分线段AM,此时QB平分∠AQH,在Rt△BHM中,BH===,∴t=3+,∴Q(3+,3+2).19.解:(1)抛物线的表达式为:y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),故点A、B的坐标分别为:(﹣1,0)、(3,0),故答案为:(﹣1,0)、(3,0);(2)过点B作y轴的平行线BQ,过点D作x轴的平行线交y轴于点P、交BQ于点Q,设:D(1,n),点C(0,﹣3m),∵∠CDP+∠PDC=90°,∠PDC+∠QDB=90°,∴∠QDB=∠DCP,又∵∠CPD=∠BQD=90°,∴△CPD∽△DQB,∴==,其中:CP=n+3m,DQ=3﹣1=2,PD=1,BQ=n,CD=﹣3m,BD=3,将以上数值代入比例式并解得:m=±,∵m<0,故m=﹣,故抛物线的表达式为:y=﹣x2+x+;(3)y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),∴C(0,﹣3m),CO=﹣3m.∵A(﹣1,0),B(3,0),∴AB=4,∴S2=S△AOC=×1×(﹣3m)=﹣m,设OD交BC于点M,由轴对称性,BC⊥OD,OD=2OM,在Rt△COB中,BC==3,由面积法得:OM==﹣,∴tan∠COB==﹣m,则cos∠COB=,MB=OB•cos∠COB=,∴S1=S△BOD=×DO×MB=OM×MB=﹣,又S1=S2,∴m2+1=(m<0),故m=﹣.20.解:(1)∵A(﹣1,0),对称轴为直线x=.∴B(4,0),设抛物线的表达式为:y=a(x﹣x1)(x﹣x2)=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)(x﹣4)=﹣x2+x+2;设直线BC的表达式为:y=sx+t,则,解得:,故直线BC的表达式为:y=﹣x+2;(2)设G点坐标(m,﹣m2+m+2),过G作GH∥y轴,交直线BC于H点,则H坐标为(m,﹣m+2),∴△GBC面积S=S△GHC +S△GHB=GH×OB=[﹣m2+m+2﹣(﹣m+2)]×4=﹣m2+4m,∵﹣1<0,故S有最大值,当m=2时,S的最大值为4;(3)设点M的坐标为(m,n),n=﹣m2+m+2,点R(1,s),而点B、C的坐标分别为:(4,0)、(0,2);①当BC为平行四边形的边时,点C向右平移4个单位,向下平移2个单位得到点B,同样点M(R)向右平移4个单位,向下平移2个单位得到点R(M),即m±4=1,解得:m=﹣3或5,故点M的坐标为:(5,﹣3)或(﹣3,2);②当BC为平行四边形的对角线时,由中点公式得:m+1=4,解得:m=3,故点M(3,2),综上,点M的坐标为(5,﹣3)或(﹣3,﹣7)或(3,2).。

2020年中考模拟试卷数学试卷及答案共5套精品版

2020年中考模拟试卷数学试卷及答案共5套精品版

中考模拟试卷 数学卷考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3 、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4 、考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.北京时间3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。

截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。

这里的数据“600万元”用科学计数法表示为( ▲ )(第1题) A . 4610⨯元 B . 5610⨯元 C .6610⨯元 D .7610⨯元 2. 若15a =,55b =,则a b 、两数的关系是( ▲ )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结合变化规律来解决,下面一题问号格内的图形应该是( ▲ )(第3题)4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12, 则在这一周中,最低气温的众数和中位数分别是( ▲ ) A. 13和11 B. 12和13 C. 11和12 D. 13和125.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?(不考虑主场优势)( ▲ ) A .21 B .31C .41D . 156. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ▲ )A .1B .22C .2D .2(第6题)(第7题)7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ )A .6.4米B . 8米C .9.6米D . 11.2米8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ▲ )A .15°B .30°C .45°D .60°(第9题)9.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( ▲ ) A .123S S S << B .123S S S >> C . 123S S S => D . 123S S S =<10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( ▲ )Oxy 4 4A . Ox y4 4 B .Ox y4 4 C .Ox y4 4 D .(第10题)C DE FAB (第8题)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:x x 43-= ▲12.已知函数y 1=2x-5,y 2= -2x +15,如果y 1<y 2 ,则x 的取值范围是 ▲13.如图,相离的两个圆⊙O 1和⊙O 2在直线l 的同侧。

2020年浙江省中考数学黄金冲刺模拟试题(附答案)

2020年浙江省中考数学黄金冲刺模拟试题(附答案)

浙江省中考数学黄金冲刺模拟试题考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应的位置上. 3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑. 5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分) 1. 2016的相反数是( ▲ ) A . 2016B .2016-C .12016D . 12016-2. 下列运算正确的是( ▲ )A .2233a a -=B .235()a a =C .3a 69a a = D .222(2)4a a =3.下列图案中,既是中心对称图形又是轴对称图形的是( ▲ ) 4.已知12x y =⎧⎨=⎩是关于x y ,的二元一次方程3x ay -=的一个解,则a 的值为( ▲ ) A .1 B .1- C .2 D .2-5.今年是猴年,在“猴年马月”和“猴头猴脑”这两个词语的八个汉字中,任选一个汉字是“猴”字的概率是 ( ▲ )A .18 B . 38C .58D .786.如图,某登山运动员从营地A 沿坡角为30°的斜坡AB 到达山顶B , 如果AB =600m ,那么他实际上升的高度BC 为( ▲ )A .3003mB .1200 mC .300 mD .2003m 7.把不等式组240,63x x -⎧⎨->⎩≥的解集表示在数轴上,正确的是( ▲ )8.如图,圆弧形石拱桥的桥顶到水面的距离CD 为6m ,桥拱半径OC 为4m ,则水面宽AB为( ▲ )A .B .C .D .2 3 0 1 2 3 0 2 3 0 1 1 .. . .. .. 1 .B . A .C .D . 第6题图.x O AMN M y 第15题图 A .3m B .32 m C .43m D .63m 9.某几何体的三视图如图所示,其中主视图和左视图都是腰为13cm ,底为10cm 的等腰三 角形,则这个几何体的侧面积是 ( ▲ )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 210.已知顶点为(-3,-6)的抛物线2y ax bx c =++经过点(-1,-4),则下列结论中错误的是( ▲ )A .24b ac > B .关于x 的一元二次方程24ax bx c ++=-的两根为-5和-1 C .2ax bx c ++≥-6 D .若点(-2,m ),(-5,n ) 在抛物线上,则m n >卷 Ⅱ说明:本卷共有2大题,14小题,共90分,请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分) 11.分解因式:21a -= ▲ .12.如图,三角板的直角顶点在直线l 上,且∠1=55°,则∠2的度数是 ▲ .13.若一组数据2,-1,0,2,-1,a 的众数为2,则这组数据的平均数为 ▲ . 14.如图,在□ABCD 中,已知AD =8cm ,AB =6cm ,DE 平分∠ADC 交BC 边于点E ,则BE 等于 ▲ .15.如图,一次函数3y kx =+分别与x ,y 轴交于点N ,M ,与反比例函数xy 3=(x >0)的图象交于点A ,若:2:3AM MN =,则k = ▲ . 16.如图,在平面直角坐标系中,直线334y x =-+与x 轴交于点A ,与y 轴交于点B .点Q 在直线AB 上,点P 在x 轴上,且∠OQP =90°.(1)当点P 与点A 重合时,点Q 的坐标为 ▲ ; (2)设点P 的横坐标为a ,则a 的取值范围是 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)俯视图左视图主视图第9题图第8题图第12题图l A C D 第14题图 E O A B y x 第16题图A C DB O .第21题图17.(本题6分) 计算:01sin 301223⎛⎫︒-- ⎪⎝⎭.18.(本题6分) 解方程:3122x x =-+.19.(本题6分) 学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加cm d ,如图所示,已知每个菱形图案的边长为3cm ,其中一个内角为60°.(1)求一个菱形图案水平方向的对角线长.(2)若26d =,则该纹饰要用231个菱形图案,求纹饰的长度L .20.(本题8分)为了解永康市某中学八年级学生的视力水平,从中抽查部分学生的视力情况, 绘制了如下统计图:(1)本次调查的样本容量是 ▲ ;(2)请补全条形统计图,并求扇形统计图中“视力正常”的圆心角度数; (3)该校八年级共有200位学生,请估计该校八年级视力正常的学生人数.21.(本题8分) 如图,DC 是⊙O 的直径,点B 在圆上,直线AB 交CD 延长线于点A ,且 ∠ABD =∠C .(1)求证:AB 是⊙O 的切线; (2)若AB =4cm ,AD =2cm ,求tan A 的值和DB 的长.22.(本题10分)某电信公司提供的移动通讯服务的收费标准有两种套餐如下表:永康市某中学八年级部分学生视力情况扇形统计图. 永康市某中学八年级部分学生视力情况条形统计图.. . . 129 63 人数(人)12 6 10 .第20题图 轻度近视 中度近视 25% 重度近视 视力正常30%60° …… dLB CD设每月通话时间为x 分种,A ,B 两种套餐每月话费分别为y 1,y 2元.y 1,y 2关于x 的函数图象如图所示. (1)表格中的a = ▲ ,b = ▲ ;(2)通话时间超过每月免费通话时间后, 求y 1,y 2关于x 的函数关系式,并写出相应 的取值范围;(3)已知甲乙两人分别使用A ,B 两种套餐, 他们的通话时间都是t 分钟(t >150),但话费 相差5元,求两人的通话时间.23.(本题10分)如图,在平面直角坐标系中,A (0,3),B (4,0),P 为线段OB (不包括端点)上的一个动点,将△AOP 沿AP 对折,O 的对称点记为(1)求PE +PB 的长; (2)求△BEP 周长的最小值;(3)过A 作AP 的垂线交PE 的延长线于点Q ,在点P 的 运动过程中,点Q 到x 轴的距离是否发生变化?如果不变, 请求出该距离;如果变化,请说明理由.24.(本题12分)如图,在平面直角坐标系中,点A 的坐标是(0,3),点C 在x 轴负半轴上,有∠CAO =30°,点B 是抛物线193922-+=x x y 上的动点.将△ABC 绕点A 逆时针旋转60°得到△ADE ,点B ,C 对应点分别是D ,E .(1)试写出点C ,E 的坐标;(2)当点B 在第二象限时,如图②,若直线BD ⊥x 轴,求△ABD 的面积;(3)在点B 的运动过程中,能否使得点D 在坐标轴上?若能,求出所有符合条件的点B 的第24题图 图①参考答案及评分标准一. 题号 1 2 3 4 5 6 7 8 9 10 答案 BCBBBCACBD评分标准选对一题给3分,不选,多选,错选均不给分11.(1)(1)a a -+ 12.35° 13.23 14. 2 15.10316.(1)36482525(,)(2)312a a -≥或≤ 三、解答题 (本题有8小题,共66分) 17.(本题6分) 原式=123212-+-…………4分 =3232-………2分 18.(本题6分) 解:3(2)2x x +=-…2分 362x x +=- 4x =-……2分经检验:原方程的解是4x =-……2分19.(本题6分)(1)菱形图案水平方向的对角线长为230cos 310o ⨯⨯=30cm …3分 (2)6010)1231(2630=-⨯+=L cm ……3分20.(本题8分)解:(1)40 ……2分(2)40×30%=12(人), 图略……2分 视力正常的圆心角度数=1236040⨯=108°……2分(3)20030%60⨯=人……2分 21.(本题8分) (1)证明:连结OB∵OB =OD ∴∠ODB =∠OBD ……1分 ∵DC 是⊙O 的直径 ∴∠DBC =90° ∴∠CDB +∠C =90°…1分 ∵∠ABD =∠C ∴∠OBD +∠ABD =90°……1分即∠OBA =90°∴OB ⊥AB ∴AB 是⊙O 的切线……1分 (2)设半径为r ,根据勾股定理得:2222)4r r +=+( ∴3r =………1分∴tanA =43…1分由△ADB ∽△ACB 得12DB AD BC AB ==……1分 ∵DC =6 ∴DB =655……1分22.(本题10分) (1)a = 20 , b = 150 ;……2分(2)当100x >时……1分 1200.4(100)0.420y x x =+-=-……1分 当150x >时…1分 2300.5(150)0.545y x x =+-=-…1分 (3)当125y y -=即(0.420)(0.545)5x x ---=时……1分200x =…1分 当215y y -=即(0.545)(0.420)5x x ---=时…1分300x =…1分 答:两人的通话时间为200分钟和300分钟.ACD BO.(第21题)23. (1)由折叠得OP =PE …1分∴4PE PB OP PB OB +=+==…2分(2)当点E 在线段AB 上时△PEB 的周长最小…1分 由折叠得,AE =AO =3,EP =OP 在Rt △AOB中5AB ==,2EB AB AE =-=∴△PEB 的周长=6EP PB EB OB BE ++=+=……2分(3)点Q 到x 轴距离不变……1分 延长QA 交x 轴于点D ,作QF ⊥x 轴于F ∵AQ ⊥AP ∴∠QAP =∠DAP =90°∵∠DP A =∠EP A ,AP =AP ∴△DAP ≌△QAP ∴AD =AQ ∴12AD DQ = ∵AO ⊥x 轴,QF ⊥x 轴 ∴AO ∥QF ∴△DAO ≌△D QF ∴12AO DA QF DQ == ∴QF =2AO =6 ∴点Q 到x 轴的距离为6………………………3分 24.(本题12分)(1)(C ………2分E …2分(2)过点A 作AF ⊥BD 于点F ,如图1∠=,AD AB Θ 设BF =x ,则AF x BD ⊥Θ轴 (,3-∴x x B 把()3,3+-x x B 代入193922-+=x x y 得: ()()313933922+=--+-x x x 解得:17,1721+-=+=x x (舍去)………………………2分321,2722+=+==∴AF x BD()()212383212722121+=++⨯=⨯=∴∆AF BD S ABD ………2分(3)当点D 在y 轴上时,如图2 直线AB 与y 轴的夹角为60°可求得直线AB 的解析式为:333+=x y 令2231399x x x +=+-得: 1x =-2x = ()1,321-∴B ,()6,332B当点D 在x 轴上时,如图3 , 过点B 作BG ⊥x 轴于点G ,由AOB ∆∽DOC ∆得: ∠BCD =∠BAD =60°∴设()x x B 3,3--∴()()x x x 313933922=---+--∴23933,2393321-=+=x x∴⎪⎪⎭⎫ ⎝⎛+--21339,239353B ,⎪⎪⎭⎫ ⎝⎛-+-21339,239354B 综上所述,当点D 在坐标轴上时,点B 的坐标为()1,321-B ,()6,332B ,⎪⎪⎭⎫ ⎝⎛+--21339,239353B ,⎪⎪⎭⎫ ⎝⎛-+-21339,239354B ………每个点1分。

中考数学冲刺全真模拟卷及答题解析(江苏苏州专用)

中考数学冲刺全真模拟卷及答题解析(江苏苏州专用)

中考数学冲刺全真模拟卷及答题解析(江苏苏州专用)试卷满分:130分考试时间:120分钟一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•香坊区期末)下列实数中是无理数的是()A.2B.√2C.3.1D.03【解答】解:A、2是分数,属于有理数,故本选项不合题意;3B、√2是无理数,故本选项符合题意;C、3.1是有限小数,属于有理数,故本选项不合题意;D、0是整数,属于有理数,故本选项不合题意.故选:B.2.(2019•温州二模)下列运算正确的是()A.a6÷a2=a3B.a•a=2a C.3a﹣2a=1D.a+a=2a【解答】解:A、a6÷a2=a4,故原题计算错误;B、a•a=a2,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、a+a=2a,故原题计算正确;故选:D.3.(2020秋•五常市期末)如图所示左边是用八块完全相同的小正方体搭成的几何体,从上面看该几何体得到的图形是()A.B.C.D.【解答】解:从上面看易得上面一层有3个正方形,下面一层有2个正方形.故选:D.4.(2020秋•河东区期末)将0.000617用科学记数法表示,正确的是()A .6.17×10﹣6B .6.17×10﹣4C .6.17×10﹣5D .6.17×10﹣2【解答】解:0.000617=6.17×10﹣4. 故选:B .5.(2020秋•柳州期末)“任意掷一枚质地均匀的骰子,掷出的点数是偶数”这个事件是( ) A .必然事件B .不可能事件C .随机事件D .确定事件【解答】解:“任意掷一枚质地均匀的骰子,掷出的点数可能是偶数,有可能是奇数”, ∴“任意掷一枚质地均匀的骰子,掷出的点数是偶数”是随机事件; 故选:C .6.(2020•高台县一模)不解方程,判别方程2x 2﹣3√2x =3的根的情况( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有一个实数根D .无实数根【解答】解:方程整理得2x 2﹣3√2x ﹣3=0, ∵△=(﹣3√2)2﹣4×2×(﹣3)=18+24>0, ∴方程有两个不相等的实数根. 故选:B .7.(2020•黄石)如图,在Rt △ABC 中,∠ACB =90°,点H 、E 、F 分别是边AB 、BC 、CA 的中点,若EF +CH =8,则CH 的值为( )A .3B .4C .5D .6【解答】解:∵在Rt △ABC 中,∠ACB =90°,点H ,E ,F 分别是边AB ,BC ,CA 的中点, ∴EF =12AB ,CH =12AB ,∴EF =CH , ∵EF +CH =8, ∴CH =EF =12×8=4, 故选:B .8.(2020•卧龙区模拟)如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点F ,若BE =6,AB =5,则AF 的长为( )A.4B.6C.8D.10【解答】解:∵AF平分∠BAD,AD∥BC,∴∠BAF=∠DAF=∠AFB,∴AB=BF,∵AE=AB,AH=AH,∴△ABH≌△AEH,∴∠AHB=∠AHE=90°,∠ABH=∠AEH=∠FBH,BH=HE=3,∴Rt△ABH中,AH=2−BH2=4,∴AF=2AH=8,故选:C.9.(2019•安徽模拟)如图,二次函数y=ax2+bx+c与反比例函数y=b的图象交于点P,点P的纵坐x−b)x+c的图象可能是()标为2,则一次函数y=(−2baA.B.C.D.【解答】解:如图可知,a<0,b<0,c>0,∵点P的纵坐标为2,∴c<2,设P点横坐标m,∴2m=b,2=am2+bm+c,∴8﹣4c=(a+2)b2,∴a>﹣2,∴−2ba −b=−2b+aba=−b(a+2)a<0,∴y=(−2ba−b)x+c的图象经过第一、二、四象限;故选:C.10.(2019秋•花都区期末)如图,已知△ABC中,∠C=90°,AC=BC,把△ABC绕点A逆时针旋转60°得到△AB'C',连接C'B,则∠ABC'的度数是()A.45°B.30°C.20°D.15°【解答】解:如图,连接BB′,延长BC′交AB′于点M;由题意得:∠BAB′=60°,BA=B′A,∴△ABB′为等边三角形,∴∠ABB′=60°,AB=B′B;在△ABC ′与△B ′BC ′中, {AC ′=B ′C ′AB =B′B BC′=BC′, ∴△ABC ′≌△B ′BC ′(SSS ), ∴∠MBB ′=∠MBA =30°, 即∠ABC '=30°; 故选:B .二、填空题:本大题共8小题,每小题3分,共24分.11.(2020春•江夏区校级月考)若一组数据1,2,x ,4,5,6的唯一众数是2,则这组数据的中位数为 3 .【解答】解:∵一组数据1,2,x ,4,5,6的唯一众数是2, ∴x =2,∴这组数据的中位数是(2+4)÷2=3; 故答案为:3.12.(2020•徐州)若√x −3在实数范围内有意义,则x 的取值范围是 x ≥3 . 【解答】解:根据题意得x ﹣3≥0, 解得x ≥3. 故答案为:x ≥3.13.(2020秋•河东区期末)已知一个正多边形的每个内角都是150°,则这个正多边形是正 十二 边形.【解答】解:外角是:180°﹣150°=30°, 360°÷30°=12.则这个正多边形是正十二边形. 故答案为:十二.14.(2020•唐山二模)若a +b =﹣1,ab =﹣6,则代数式a 3b +2a 2b 2+ab 3的值为 ﹣6 . 【解答】解:∵a +b =﹣1,ab =﹣6, ∴a 3b +2a 2b 2+ab 3 =ab (a 2+2ab +b 2) =ab (a +b )2 =(﹣6)×(﹣1)2 =(﹣6)×1=﹣6, 故答案为:﹣6.15.(2020•徐州一模)如图,小明在地上画了两个半径分别为2m 和3m 的同心圆.然后在一定距离外向圆内投掷小石子.若未投掷入大圆内则需重新投掷.则小明掷中白色部分的概率为 49 .【解答】解:∵同心圆的两个半径分别为2m 和3m , ∵小明掷中白色部分的概率=π×22π×32=49. 故答案为49,16.(2020•吴忠一模)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,则sin ∠BAC 的值为 45 .【解答】解:如图,过点C 作CD ⊥AB 于点D ,则∠ADC =90°,由勾股定理得: AC =√32+42=5, ∴sin ∠BAC =CD AC=45.故答案为:45.17.(2020•盐城模拟)如图,P A 切⊙O 于点A ,PO 交⊙O 于点B ,点C 是优弧AB 上一点,连接AC 、BC ,如果∠P =∠C ,⊙O 的半径为1,则劣弧AB 的长为 π3 .【解答】解:∵P A切⊙O于点A,∴P A⊥OA,∴∠OAP=90°,∵∠AOP=2∠C,∠P=∠C,∴∠AOP=2∠P,∵∠AOP+∠P=90°,∴∠P=30°,∠AOP=60°,∴劣弧AB的长为60π×1180=π3;故答案为:π3.18.如图,矩形ABCD中,AD=2,AB=4,EF⊥AC,交AB、CD于E、F,则AF+CE的最小值是5.【解答】解:如图所示:设DF=x,则FC=4﹣x;过点C作CG∥EF,且CG═EF,连接FG,当点A、F、G三点共线时,AF+FG的最值小;∵CG ∥EF ,且CG ═EF , ∴四边形CEFG 是平行四边形; ∴EC ∥FG ,EC ═FG , 又∵点A 、F 、G 三点共线, ∴AF ∥EC ,又∵四边形ABCD 是矩形, ∴AE ∥DC ,∠D =90°, ∴四边形AECF 是平行四边形, ∴OA =OC ,OE =OF , 又∵EF ⊥AC , AF =CF =4﹣x ,在Rt △ADF 中,由勾股定理得: AD 2+DF 2=AF 2,又∵AD =2,DF =x ,则FC =4﹣x , ∴22+x 2=(4﹣x )2, 解得:x =32,∴AF =52,在Rt △ADC 中,由勾股定理得: AD 2+DC 2=AC 2, ∴AC =2√5, ∴AO =√5, 又∵OF ∥CG , ∴△AOF ∽△ACG , ∴AO AC =AFAG , ∴AG =5,又∵AG =AF +FG ,FG =EC , ∴AF +EC =5, 故答案为5.三、解答题:本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明. 19.(2020•达州)计算:﹣22+(13)﹣2+(π−√5)0+√−1253.【解答】解:原式=﹣4+9+1﹣5 =1.20.(2020•漳州模拟)解不等式组:{4(x +1)≤7x +13①x−83>x −4②,并把解集在数轴上表示出来,并写出它的所有负整数解.【解答】解:解⊙得:x ≥﹣3, 解⊙得:x <2,不等式组的解集为:﹣3≤x <2, 则它的所有负整数解为﹣3,﹣2,﹣1. 在数轴上表示:.21.(2020秋•朝阳县期末)先化简,再求值:x x −1÷(1+1x−1),其中x =−23.【解答】解:原式=x (x+1)(x−1)÷x x−1=x(x+1)(x−1)•x−1x=1x+1,当x =−23时,原式=3.22.(2020秋•新宾县期末)已知,如图,AB =AD ,∠B =∠D ,∠1=∠2=60°. (1)求证:△ADE ≌△ABC ; (2)求证:AE =CE .【解答】(1)证明:∵∠1=∠2, ∴∠1+∠BAE =∠2+∠BAE , 即∠DAE =∠BAC , 在△ABC 和△ADE 中, {∠BAC =∠DAEAB =AD∠B =∠D,∴△ABC ≌△ADE (ASA );(2)证明:由(1)得△ABC≌△ADE,∴AE=AC,∵∠2=60°,∴△ACE是等边三角形,∴AE=CE.23.(2020•海南模拟)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩达到良好及以上等级的有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?【解答】解:(1)调查的总人数为16÷40%=40(人),所以合格等级的人数为40﹣12﹣16﹣2=10(人),合格等级人数所占的百分比=1040×100%=25%;优秀等级人数所占的百分比=1240×100%=30%;统计图为:(2)600×(30%+40%)=420,所以估计成绩达到良好及以上等级的有420名;(3)画树状图为:共有9种等可能的结果数,其中甲、乙两人恰好分在同一组的结果数为3,=所以甲、乙两人恰好分在同一组的概率=39=13.24.(2020秋•南岗区期末)某商店想购进A、B两种商品,已知每件B种商品的进价比每件A种商品的进价多5元,且用300元购进A种商品的数量是用100元购进B种商品数量的4倍.(1)求每件A种商品和每件B种商品的进价分别是多少元?(2)商店决定购进A、B两种商品共50件,A种商品加价5元出售,B种商品比进价提高20%后出售,要使所有商品全部出售后利润不少于210元,求A种商品至少购进多少件?【解答】解:(1)设每件A商品的进价为x元,则每件B商品的进价为(x+5)元,由题意得:300x =100x+5×4,解得:x=15,经检验,x=15是原分式方程的解,且符合题意,则x+5=20,答:每件A商品的进价为15元,每件B商品的进价为20元;(2)设购进A商品a件,由题意得:5a+20×20%(50﹣a)≥210,解得:a≥10,答:A种商品至少购进10件.25.(2019秋•薛城区期末)已知在平面直角坐标系中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=kx的图象经过点A,(1)当点B的坐标为(4,0)时(如图),求这个反比例函数的解析式;(2)当点B在反比例函数y=kx的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;(3)在第(2)小题的条件下,求nm的值.【解答】解:(1)过A 作AC ⊥OB ,交x 轴于点C ,∵OA =AB ,∠OAB =90°, ∴△AOB 为等腰直角三角形, ∴AC =OC =BC =12OB =2,∴A (2,2),将x =2,y =2代入反比例解析式得:2=k2,即k =4, 则反比例解析式为y =4x ;(2)过A 作AE ⊥x 轴,过B 作BD ⊥AE , ∵∠OAB =90°, ∴∠OAE +∠BAD =90°, ∵∠AOE +∠OAE =90°, ∴∠BAD =∠AOE , 在△AOE 和△BAD 中, {∠AOE =∠BAD∠AEO =∠BDA =90°AO =BA, ∴△AOE ≌△BAD (AAS ), ∴AE =BD =n ,OE =AD =m ,∴DE =AE ﹣AD =n ﹣m ,OE +BD =m +n , 则B (m +n ,n ﹣m );(3)由A 与B 都在反比例图象上,得到mn =(m +n )(n ﹣m ), 整理得:n 2﹣m 2=mn ,即(mn )2+mn −1=0, 这里a =1,b =1,c =﹣1, ∵△=1+4=5,∴mn =−1±√52,∵A(m,n)在第一象限,∴m>0,n>0,则mn =−1+√52,∴nm =√5+12.26.(2020秋•南京期末)如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵AD̂=AD̂,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴DÊ=BÊ,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴EDEG =EAED,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴OFOA =EFDE,∵BO=BF=OA,DE=32,∴21=EF32,∴EF=3.27.(2020•河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,可求出BB′CE的值为√2;(2)当0°<α<360°且α≠90°时,⊙(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;⊙当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BEB′E的值.【解答】解:(1)如图1,∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D=180°−30°2=75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴BDDC=√2,同理B′DDE=√2,∴BDDC =B′DDE,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴∠BDB'=∠EDC,∴△BDB'∽△CDE,∴BB′CE =BDDC=√2.故答案为:等腰直角三角形,BB′CE=√2.(2)⊙两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°−α2,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°−α2,∴∠EB'D=∠AB'D﹣∠AB'B=135°−α2−(90°−α2)=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴DB′DE=√2,∵四边形ABCD是正方形,∴BDCD=√2,∠BDC=45°,∴BDCD =DB′DE,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴BB′CE =BDCD=√2.⊙BEB′E=3或1.如图3,若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直角三角形,∴B'D=√2B'E,由(2)⊙可知△BDB'∽△CDE,且BB'=√2CE.∴BEB′E =B′B+B′EB′E=BB′B′E+1=√2CEB′E+1=√2B′DB′E+1=√2×√2+1=3.若CD为平行四边形的一边,如图4,点E与点A重合,∴BEB′E=1.综合以上可得BEB′E=3或1.28.(2020秋•沈阳期末)在平面直角坐标系中,抛物线y=x2﹣kx﹣2k(k为常数)的顶点为N.(1)如图,若此抛物线过点A (3,﹣1),求抛物线的函数表达式; (2)在(1)的条件下,抛物线与y 轴交于点B , ⊙求∠ABO 的度数;⊙连接AB ,点P 为线段AB 上不与点A ,B 重合的一个动点,过点P 作CD ∥x 轴交抛物线在第四象限部分于点C ,交y 轴于点D ,连接PN ,当△BPN ∽△BNA 时,线段CD 的长为 1+2√33.(3)无论k 取何值,抛物线都过定点H ,点M 的坐标为(2,0),当∠MHN =90°时,请直接写出k 的值.【解答】解:(1)将点A 的坐标代入y =x 2﹣kx ﹣2k 并解得k =2, 故抛物线的表达式为y =x 2﹣2x ﹣4;(2)⊙对于y =x 2﹣2x ﹣4,令x =0,则y =﹣4,故点B (0,﹣4), 而点A (3,﹣1),点A 、B 横坐标的差和纵坐标的差相等,AB 与x 轴的夹角为45°, 故∠ABO =45°;⊙由抛物线的表达式知,点N (1,﹣5),由点A 、B 、N 的坐标知,BN 2=12+(﹣5+4)2=2,AB =3√2, ∵△BPN ∽△BNA , ∴BN BA=BP BN,即BP =BN 2AB=3√2=√23, 由⊙知,∠ABO =45°,故△BPD 为等腰直角三角形, 故BD =√22BP =√22×√23=13,故点D (0,−113),当y =−113时,即x 2﹣2x ﹣4=−113, 解得x =1±2√33(舍去负值), 故CD 的长为x =1+2√33,故答案为1+2√33;(3)y =x 2﹣kx ﹣2k =x 2﹣k (x +2),当x =﹣2时,y =x 2﹣kx ﹣2k =4,即点H (﹣2,4),如图,过点H 作y 轴的平行线交过点N 与x 轴的平行线于点G ,HG 交x 轴于点K ,由抛物线的表达式知,点N (12k ,−k 24−2k ),∵∠NHG +∠MHG =90°,∠MHG +∠HMO =90°, ∴∠NHG =∠HMO , ∴tan ∠NHG =tan ∠HMO ,即GN HG=HK KM,∴−2−12k4+k 24+2k=42+2,解得k =﹣4或﹣6,当k =﹣4时,点N 的坐标为(﹣2,4)和点H 重合,故舍去k =﹣4, 故k =﹣6.。

2020中考数学冲刺模拟试题含答案

2020中考数学冲刺模拟试题含答案

2020年中考数学模拟试题 (二)、选一选,相信自己的判断!(本大题共12小题,每小题3分, 36分.在每小题给出的四个选项中只有一项是符合题目要求的, 不涂、错涂或涂的代号超过一个,一律得 0分)D.3. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯 视图是4. 已知。

1的半径是4cm , OO 2的半径是2cm , OQ = 5cm ,则两圆的 位置关系是1. 2的相反数是 A. 2 B. 1 C.D. 2. F 列计算正确的是 2 3 6 A . a • a = a B 3 2 6 .(x ) = x C .3nn+ 2n = 5mn5. 下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状 况的调查可以了解我国公民的健康状况; ③把(a 2). £ 1玄根号外 的因式移到根号内后,其结果是 .2 a ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的 个数有6. 如图,数轴上A 、B 两点表示的数分别为一1和“.3,点B 关于点A的对称点为C,则点C 所表示的数为r~ r~ J -------- 1——L -- a -------- *-A .— 2— 3B . — 1— 3C. — 2+] 3 D . 1+ 37.如图,均匀地向此容器注水 ,直到把容器注满.在注水的过程中 下列图象能大致反映水面高度h 随时间t 变化规律的是A.外离 B .外切 .相交 D .内含A . 1B 8在厶ABC 中,/ C = 90o , BC= 4cm AC= 3cm 把厶ABC 绕点 A 顺时针旋转90o 后,得到△ ABG (如图所示),则点B 所走过的路径长为C. ^^cm D9.如图,有一矩形纸片 ABCD AB= 6, AD= 8,将纸片折叠使AB 落 在AD边上,折痕为AE 再将△ ABE 以 BE 为折痕向右折叠,AE 与CFCD 交于点F ,则_CD 的值是A. 5 2cm B cmB ACEC10.若函数y2 ;2(烏;2),则当函数值严8时,自变量x 的值是A. 士、6B. 4C. 士 6 或 4D. 4 或—611.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中 白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一 个球,两次都摸到红球的概率是① x 2 y 2 49,② x y 2,③ 2xy 4 49,④ x y 9.其中说法正确的是A .①② B. ①②③ C. ①②④ D. ①②③④ 二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分, 共18分.请将12.如图是用4个全等的直角三角形与正方形图案, 已知大正方形面积为 49,小正方形面积:若用 x , y 表示直角三角形的两直角边( x y ),下列四个说法:1个小正方形镶成的结果直接填写在答题卡相应位置上)13.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整 数解是 _______________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学模拟试题(二)一、选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分) 1.2-的相反数是A. 2B. -1C. 12D. 12-2.下列计算正确的是A .a 2·a 3=a 6B .(x 3)2=x 6C .3m +2n =5mnD .y 3·y 3=y3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是4.已知⊙O 1的半径是4cm ,⊙O 2的半径是2cm ,O 1O 2=5cm ,则两圆的位置关系是A .外离B .外切C .相交D .内含 5.下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③把aa --21)2(根号外的因式移到根号内后,其结果是a --2;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有个 个 个 个6.如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为 A .―2― 3 B .―1―3C .―2+ 3D .1+37.如图,均匀地向此容器注水,直到把容器注满.在注水的过程中,下列图象能大致反映水面高度h随时间t变化规律的是AB8.在△ABC 中,∠C=90º,BC =4cm ,AC =3cm .把△ABC 绕点A 顺时针旋转90º后,得到△AB 1C 1(如图所示),则点B 所走过的路径长为A .52cmB . 5π4cmC . 5π 2cm D .5πcm9.如图,有一矩形纸片ABCD ,AB =6,AD =8,将纸片折叠使AB 落在AD 边上,折痕为AE ,再将△ABE 以BE 为折痕向右折叠,AE 与CD 交于点F ,则 CFCD的值是A .1B . 1 2C . 1 3D . 14A A AB B BCD CE D E CD10.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是AB .4 C或4 D .411.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是A . 1 2B . 1 3C . 1 6D . 1 812.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的 正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=. 其中说法正确的是A .①② B. ①②③ C. ①②④ D. ①②③④二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将yxAE BCDF H· ·· 结果直接填写在答题卡相应位置上)13.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整.数解..是_______________。

14.如图,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片(如右图)时形成∠1、∠2,则∠1+∠2= 度.15.若2||323x x x ---的值为零,则x =16.如图,在对角线长分别为12和16的菱形ABCD中,E 、F分别是边AB 、AD 的中点,H 是对角线BD 上的任意一点, 则HE +HF 的最小值是__________.17.下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2010个梅花图案中,共有__________个“ ”图案.18.如图,Rt △ABC 在第一象限,90BAC ∠=,点A 在直线y x =上,其中点A 的横坐标为1AC ∥y 轴,若双曲线ky x=()0k ≠与△ABC 有交点,则k 的 取值范围是 .三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上)19.(本题满分6分)(1)计算:0(π2009)2|-+.(本题满分6分)(2)先化简,再求值:22121x x x -++,其中3x =.20.(本题满分8分)关于x 的方程04)1(2=+++k x k kx 有两个不相等的实数根.(1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根的倒数和等于0若存在,求出k 的值;若不存在,说明理由.21.(本题满分8分)今年体育中考前,某校为了解九年级学生的一分钟跳绳次数的训练情况,从全校九年级500试.根据测试结果,下所示:请结合图表完成下列问题:(1)表中的a=;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第组;(4)若体育中考规定,男生一分钟跳绳次数(x):160x≥为10分;140160≤为8分;…….根据以x<≤为9分;120140x<上信息,请你判断该校男生得9分及以上大概有多少人22.(本题满分8分)如图,AD(本题满分8分)如图,AB是半圆的直径,O为圆心,AD、BD 是半圆的弦,且∠PDA=∠PBD。

(1) 判断直线PD是否为⊙O 的切线,并说明理由;(2) 如果BDE=60,PD=3,求PA的长。

24.(本题满分12分)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a 元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大25.(本题满分10分)已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n,.(1)求抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;(3)P是线段OC上一点,过点P作直线BC把△PCH参考答案一、选择题:二、填空题:13.0,1,2 14.90 15.3- 16.10 17.503 18.4≤k1≤三、解答题:19.(1)计算:(π2009)2|-+.解:原式=1+32+2-3………3分=3+3 …………6分(2)解:原式=2(1)(1)(1)x x x +-+ …………………………………………………… 2分=11x x -+ ………………………………………………………………4分 当3x =时, 原式=(1)311(1)312x x --==++…………………………………………………6分20.解:(1)由题意知,k≠,且044)1(2>-+=kk k ⋅∆. (2)分∴21>-k 且k ≠0.………………………………………………………………… 3分(2)不存在.……………………………………………………………………………4分设方程的两个根是1x ,2x . ∵ 04121≠=x x ,∴ 011212121=+=+x x x x x x . ∴ 021=+x x .∵kk x x 121+=-+,…………………………………………………………………6分∴ k +1=0,211<-=-k .∴ 满足条件的实数k 不存在.…………………………………………………………8分 21.答:(1)a =12; ……2分(2)每画对一个得2分; ……4分 (3)中位数落在第3组;(4)∵18648%50+=, ∴500×48%=240.即该校男生得9分及以上大概有240人. ……8分22.解:(1)BF=EA ………1分证明:∵BE 、BC 为⊙O 的半径,∴BE=BC .∵AD ⎪⎩⎪⎨⎧=∠=∠∠=∠CB BE FBC AEB CFBBAE ABE FCB △≌△6AB CF ∴==BCF△22221068BF BC CF =-=-=2EF BE BF ∴=-=222262210CE CF EF =+=+=210sin 10210EF ECF CF ∴∠===解: (1) PD 是⊙O 的切线,连接OD ,∵OB=OD ,∴2=PBD ,又∵PDA=PBD ,∴PDA=2,又∵AB 是半圆的直 径,∴ADB=90,即12=90,∴1PDA=90,即OD PD ,∴PD 是⊙O 的切线。

……………………………(2) 方法一:∵BDE=60,ODE=90,ADB=90,∴2=30,1=60。

∵OD=OA,∴△AOD是等边三角形。

∴POD=60。

∴P=PDA=30,∴PA=AD=AO=OD,在Rt△PDO中,设OD=x,∴x2(3)2=(2x)2,∴x1=1,x2= 1 (不合题意,舍去),∴PA=1。

……………………………4分方法二:∵OD PE,AD BD,BDE=60,∴2=PBD=PDA=30,∴OAD=60,∴P=30,∴PA=AD=OD,在Rt△PDO中,P=30,PD=3,OD,∴tan P=PD3=1,∴∴OD=PD‧tan P=3‧tan30=33PA=1。

…………………………8分解:依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则(1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ·············· (4分) (2)由201680017560W x =+≥,38x ∴≥.3840x ∴≤≤,38x =,39,40.∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件. ②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件. ③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件. ························· (8分) (3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+-(20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样. ③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大.………………………………………………25.解:(1)解方程2650x x -+=,得125,x x ==由m <n ,知m=1,n=5.∴A(1,0),B(0,5). ∴10,5.b c c -++=⎧⎨=⎩ 解之,得4,5.b c =-⎧⎨=⎩所求抛物线的解析式为24 5.y x x =--+ ……3分(2)由2450,x x --+=得125, 1.x x =-=故C 的坐标为(-5,0). ………4分由顶点坐标公式,得 D(-2,9).………………………………………………5分 过D 作DE⊥x 轴于E ,易得E(-2,0).∴BCD CDE OBC OBDE S S S S ∆∆∆=+-梯形159139255222+=⨯⨯+⨯-⨯⨯=15.…………………………………………7分(注:延长DB 交x 轴于F,由BCD CFD CFB S =S -S ∆∆∆也可求得) (3)设P(a ,0),则H(a ,245a a --+).直线BC 把△PCH 分成面积相等的两部分,须且只须BC 等分线段PH ,亦即PH 的中点(245,2a a a --+)在直线BC 上. (8)分易得直线BC 方程为: 5.y x =+∴2455.2a a a --+=+ 解之得121,5a a =-=-(舍去).故所求P 点坐标为(-1,0). ………10分。

相关文档
最新文档